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Abstract
This paper compares the performance of genetic 

algorithms (GA) and particle swarm optimization (PSO) 
when used to train artificial neural networks.  The networks 
are used to control virtual racecars, with the aim of 
successfully navigating around a track in the shortest 
possible period of time.  Each car is mounted with multiple 
straight-line distance sensors, which provide the input to the 
networks.  The cars act as autonomous agents for the 
duration of the training run: they record the distance 
traveled and rely on this for fitness evaluations.  Both 
evolutionary algorithms are well suited to this unsupervised 
learning task, and the networks learn to successfully 
navigate the course in a minimal number of generations.  
The paper shows that PSO is superior for this application: it 
trains networks faster and more accurately than GAs do, 
once properly optimized. 

1. Overview 

The proposed problem is a vehicle control problem in 
which virtual cars navigate a course in response to 
simple distance sensors.  Neural networks provide an 
elegant way to solve this problem – they are very 
tolerant to noisy data, and so are well suited to 
problems involving sensory input.  Traditional 
programming techniques are difficult to use without 
assuming what the proper behavior of a car is.  Cars 
with such assumptions would not be adaptable to 
different terrains or sensors configurations.  Through 
the use of neural networks any course can be learned 
no matter what the environment.  Sensors can be 
added or removed without affecting the training 
process – even completely new types of sensors can 
be added with no change to the learning algorithm.  
The trained networks are more tolerant to faults and 
changes in their design (such as a broken sensor) than 
a traditional program would be.   

Many experiments compare the performance of 
algorithms by running them on a suite of small test 
functions.  The choice of the vehicle control problem 
investigated here was motivated by a desire to 
compare algorithms on a test function that could 
conceivably be used in a real world application.  A 

neural network trained for this problem could be used 
to control an autonomous robot equipped with infrared 
distance sensors.  A more detailed physics model 
would be needed, but the neural network training 
procedure would work as-is.  While suites of test 
functions provide an easy and effective comparison 
method, it is also important to test algorithms in 
situations that model real world applications of the 
technology. 

The first training algorithms for neural networks 
were gradient descent algorithms such as back 
propagation.  Such methods assess the error in the 
network’s decision as compared to a supervisor, and 
propagate the error to the weights throughout the 
network.  They are subject to problems involving local 
minima – since such algorithms always move towards 
a better solution they can get stuck at a sub-optimal 
solution that is nonetheless better than all nearby 
solutions.  Evolutionary algorithms avoid this problem 
because they are not based on gradient information.  
The evolutionary algorithms operate on information 
about the relative performance of the individuals on 
the population, and are quite suitable for problems 
with many local minima or problems where gradient 
information isn’t readily available. 

Genetic algorithms have been used effectively to 
find neural network architectures [2], tune network 
learning parameters [11], and to optimize network 
weights.  However, when optimizing network weights 
their performance may suffer due to an encoding issue 
known as the “permutation problem”.  This paper 
investigates particle swarm optimization, which is free 
of such encoding problems.  It will attempt to discover 
if PSO provides a more effective evolutionary training 
method for neural network weights.  In order to be 
more effective, PSO must consistently produce a 
trained network that has a higher fitness than a 
network trained by GA.  The difference must be 
statistically significant – the likelihood that any 
difference seen is due to random chance must be very 
small.  A two-tailed z-test will be used to determine if 
the difference is significant. 



2. Background: Evolutionary Algorithms 

Although particle swarm optimization and genetic 
algorithms are quite different, they are both 
evolutionary algorithms.  Each maintains a population 
of individuals that represent possible solutions to the 
problem at hand.  The population members are 
assigned a fitness based on their performance at the 
problem.  At each generation the population evolves – 
each individual is changed in some way based on the 
fitness of the individual in the current generation.  
Each change may result in a member that is more or 
less fit, but on average the fitness of the population 
increases over multiple generations until an optimal 
solution is found. 

2.1 Genetic Algorithms 
Human evolution and DNA inspire this algorithm.  
Each population member is represented as a 
chromosome made up of a number of genes.  The 
genes represent the parameters of the function to be 
optimized.  Traditionally, the chromosomes are bit 
strings; in this case, they are arrays of floating point 
numbers that represent the weights of the neural 
networks.  The population produces a new generation 
of chromosomes through the use of genetic operators 
that approximate recombination and mutation of 
DNA.  The crossover operator exchanges entire 
sections of the chromosome of two parents, while the 
mutation operator modifies individual genes by small 
amounts.  A selection process exists to determine 
which individuals reproduce.  Individuals with a 
higher fitness are more likely to reproduce than those 
with a lower fitness, so the overall fitness increases as 
beneficial traits are passed on to future generations.   

Neural networks weights can be difficult to 
optimize using GAs due to a problem known as the 
permutation problem, or the competing conventions 
problem [7].  This problem arises from the many-to-
one relationship of chromosomes to actual networks.  
The hidden neurons of the network can be permuted 
into any order without affecting the performance of 
the network, since it is strongly connected in a 
forward direction.  This makes the crossover operator 
very inefficient: two similar networks can be encoded 
differently.  Crossover between two highly fit 
networks may produce an offspring with radically 
different and possibly much poorer performance. 

 Crossover is traditionally the driving force 
behind evolution in GAs, but due to its’ inefficiency 
this convention must be examined.  As suggested in 
previous literature [8], mutation can replace crossover 
as the primary evolutionary drive, in a similar manner 

to genetic programming.  Experiments were conducted 
for this paper to determine if a mutation driven GA 
was more effective than a typical crossover driven 
GA.  For the mutation driven GA, single point 
crossover was used with a crossover rate of 0.25.  The 
mutation rate was 0.75, and each gene on a mutating 
chromosome had a 0.50 probability of changing by a 
random amount in the range [-1.0,1.0].  This paradigm 
was tested against a more traditional implementation 
with two-point crossover with a rate of 0.85, and a 
mutation rate of 0.08.  Each gene on a mutating 
chromosome had a 0.70 probability of changing by a 
random amount in the range [-1.0,1.0].  1000 trial runs 
were conducted, with each algorithm initialized to an 
identical random position.  The mutation driven GA 
learned faster and more accurately than the crossover-
driven GA.  A two-tailed z-test showed that the results 
could be due to chance only 5.5% of the time, which 
is very close to being statistically significant.  
Mutation driven GA was used for comparison against 
particle swarm optimization. 

2.2 Particle Swarm Optimization 
Particle swarm optimization, while also considered an 
evolutionary algorithm, is quite different from GA.  
PSO is based on a social simulation of the movement 
of flocks of birds.  It was first presented in a 1995 
paper [6] that presented it as a new way to solve 
function optimization problems.  A swarm is a 
population of particles, each of which exists in n-
dimensional space.  There are as many dimensions as 
there are parameters to be optimized, so each point in 
that space represents a possible solution to the 
function.  Each particle maintains its’ current position 
and velocity, and its’ personal best position so far.  
The swarm itself records the global best position, at 
which the highest fitness so far has been found.  Each 
time tick, the particles’ velocity is stochastically 
adjusted by the direction to the global and personal 
best positions.  The velocity is constrained in each 
dimension such that it cannot be higher or lower than 
a set maximum and minimum.  The velocity update 
equation is shown in equation 1.   

 

Velocity = InertiaWeight*Velocity + 
2*rand()*(personalBest-currentPosition) + 

2*rand()*(globalBest-currentPosition) 

(1)

 
Conceptually, the particles “fly” through n-

dimensional space, exploring the solution space as 
they travel.  When a better global best position is 
found, the entire swarm will migrate towards it, 



exploring the more profitable solution space 
surrounding the global best position.  The personal 
best provides the drive to explore the local solution 
space of the particle – as the swarm moves through 
space, particles will further explore those regions 
they’ve individually found to be profitable.  The 
constant factors of 2 are known as the cognitive and 
social parameters.  The cognitive parameter controls 
how much emphasis is placed on information learned 
by the particle and the social parameter controls how 
much emphasis is placed on information learned from 
other particles.  Setting them both to 2 ensures that the 
particles will overshoot the optimum positions 
approximately half the time, which provides further 
drive to explore unknown regions.   

The inertia weight controls the global and local 
exploration ability of the swarm by controlling the 
emphasis placed on the previous velocity.  A low 
inertia means that the particles move directly towards 
the global/local bests.  A high inertia means that the 
particles will only move indirectly towards the best 
positions, exploring a greater area of the solution 
space.  At the beginning of training, it is desirable to 
have a high inertia to be sure particles explore the 
global solution space thoroughly.  Once a good 
solution region is found it is important to explore it in 
detail, so the inertia weight is smoothly decreased 
down to 0.0 at the end of the training run.  As the run 
progresses and the inertia decreases, particles tend to 
explore the local solution spaces and fine-tune the 
solutions discovered.  During testing it was shown that 
decreasing the inertia weight resulted in a significant 
improvement in the mean population fitness near to 
the end of the run.  If the inertia remains high, 
particles continue to explore globally and the mean 
fitness remained low.  A constriction term is often 
used in place of inertia weight, but not in this 
implementation.  The inertia model performs well at 
the task at hand, and was sufficient to demonstrate 
meaningful results.   

The choice of maximum velocity is also critical to 
the performance of the algorithm.  If the maximum 
velocity is too high, particles will explore the solution 
space in large discrete jumps, which may completely 
bypass good solution spaces.  If it is set too low, the 
particles cannot obtain sufficient velocity to move to a 
new solution space before being attracted back 
towards the global/personal best positions.  
Decreasing the maximum velocity as the training 
progresses increases the performance in a similar 
manner to decreasing the inertia weight.  The 
maximum velocity must remain above 0 for progress 

to continue as the run ends, so it is decreased to ¼ of 
the initial maximum velocity.  

3. Related Work 

The autonomous control of vehicles with neural 
networks has been well documented in many projects.  
They are effective for such tasks, as seen in the 
ALVINN system [9], in which a neural network was 
used to navigate a full sized vehicle over considerable 
distances.  This problem is highly non-trivial since the 
network controls a physical vehicle rather than a 
simulated one.  A back propagation training algorithm 
was used to optimize the weights of the neural 
network; it learned by observing the steering patterns 
of a human driver.  This system achieved considerable 
success at navigating in different road conditions; it 
was able to drive at speeds of up to 70 mph for 
distance of over 90 miles.  The authors further 
improved the performance of the training algorithms 
by using various other gradient descent training 
algorithms [3].  Their works shows the effectiveness of 
this class of algorithm, provided there is a supervisor 
available to provide error information to the 
algorithm.   

Genetic algorithms have long been known to be 
effective at training neural network weights.  There is 
extensive literature on their use for this purpose: 
indeed, most literature does not confine itself to solely 
evolving the weights, but also covers architecture 
evolution.  Since gradient descent methods are used 
only for weight training, comparisons between them 
and GA have been particular areas of interest.  Genetic 
algorithms have been found to be faster and more 
efficient [12] than back propagation for weight 
training, particularly in situations where gradient 
information isn’t cheaply available.  It is easier to 
introduce biases and introduce penalties into the 
fitness function of a genetic algorithm than back 
propagation, since one does not have to worry about 
the fitness function being differentiable.   

Genetic algorithms are well suited to evolving the 
topology of networks.  Balkanrishnan and Honavar 
published a paper [2], which outlines the major 
concerns and related literature.  Designing the 
architecture of a neural network for a particular task is 
largely a trial-and-error process.  If the architecture is 
not designed correctly, the network will have 
problems generalizing to unseen data, or even 
problems learning to respond accurately to training 
data.  This motivates the use of genetic algorithms to 
search for the optimal network structure.  The 



architecture can be encoded for the GA in a direct 
manner where little encoding work needs to be done, 
or in an indirect manner that requires considerable 
work to decode.  A connectivity matrix where each 
position represents the existence of one connection is 
an example of a direct encoding, while a grammatical 
encoding is considered indirect.  After the network 
structure has been encoded into a chromosome, a 
standard GA can be used for evolution.  To evaluate 
the fitness of a particular network structure, the 
network weights must be trained – the fitness will be 
the best performance of the network after limited 
amount of training.  Any algorithm can perform the 
weight training – much work has been done 
combining back propagation and genetic algorithms in 
just this way. 

Both the topology and the initial weights can be 
evolved simultaneously, as can be seen in papers by 
Castillo and others [4,5].  They proposed a hybrid 
training algorithm that used both GA and gradient 
descent methods.  A genetic algorithm was designed 
that encoded both the number of hidden neurons and 
the network weights onto a single chromosome.  A 
variant of back propagation called Quickprop was 
used to train the final network weights before fitness 
evaluation, and the learning rate of this algorithm was 
encoded into the chromosome to be optimized by the 
GA.  The authors found that networks trained using 
their hybrid systems were superior to networks trained 
with other gradient descent and evolutionary training 
methods.  While genetic algorithms are very good at 
global searches, back propagation is more efficient at 
a fine-tuned local search.  Combining two training 
methods into one cohesive training structure proved to 
be a very effective training method.   

Particle swarm optimization is receiving an 
increasing amount of attention, with a flood of papers 
in the last few years.  There have been several papers 
comparing the performance of GA and PSO for 
various tasks, including the training of neural 
networks.  A 2003 paper [10] compared the 
performance of the two algorithms as used for training 
recurrent neural networks.  They found that PSO 
performed better for smaller networks and the GA 
performed better for larger networks.  This finding 
will be investigated to see if the same holds true here. 

4. Experimental Setup 

The testing software was designed to simulate 
navigation of a racecar on a virtual course.  Each car is 
controlled by a neural network, and is equipped with 

simple sensors that report the distance to the nearest 
object in a straight line in front of the sensor.  The 
number of sensors can be changed: the networks were 
able to successfully learn to navigate the course with 
any number of sensors.  In this simulation the cars 
cannot collide with each other – this was necessary to 
allow large population sizes to train.  Cars may collide 
with a wall, at which point they stop until the car turns 
or backs away.  They do not suffer damage or any sort 
of penalty for hitting a wall – but since they are not 
moving their fitness will remain low.  The training 
course is shown in figure 1.  The optimal route around 
the course has not been predetermined – the particle 
swarm will determine this on its’ own. 

 

 
Fig. 1. The training course is shown during a training run.  
The population has converged such that there are many 
similar individuals, as can be seen by the large number of 
cars in a similar position on the track.   

The sensors on the cars are linked directly to the 
input neurons of the neural networks.  Each input 
neuron uses the distance reported by the sensors as the 
activation value.  The neural networks were originally 
provided with the car’s orientation and velocity, but 
since in practice the presence of this information made 
little different to the car’s performance, it was 
eliminated.  There is a single hidden layer, and four 
output neurons.  The outputs represent the commands 
that the network gives to the car.  There is one for 
forward motion, one for backward motion, and one for 
rotation in each direction.  A sigmoid activation 
function is used, so the outputs will be in the range of 
0.0 to 1.0.  Each time tick, a car may perform all four 
actions in varying degrees.  Opposing actions balance 
each other; if the car is given commands to turn both 
left and right, it will turn in the direction that has the 
greatest output value.  The amount of motion is 
constrained by the turning and acceleration rate of the 



simulation engine.  Figure one shows the structure of a 
typical neural network with 8 hidden neurons, 
controlling a car with five sensors.   

Some work [10] has indicated that PSO is superior 
for small networks only but is outperformed by 
genetic algorithms training larger networks.  To 
determine if the same applies here, three sets of 
comparisons were performed, with different network 
architecture in each.  The number of sensors 
corresponds to the number of inputs, and the number 
of hidden neurons was always kept slightly larger than 
the number of input neurons.  The structure of each 
test is as follows. 

 

 
• Test 1: 3 sensors, 8 hidden neurons, 4 

outputs; 56 weights total 
• Test 2: 7 sensors, 11 hidden neurons, 4 

outputs; 110 weights total 
• Test 3: 12 sensors, 14 hidden neurons, 4 

outputs; 224 weights total 
Fig. 2. This shows a typical neural network.  The input 
neurons are on the left hand side, and the output neurons are 
on the right.   5. Results 

To train the networks, a randomized population is 
created and allowed to run for 250 time ticks, after 
which evolution occurs.  There are two possible 
starting directions – facing directly right (90 degrees) 
or left (270 degrees).  All cars begin with the same 
orientation, which is switched every generation.  This 
helps introduce diversity into the training data.  
Randomness plays an important part in evolutionary 
training strategies, so it is necessary to run multiple 
tests on each algorithm.  1000 training runs were 
performed for each comparison, and the average best 
and mean fitness were plotted.  The best fitness of 
every test run was also recorded, and the means of the 
results were compared using a two tailed z-test to 
determine if the result is statistically significant. 

The results of all three tests have been recorded in 
figures 3 through 5 below.  Each of the figures clearly 
shows particle swarm optimization outperforming 
genetic algorithms in terms of both best member and 
mean performance. 
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Both algorithms operated on populations of 50 
members for 30 generations each test run.  In the 
genetic algorithm, networks are encoded into 
chromosomes as arrays of floating point numbers; 
there is a single floating point number for each weight 
in the network.  It used a single point crossover with a 
rate of 0.25, and had a 0.75 mutation rate.  Each gene 
on a mutating chromosome had a 0.50 probability of 
changing by a random number in the range [-1.0,1.0].  
Tournament selection was used with a tournament size 
that is 20% of the total population size.   

Fig. 3. 3 Sensors, 8 hidden Neurons 

A two-tailed z-test (α=0.5) was performed to see 
if the difference apparent on the graphs was 
statistically significant.  All three results were shown 
to be significant, with probabilities that the results are 
due to chance as follows: 

The position and velocities of the particles are 
also stored as arrays of floating point numbers.  The 
algorithm had an initial inertia of 1.4, decreasing to 
0.0 at the end of the run.  The initial maximum 
velocity was 2.0, and was decreased to 0.5 at the end 
of the run. 

• Test 1: 3.75 x 10-6 
• Test 2: 4.8 x 10-8 
• Test 3: 3.72 x 10-10 
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Fig. 4. 7 Sensors, 11 Hidden Neurons 
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Fig. 5. 12 Sensors, 14 Hidden Neurons 

6. Discussion 

Graphs of the performance of evolutionary algorithms 
typically result in a smooth curve, with a rapid 
increase at the start that gradually slows down.  In this 
case the graphs exhibited the typical growth behavior, 
but they were not smooth.  This is due to the 
alternating starting orientation of the vehicles: since 
every vehicle starts with a different orientation each 
generation, it will have a slightly different fitness each 
successive generation.  Thus the graphs exhibit the 
fluctuating best fitness value.  If a line of best fit is 
drawn the graphs are a smooth curve similar to most 
seen in evolutionary literature.     

Both algorithms were very effective at training all 
three different network structures.  They learned to 
successfully navigate the course on the majority of test 
runs, and often reached an optimal route.  PSO proved 
to be the superior algorithm for all tests, with both the 
best member and mean fitness growing quicker and 

higher than with the GA.  The likelihood of chance 
resulting in the observed results was very low, much 
less than 1% in all cases.  Although the difference in 
mean best member performance is not large, but a 
large number of test runs were conducted, and the z-
test showed that the difference was significant.  As the 
network size grew, there was no corresponding 
increase in the uncertainty of the results.  It is possible 
this may change when even larger networks are used, 
but a network with 12 sensors should be sufficient for 
real world applications.   

While most literature involving GA and neural 
networks mentions the permutation problem, it is 
worth noting that this is not necessarily the reason that 
PSO outperforms it.  Hancock [7] found that the effect 
of the permutation problem might not be as severe as 
previously thought.  Complex crossover operators that 
were designed to avoid the permutation problem were 
outperformed by simple single point crossover.  He 
mentions that results have been obtained that shows 
that a crossover rate of 0.25 improves a GA when 
used for optimizing neural network weights.  As 
mentioned in section 2.1, results obtained from testing 
for this paper supported these findings; the mutation 
driven GA outperformed the crossover driven GA.   

Genetic algorithms have some abilities that PSO 
does not: they can be used to find the optimal structure 
for a network by modifying the existence of 
connections between neurons rather than the weights 
themselves.  In its’ present form, particle swarm 
optimization cannot be used to do so as it is not a real 
valued problem.  It would be possible to combine the 
two by using a genetic algorithm to evolve the 
structure of a network while particle swarms find the 
optimal weight configuration during the fitness 
evaluation.  Such uses promise to blend together the 
different evolutionary algorithm into one cohesive 
training structure.  It will also be possible to modify 
the PSO algorithm to allow the evolution of network 
architecture.  A discrete PSO algorithm must be 
implemented in which each particle represents a 
connection matrix specifying the existence of links 
between the neurons.  Future work is planned to 
explore the effectiveness of such an algorithm. 

7. Conclusion 

The results of the experiment performed indicate that 
particle swarm optimization can be a superior training 
algorithm for neural networks, which is consistent 
with other research in the area.  This paper has 
demonstrated the statistical significance of the 



superiority for the problem described across a 
reasonably wide range of network architectures. PSO 
provides a practical alternative to the use of genetic 
algorithms for non-trivial problems.  After many years 
of research, genetic algorithms have proved to provide 
working, practical solutions to real world problems.  
These results promise the same will be true of particle 
swarm optimization after it has gained more 
widespread acceptance. 

In future work we intend to combine evolutionary 
algorithms for the generation of neural network 
architecture as well as weights and to explore the 
generation of controllers in other domains. 
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