
An Evolutionary Race: A Comparison of Genetic Algorithms and Particle
Swarm Optimization Used for Training Neural Networks

Brian Clow, Tony White

School of Computer Science, Carleton University
bclow@sympatico.ca, arpwhite@scs.carleton.ca

Abstract
This paper compares the performance of genetic

algorithms (GA) and particle swarm optimization (PSO)
when used to train artificial neural networks. The networks
are used to control virtual racecars, with the aim of
successfully navigating around a track in the shortest
possible period of time. Each car is mounted with multiple
straight-line distance sensors, which provide the input to the
networks. The cars act as autonomous agents for the
duration of the training run: they record the distance
traveled and rely on this for fitness evaluations. Both
evolutionary algorithms are well suited to this unsupervised
learning task, and the networks learn to successfully
navigate the course in a minimal number of generations.
The paper shows that PSO is superior for this application: it
trains networks faster and more accurately than GAs do,
once properly optimized.

1. Overview

The proposed problem is a vehicle control problem in
which virtual cars navigate a course in response to
simple distance sensors. Neural networks provide an
elegant way to solve this problem – they are very
tolerant to noisy data, and so are well suited to
problems involving sensory input. Traditional
programming techniques are difficult to use without
assuming what the proper behavior of a car is. Cars
with such assumptions would not be adaptable to
different terrains or sensors configurations. Through
the use of neural networks any course can be learned
no matter what the environment. Sensors can be
added or removed without affecting the training
process – even completely new types of sensors can
be added with no change to the learning algorithm.
The trained networks are more tolerant to faults and
changes in their design (such as a broken sensor) than
a traditional program would be.

Many experiments compare the performance of
algorithms by running them on a suite of small test
functions. The choice of the vehicle control problem
investigated here was motivated by a desire to
compare algorithms on a test function that could
conceivably be used in a real world application. A

neural network trained for this problem could be used
to control an autonomous robot equipped with infrared
distance sensors. A more detailed physics model
would be needed, but the neural network training
procedure would work as-is. While suites of test
functions provide an easy and effective comparison
method, it is also important to test algorithms in
situations that model real world applications of the
technology.

The first training algorithms for neural networks
were gradient descent algorithms such as back
propagation. Such methods assess the error in the
network’s decision as compared to a supervisor, and
propagate the error to the weights throughout the
network. They are subject to problems involving local
minima – since such algorithms always move towards
a better solution they can get stuck at a sub-optimal
solution that is nonetheless better than all nearby
solutions. Evolutionary algorithms avoid this problem
because they are not based on gradient information.
The evolutionary algorithms operate on information
about the relative performance of the individuals on
the population, and are quite suitable for problems
with many local minima or problems where gradient
information isn’t readily available.

Genetic algorithms have been used effectively to
find neural network architectures [2], tune network
learning parameters [11], and to optimize network
weights. However, when optimizing network weights
their performance may suffer due to an encoding issue
known as the “permutation problem”. This paper
investigates particle swarm optimization, which is free
of such encoding problems. It will attempt to discover
if PSO provides a more effective evolutionary training
method for neural network weights. In order to be
more effective, PSO must consistently produce a
trained network that has a higher fitness than a
network trained by GA. The difference must be
statistically significant – the likelihood that any
difference seen is due to random chance must be very
small. A two-tailed z-test will be used to determine if
the difference is significant.

2. Background: Evolutionary Algorithms

Although particle swarm optimization and genetic
algorithms are quite different, they are both
evolutionary algorithms. Each maintains a population
of individuals that represent possible solutions to the
problem at hand. The population members are
assigned a fitness based on their performance at the
problem. At each generation the population evolves –
each individual is changed in some way based on the
fitness of the individual in the current generation.
Each change may result in a member that is more or
less fit, but on average the fitness of the population
increases over multiple generations until an optimal
solution is found.

2.1 Genetic Algorithms
Human evolution and DNA inspire this algorithm.
Each population member is represented as a
chromosome made up of a number of genes. The
genes represent the parameters of the function to be
optimized. Traditionally, the chromosomes are bit
strings; in this case, they are arrays of floating point
numbers that represent the weights of the neural
networks. The population produces a new generation
of chromosomes through the use of genetic operators
that approximate recombination and mutation of
DNA. The crossover operator exchanges entire
sections of the chromosome of two parents, while the
mutation operator modifies individual genes by small
amounts. A selection process exists to determine
which individuals reproduce. Individuals with a
higher fitness are more likely to reproduce than those
with a lower fitness, so the overall fitness increases as
beneficial traits are passed on to future generations.

Neural networks weights can be difficult to
optimize using GAs due to a problem known as the
permutation problem, or the competing conventions
problem [7]. This problem arises from the many-to-
one relationship of chromosomes to actual networks.
The hidden neurons of the network can be permuted
into any order without affecting the performance of
the network, since it is strongly connected in a
forward direction. This makes the crossover operator
very inefficient: two similar networks can be encoded
differently. Crossover between two highly fit
networks may produce an offspring with radically
different and possibly much poorer performance.

 Crossover is traditionally the driving force
behind evolution in GAs, but due to its’ inefficiency
this convention must be examined. As suggested in
previous literature [8], mutation can replace crossover
as the primary evolutionary drive, in a similar manner

to genetic programming. Experiments were conducted
for this paper to determine if a mutation driven GA
was more effective than a typical crossover driven
GA. For the mutation driven GA, single point
crossover was used with a crossover rate of 0.25. The
mutation rate was 0.75, and each gene on a mutating
chromosome had a 0.50 probability of changing by a
random amount in the range [-1.0,1.0]. This paradigm
was tested against a more traditional implementation
with two-point crossover with a rate of 0.85, and a
mutation rate of 0.08. Each gene on a mutating
chromosome had a 0.70 probability of changing by a
random amount in the range [-1.0,1.0]. 1000 trial runs
were conducted, with each algorithm initialized to an
identical random position. The mutation driven GA
learned faster and more accurately than the crossover-
driven GA. A two-tailed z-test showed that the results
could be due to chance only 5.5% of the time, which
is very close to being statistically significant.
Mutation driven GA was used for comparison against
particle swarm optimization.

2.2 Particle Swarm Optimization
Particle swarm optimization, while also considered an
evolutionary algorithm, is quite different from GA.
PSO is based on a social simulation of the movement
of flocks of birds. It was first presented in a 1995
paper [6] that presented it as a new way to solve
function optimization problems. A swarm is a
population of particles, each of which exists in n-
dimensional space. There are as many dimensions as
there are parameters to be optimized, so each point in
that space represents a possible solution to the
function. Each particle maintains its’ current position
and velocity, and its’ personal best position so far.
The swarm itself records the global best position, at
which the highest fitness so far has been found. Each
time tick, the particles’ velocity is stochastically
adjusted by the direction to the global and personal
best positions. The velocity is constrained in each
dimension such that it cannot be higher or lower than
a set maximum and minimum. The velocity update
equation is shown in equation 1.

Velocity = InertiaWeight*Velocity +
2*rand()*(personalBest-currentPosition) +

2*rand()*(globalBest-currentPosition)

(1)

Conceptually, the particles “fly” through n-

dimensional space, exploring the solution space as
they travel. When a better global best position is
found, the entire swarm will migrate towards it,

exploring the more profitable solution space
surrounding the global best position. The personal
best provides the drive to explore the local solution
space of the particle – as the swarm moves through
space, particles will further explore those regions
they’ve individually found to be profitable. The
constant factors of 2 are known as the cognitive and
social parameters. The cognitive parameter controls
how much emphasis is placed on information learned
by the particle and the social parameter controls how
much emphasis is placed on information learned from
other particles. Setting them both to 2 ensures that the
particles will overshoot the optimum positions
approximately half the time, which provides further
drive to explore unknown regions.

The inertia weight controls the global and local
exploration ability of the swarm by controlling the
emphasis placed on the previous velocity. A low
inertia means that the particles move directly towards
the global/local bests. A high inertia means that the
particles will only move indirectly towards the best
positions, exploring a greater area of the solution
space. At the beginning of training, it is desirable to
have a high inertia to be sure particles explore the
global solution space thoroughly. Once a good
solution region is found it is important to explore it in
detail, so the inertia weight is smoothly decreased
down to 0.0 at the end of the training run. As the run
progresses and the inertia decreases, particles tend to
explore the local solution spaces and fine-tune the
solutions discovered. During testing it was shown that
decreasing the inertia weight resulted in a significant
improvement in the mean population fitness near to
the end of the run. If the inertia remains high,
particles continue to explore globally and the mean
fitness remained low. A constriction term is often
used in place of inertia weight, but not in this
implementation. The inertia model performs well at
the task at hand, and was sufficient to demonstrate
meaningful results.

The choice of maximum velocity is also critical to
the performance of the algorithm. If the maximum
velocity is too high, particles will explore the solution
space in large discrete jumps, which may completely
bypass good solution spaces. If it is set too low, the
particles cannot obtain sufficient velocity to move to a
new solution space before being attracted back
towards the global/personal best positions.
Decreasing the maximum velocity as the training
progresses increases the performance in a similar
manner to decreasing the inertia weight. The
maximum velocity must remain above 0 for progress

to continue as the run ends, so it is decreased to ¼ of
the initial maximum velocity.

3. Related Work

The autonomous control of vehicles with neural
networks has been well documented in many projects.
They are effective for such tasks, as seen in the
ALVINN system [9], in which a neural network was
used to navigate a full sized vehicle over considerable
distances. This problem is highly non-trivial since the
network controls a physical vehicle rather than a
simulated one. A back propagation training algorithm
was used to optimize the weights of the neural
network; it learned by observing the steering patterns
of a human driver. This system achieved considerable
success at navigating in different road conditions; it
was able to drive at speeds of up to 70 mph for
distance of over 90 miles. The authors further
improved the performance of the training algorithms
by using various other gradient descent training
algorithms [3]. Their works shows the effectiveness of
this class of algorithm, provided there is a supervisor
available to provide error information to the
algorithm.

Genetic algorithms have long been known to be
effective at training neural network weights. There is
extensive literature on their use for this purpose:
indeed, most literature does not confine itself to solely
evolving the weights, but also covers architecture
evolution. Since gradient descent methods are used
only for weight training, comparisons between them
and GA have been particular areas of interest. Genetic
algorithms have been found to be faster and more
efficient [12] than back propagation for weight
training, particularly in situations where gradient
information isn’t cheaply available. It is easier to
introduce biases and introduce penalties into the
fitness function of a genetic algorithm than back
propagation, since one does not have to worry about
the fitness function being differentiable.

Genetic algorithms are well suited to evolving the
topology of networks. Balkanrishnan and Honavar
published a paper [2], which outlines the major
concerns and related literature. Designing the
architecture of a neural network for a particular task is
largely a trial-and-error process. If the architecture is
not designed correctly, the network will have
problems generalizing to unseen data, or even
problems learning to respond accurately to training
data. This motivates the use of genetic algorithms to
search for the optimal network structure. The

architecture can be encoded for the GA in a direct
manner where little encoding work needs to be done,
or in an indirect manner that requires considerable
work to decode. A connectivity matrix where each
position represents the existence of one connection is
an example of a direct encoding, while a grammatical
encoding is considered indirect. After the network
structure has been encoded into a chromosome, a
standard GA can be used for evolution. To evaluate
the fitness of a particular network structure, the
network weights must be trained – the fitness will be
the best performance of the network after limited
amount of training. Any algorithm can perform the
weight training – much work has been done
combining back propagation and genetic algorithms in
just this way.

Both the topology and the initial weights can be
evolved simultaneously, as can be seen in papers by
Castillo and others [4,5]. They proposed a hybrid
training algorithm that used both GA and gradient
descent methods. A genetic algorithm was designed
that encoded both the number of hidden neurons and
the network weights onto a single chromosome. A
variant of back propagation called Quickprop was
used to train the final network weights before fitness
evaluation, and the learning rate of this algorithm was
encoded into the chromosome to be optimized by the
GA. The authors found that networks trained using
their hybrid systems were superior to networks trained
with other gradient descent and evolutionary training
methods. While genetic algorithms are very good at
global searches, back propagation is more efficient at
a fine-tuned local search. Combining two training
methods into one cohesive training structure proved to
be a very effective training method.

Particle swarm optimization is receiving an
increasing amount of attention, with a flood of papers
in the last few years. There have been several papers
comparing the performance of GA and PSO for
various tasks, including the training of neural
networks. A 2003 paper [10] compared the
performance of the two algorithms as used for training
recurrent neural networks. They found that PSO
performed better for smaller networks and the GA
performed better for larger networks. This finding
will be investigated to see if the same holds true here.

4. Experimental Setup

The testing software was designed to simulate
navigation of a racecar on a virtual course. Each car is
controlled by a neural network, and is equipped with

simple sensors that report the distance to the nearest
object in a straight line in front of the sensor. The
number of sensors can be changed: the networks were
able to successfully learn to navigate the course with
any number of sensors. In this simulation the cars
cannot collide with each other – this was necessary to
allow large population sizes to train. Cars may collide
with a wall, at which point they stop until the car turns
or backs away. They do not suffer damage or any sort
of penalty for hitting a wall – but since they are not
moving their fitness will remain low. The training
course is shown in figure 1. The optimal route around
the course has not been predetermined – the particle
swarm will determine this on its’ own.

Fig. 1. The training course is shown during a training run.
The population has converged such that there are many
similar individuals, as can be seen by the large number of
cars in a similar position on the track.

The sensors on the cars are linked directly to the
input neurons of the neural networks. Each input
neuron uses the distance reported by the sensors as the
activation value. The neural networks were originally
provided with the car’s orientation and velocity, but
since in practice the presence of this information made
little different to the car’s performance, it was
eliminated. There is a single hidden layer, and four
output neurons. The outputs represent the commands
that the network gives to the car. There is one for
forward motion, one for backward motion, and one for
rotation in each direction. A sigmoid activation
function is used, so the outputs will be in the range of
0.0 to 1.0. Each time tick, a car may perform all four
actions in varying degrees. Opposing actions balance
each other; if the car is given commands to turn both
left and right, it will turn in the direction that has the
greatest output value. The amount of motion is
constrained by the turning and acceleration rate of the

simulation engine. Figure one shows the structure of a
typical neural network with 8 hidden neurons,
controlling a car with five sensors.

Some work [10] has indicated that PSO is superior
for small networks only but is outperformed by
genetic algorithms training larger networks. To
determine if the same applies here, three sets of
comparisons were performed, with different network
architecture in each. The number of sensors
corresponds to the number of inputs, and the number
of hidden neurons was always kept slightly larger than
the number of input neurons. The structure of each
test is as follows.

• Test 1: 3 sensors, 8 hidden neurons, 4

outputs; 56 weights total
• Test 2: 7 sensors, 11 hidden neurons, 4

outputs; 110 weights total
• Test 3: 12 sensors, 14 hidden neurons, 4

outputs; 224 weights total
Fig. 2. This shows a typical neural network. The input
neurons are on the left hand side, and the output neurons are
on the right. 5. Results

To train the networks, a randomized population is
created and allowed to run for 250 time ticks, after
which evolution occurs. There are two possible
starting directions – facing directly right (90 degrees)
or left (270 degrees). All cars begin with the same
orientation, which is switched every generation. This
helps introduce diversity into the training data.
Randomness plays an important part in evolutionary
training strategies, so it is necessary to run multiple
tests on each algorithm. 1000 training runs were
performed for each comparison, and the average best
and mean fitness were plotted. The best fitness of
every test run was also recorded, and the means of the
results were compared using a two tailed z-test to
determine if the result is statistically significant.

The results of all three tests have been recorded in
figures 3 through 5 below. Each of the figures clearly
shows particle swarm optimization outperforming
genetic algorithms in terms of both best member and
mean performance.

0

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Generation

Fi
tn
es
s PSO Best

PSO M ean
GA Best
GA M ean

Both algorithms operated on populations of 50
members for 30 generations each test run. In the
genetic algorithm, networks are encoded into
chromosomes as arrays of floating point numbers;
there is a single floating point number for each weight
in the network. It used a single point crossover with a
rate of 0.25, and had a 0.75 mutation rate. Each gene
on a mutating chromosome had a 0.50 probability of
changing by a random number in the range [-1.0,1.0].
Tournament selection was used with a tournament size
that is 20% of the total population size.

Fig. 3. 3 Sensors, 8 hidden Neurons

A two-tailed z-test (α=0.5) was performed to see
if the difference apparent on the graphs was
statistically significant. All three results were shown
to be significant, with probabilities that the results are
due to chance as follows:

The position and velocities of the particles are
also stored as arrays of floating point numbers. The
algorithm had an initial inertia of 1.4, decreasing to
0.0 at the end of the run. The initial maximum
velocity was 2.0, and was decreased to 0.5 at the end
of the run.

• Test 1: 3.75 x 10-6
• Test 2: 4.8 x 10-8
• Test 3: 3.72 x 10-10

0

5000

10000

15000

20000

25000

30000

35000

40000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Generation

Fi
tn
es
s PSO Best

PSO M ean
GA Best
GA M ean

Fig. 4. 7 Sensors, 11 Hidden Neurons

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Generation

Fi
tn
es
s PSO Best

PSO M ean
GA Best
GA M ean

Fig. 5. 12 Sensors, 14 Hidden Neurons

6. Discussion

Graphs of the performance of evolutionary algorithms
typically result in a smooth curve, with a rapid
increase at the start that gradually slows down. In this
case the graphs exhibited the typical growth behavior,
but they were not smooth. This is due to the
alternating starting orientation of the vehicles: since
every vehicle starts with a different orientation each
generation, it will have a slightly different fitness each
successive generation. Thus the graphs exhibit the
fluctuating best fitness value. If a line of best fit is
drawn the graphs are a smooth curve similar to most
seen in evolutionary literature.

Both algorithms were very effective at training all
three different network structures. They learned to
successfully navigate the course on the majority of test
runs, and often reached an optimal route. PSO proved
to be the superior algorithm for all tests, with both the
best member and mean fitness growing quicker and

higher than with the GA. The likelihood of chance
resulting in the observed results was very low, much
less than 1% in all cases. Although the difference in
mean best member performance is not large, but a
large number of test runs were conducted, and the z-
test showed that the difference was significant. As the
network size grew, there was no corresponding
increase in the uncertainty of the results. It is possible
this may change when even larger networks are used,
but a network with 12 sensors should be sufficient for
real world applications.

While most literature involving GA and neural
networks mentions the permutation problem, it is
worth noting that this is not necessarily the reason that
PSO outperforms it. Hancock [7] found that the effect
of the permutation problem might not be as severe as
previously thought. Complex crossover operators that
were designed to avoid the permutation problem were
outperformed by simple single point crossover. He
mentions that results have been obtained that shows
that a crossover rate of 0.25 improves a GA when
used for optimizing neural network weights. As
mentioned in section 2.1, results obtained from testing
for this paper supported these findings; the mutation
driven GA outperformed the crossover driven GA.

Genetic algorithms have some abilities that PSO
does not: they can be used to find the optimal structure
for a network by modifying the existence of
connections between neurons rather than the weights
themselves. In its’ present form, particle swarm
optimization cannot be used to do so as it is not a real
valued problem. It would be possible to combine the
two by using a genetic algorithm to evolve the
structure of a network while particle swarms find the
optimal weight configuration during the fitness
evaluation. Such uses promise to blend together the
different evolutionary algorithm into one cohesive
training structure. It will also be possible to modify
the PSO algorithm to allow the evolution of network
architecture. A discrete PSO algorithm must be
implemented in which each particle represents a
connection matrix specifying the existence of links
between the neurons. Future work is planned to
explore the effectiveness of such an algorithm.

7. Conclusion

The results of the experiment performed indicate that
particle swarm optimization can be a superior training
algorithm for neural networks, which is consistent
with other research in the area. This paper has
demonstrated the statistical significance of the

superiority for the problem described across a
reasonably wide range of network architectures. PSO
provides a practical alternative to the use of genetic
algorithms for non-trivial problems. After many years
of research, genetic algorithms have proved to provide
working, practical solutions to real world problems.
These results promise the same will be true of particle
swarm optimization after it has gained more
widespread acceptance.

In future work we intend to combine evolutionary
algorithms for the generation of neural network
architecture as well as weights and to explore the
generation of controllers in other domains.

References

[1] Balakrishnan, K., Honavar, V.: A New Optimizer Using
Particle Swarm Theory. Artificial Intelligence Research
Group, Department of Computer Science. Iowa State
University, Ames, Iowa (1995)

[2] Balakirshnan, K., Honavar, V.: Evolutionary Design of
Neural Architectures – A Preliminary Taxonomy and
Guide to Literature. Rept. CD TR95-01. Department of
Computer Science, Iowa State University, Ames, Iowa
(1995)

[3] Batavia, P., Pomerleau, D., Thorpe, C.: Applying
Advanced Learning Algorithms to ALVINN. Tech
report CMU-RI-TR-96-31. Robotics Institute, Mellon
University, Carnegie (1996)

[4] Castillo, P.A., Merelo, J.J., et al: G-Prop-III: Global
Optimization of Multilayer Perceptrons using an
Evolutionary Algorithm.

[5] Castillo, P.A., Rivas, V., et al: G-Prop-II: Global
Optimization of Multilayer Perceptrons using GAs.

[6] Eberhart, R.C., Kennedy, J.: A New Optimizer Using
Particle Swarm Theory. Proceedings of the Sixth
International Symposium on Micromachine and Human
Science. Nagoya, Japan (1995) 39-43

[7] Hancock, P.J.B.: Genetic Algorithms and Permutation
Problem: A Comparison of Recombination Operators for
Neural Net Structure Specification. Proc. Int. Workshop
Combinations of Genetic Algorithms and Neural
Networks (COGANN-92). Los Alamitos, California
(1992) 108-122

[8] Meeden, L.: An Incremental Approach to Developing
Intelligent Neural Network Controllers for Robots.
Adaptive Behaviour.

[9] Pomerleau, D.A.: ALVINN: An autonomous Land
Vehicle in a Neural Network. Advances in Neural
Information Processing System. Kaufmann, San Mateo,
California (1989)

[10] Settles, M., Rodebaugh, B., Soule, T.: Comparisons
of Genetic Algorithm and Particle Swarm Optimizer
when Evolving a Recurrent Neural Network. Proc. Of
the genetic and Evolutionary Computation Conference.
Chicago, Illinois (2003)

[11] Yao, X.: Evolving Artificial Neural Networks. Proc.
Of the IEEE, vol. 87, no. 9 (1999) 1423-1447

[12] Yao, X.: Evolutionary Artificial Neural Networks.
Encyclopedia of Computer Science and Technology, vol.
33 (1993) 137-170

