

Implementing Policy-based Content Filtering for
Web Servers

Tony White1, Eugen Bacic2
1School of Computer Science, Carleton University

2Cinnabar Networks
{arpwhite@scs.carleton.ca, ebacic@cinnabar.ca}

Abstract: Web servers dominate our view of the Web today. Security
provided by them has been implemented with varying degrees of success.
Web servers are frequently successfully attacked, with subsequent loss of
corporate loss of face or revenue. Recent legislation has increased the
importance of ensuring that only approved users gain access to
information, which often implies filtering content served by applications.
While content filtering can be implemented at the application level, this
paper describes an innovative architecture for policy-based filtering that
can be integrated with existing web applications.

Keywords: web server, policy, content filtering

1. Introduction

Servers dominate the Web today. We rely on
search engines, meta-search engines, portals and
a wide range of other services hosted off of web
servers accessed using HTTP or its secure
variant. Business-to-business (B2B) interactions
involve web servers and other modes of access.
In a time when knowledge and information are
increasingly the measurable assets of a
corporation, information security is becoming
more and more important. Recent legislation
concerning the privacy of health care records
(HIPAA) has increased the importance of secure
web-based information access. While access and
content control has been addressed in a number
of ways, solutions have been implemented on a
product-by-product basis. A consistent solution
for access and content control has yet to be
implemented for web servers, although
applicable criteria and models exist [1], [2], [3],
[4]. Heterogeneous implementation of access
and content control has lead to incoherent
security solutions being placed in service, access

control being determined fully, or in part, by the
path through which information is accessed.
Here, we mean access control to be the decision
to process a given HTTP request. By content
control we mean the filtering of information
generated by a web application based upon the
identity of the user and state of a workflow
process.

Even within the 3-tier web application
architecture that is most commonly employed,
where web, application and database servers
have been combined, access control has been
built into all three components. Clearly, when
distributing the security responsibility across
multiple components, creating a consistent view
of security is difficult using such architectural
schemes. The weakest link is not always
obvious. For example, a user with web and
database access might find that their ability to
access information varies depending upon
whether they access the information in the
database directly or via the Web. This could
easily occur if access control is not harmonized
between the database and Web applications that
retrieve and process the data. Clearly it is very

difficult to decide what content should be
provided to an end user if filtering takes place at
multiple points in the n-tier business application
as no single component has a view of the entire
workflow process. This motivates the design of
the centralized, web-based content filtering
solution described in this paper.

2. Web Server with SecureRealms

The SecureRealms architecture was introduced
in [8]. The essential characteristics of the
architecture are that all security objects are
represented as entities, and all entities have
associated security policies that are stored in a
repository called the Virtual Resource Attribute
Database (VRAD). The security policies
associated with entities are evaluated using a
Generic Policy Engine [10] built into the Realm
Controller. Mediation of access to resources is
achieved by the evaluation of the security policy
associated with the resource requested in the
context of the resource access. For example, in
the case of a web page access, the two entities
involved are the user requesting the page and the
page itself. The context of the access would
include the Apache permissions associated with
the page or directory.

Figure 1: Web Server Content Filtering

SecureRealms defines a small, functional,

security-aware meta-language, called Idyllic [8],
which is a Policy Meta Language. This language
is capable of codifying any business rule and
resembles LISP, which has well known
properties [7]. It is based on s-expressions,
which are becoming an important component of
XML as X-expressions (XEXPR) [5]. There is a
straightforward mapping from XML’s XEXPR
to Idyllic’s s-expression. It should also be noted
that authorization capabilities for XML are only
now emerging, with the SAML specification [6]
still under discussion. SAML represents a
familiar access control solution for
authorization; one we feel will prove insufficient
for the dynamic security needs of c-commerce.

The Web server instantiation of the
SecureRealms architecture (hereafter referred to
as SR-Web) operates by introducing a plug-in to
the web server that interrupts the usual flow of
content delivery. More specifically, we wait for
the server to decide if a page can be served, and
then we use the services of the Realm Controller
to determine if the web server should still be
allowed to serve the page. Once page content is
available, we intercept it so that we can perform
sub-page level filtering before giving the page

Static pages
(from filesystem)

Dynamic pages
(from application)

Web Pages

Browser

Web server
mediation

Web
Server

Page Please

OK to serve
page

Realm Controller

Web Agent

Tmediate Rmediate

Static pages
(from filesystem)

Dynamic pages
(from application)

Web Pages

Browser

Web server
mediation

Web
Server

Filtered Page

Served Page

Realm Controller

Web Agent

RevaluateTevaluate

back to the server for delivery to the requesting
browser, or application.

The mediation flow of control is shown in
Figure 1. A browser requests a page (‘Page
Please’). If the web server determines (during
web server mediation) that the page request may
be honored, the web agent then gains access to
the request. The request is packaged into a
Tmediate message for transmission to the Realm
Controller. The Realm Controller responds with
an Rmediate message. If the mediation indicates
that the request is allowable, the web agent
returns control to the web server with an
indication that the request may continue. The
web server then causes the page to be returned
(static) or generated (dynamic). The interaction
between the Web Server and the remaining
layers of the web application are unchanged.

Once the requested page content is
available, the web server delivers the page to the
Web Agent. If filtering is enabled, the web agent
scans the page contents for special tags. If any
are found, the information is packaged up into a
Tevaluate message for delivery to the Realm
Controller. The Realm Controller evaluates the
incoming data and returns information to the
Web Agent that will allow it to filter the served
page. Once the page is filtered, it is passed back
to the web server for final delivery to the
requesting browser.

2.1 The Web Agent

Figure 2: Web Agent Architecture

The Web Agent is constructed to maximize the
amount of server independent code. It does this
by providing an adapter component that hides
the details of the server implementation. The

following sections discuss the adapter and filter
modules shown in Figure 2.

2.1.1 Web Server – Web Agent Adapter

A web server goes through a number of steps
between receiving a page request from a browser
and returning the page for viewing. Web servers
have been designed so that external programs
can bind to the web server at any or all of these
points to replace or augment the server’s normal
behaviour. While the processing stages are
similar for the web servers we have investigated
(Apache, IIS), the actual method of binding to
the server is different for each server. The Web
Agent therefore has two server specific pieces of
code (the adapters) that bind the common
portion of the Web Agent to the server.

In practice, the adapters set callbacks that
the server will use to notify that a server
processing stage is complete. The callback
routine will get session and transaction
parameters directly through the callback, or
separately as globally available server
environment variables. For example, one server
environment variable records the user name
associated with the current page request, another
records the fully remapped page path, another
the server version, and so on.

2.1.1.1 Apache

Under Apache, server extensions are called
modules. Modules are usually compiled into the
server, but can also be linked in dynamically.
We implemented the dynamic link approach.
The Apache web agent must be multithreaded to
work correctly with the server. Apache performs
the following functions when processing a page
request:

1. URL -> Filename translation
2. Authentication ID checking [is the user who

they say they are?]
3. Authentication access checking [is the user

authorized here?]
4. Access checking other than authentication

Web Agent/
Web Server

adapter

Cache

Mediate Filter

Web Agent Control

5. Determining MIME type of the object
requested

6. `Fixups' --- there aren't any of these yet.
7. Actually sending a response back to the

client.
8. Logging the request

Steps 1-4 are where Apache resolves the
information necessary to perform mediation and
carries out its own mediation. In step 5 Apache
determines what sort of handler should be used
to process the page request. Step 7 is where the
server actually either retrieves a static page or
invokes an application to create a dynamic page.

For us to do mediation, we need access to
fully resolved request information at a point
where we can stop further request processing.
Step 6 gives us this access point – here we have
access to full pathnames and authenticated user
names and we can instruct Apache to abort the
request depending on the results of our
mediation.

On the filtering side, we need to capture the
output of step 7. Unfortunately, the modules
doing the work in step 7 return data directly to
the web server without offering us a glimpse at it
on the way past. To resolve this, the Apache
adapter wraps the step 7 modules in a handler of
our own that itself invokes the original step 7
modules in a way that allows us access to
returned data.

2.1.1.2 IIS

Under IIS, server extensions are called either
extensions or filters, depending on what
functionality they implement. For the Web
Agent, we will be creating a filter to gain the
most complete access to the server. IIS filters are
built as DLLs. The IIS web agent must be
multithreaded to work correctly with the server.

The IIS adapter has to do the same sort of
things as the Apache adapter – allow us to catch
resolved user name and file path information for
mediation purposes and then allow us to
intercept output prior to delivery to the
requesting browser. The IIS API offers us the
following hooks:

1. SF_NOTIFY_READ_RAW_DATA: When a

client sends a request, one or more
SF_NOTIFY_READ_RAW_DATA
notifications will occur.

2. SF_NOTIFY_PREPROC_HEADERS: This
notification indicates that the server has
completed pre-processing of the headers
associated with the request, but has not yet
begun to process the information contained
within the headers.

3. SF_NOTIFY_URL_MAP: An
SF_NOTIFY_URL_MAP notification occurs
whenever the server is converting a URL into a
physical path.

4. SF_NOTIFY_AUTHENTICATION: An
SF_NOTIFY_AUTHENTICATION notification
occurs just before IIS attempts to authenticate the
client.

5. SF_NOTIFY_AUTH_COMPLETE: This
notification fires after the client’s identity has
been negotiated with the client.

6. SF_NOTIFY_READ_RAW_DATA: As
mentioned in step 1, if the client has more data to
send, one or more
SF_NOTIFY_READ_RAW_DATA
notifications will occur here.

7. At this point in the request, IIS will begin to
process the substance of the request. This may be
done by an ISAPI extension, a CGI application, a
script engine (such as ASP, PERL, and so on), or
by IIS itself for static files.

8. SF_NOTIFY_SEND_RESPONSE: The
SF_NOTIFY_SEND_RESPONSE event occurs
after the request is processed and before headers
are sent back to the client.

9. SF_NOTIFY_SEND_RAW_DATA: As the
request handler returns data to the client, one or
more SF_NOTIFY_SEND_RAW_DATA
notifications will occur.

10. SF_NOTIFY_END_OF_REQUEST: At the end
of each request, the
SF_NOTIFY_END_OF_REQUEST notification
occurs.

11. SF_NOTIFY_LOG: After the HTTP request has
been completed, the SF_NOTIFY_LOG
notification occurs just before IIS writes the
request to the IIS log.

12. SF_NOTIFY_END_OF_NET_SESSION: When
the connection between the client and server is
closed, the

SF_NOTIFY_END_OF_NET_SESSION
notification occurs.

Our mediation is triggered by the

SF_NOTIFY_AUTH_COMPLETE in step 5.
Unlike Apache, IIS does offer us a look at
returned data. Filtering then is carried out in
response to the
SF_NOTIFY_SEND_RAW_DATA event (or
events) by passing this data to the Web Agent
for possible modification. The flow of control
shown corresponds to IIS V5. IIS V4 has a
slightly smaller set of hooks and requires a
slightly different flow of control. The principles,
however, are the same for both versions.

2.1.2 Adapter – Web Agent interface

The previous two sections have documented
where and how the adapter portion of the Web
Agent hooks into the web servers. To ensure that
the Web Agent code is common to all web
servers, the adapters present a common interface
between the web server and the Web Agent. The
interface is implemented as a set of 5 callbacks
instantiated in the Web Agent code. The
callbacks are:

• Boolean canAccessPage
(authenticatedUserName, filePath)

• Boolean filterOn (filePath)

• Boolean filterStart (authenticatedUserName)

• Integer filterData (authenticatedUserName,
pageContent, size)

• Boolean filterEnd (authenticatedUserName)
The first callback invokes the mediation

portion of the Web Agent and its outcome
determines whether the adapter will allow the
web server to continue processing or not. The
remaining four callbacks relate to Web Agent
filtering. The first (filterOn) allows the adapter
to determine if Web Agent filtering is enabled. If
filtering is disabled, the adapter can speed page
processing by not passing page data to the Web
Agent. The ‘filterStart’ and ‘filterEnd’ callbacks
allow the Web Agent to do any page setup and
teardown activities that may be necessary. The

‘filterData’ callback may be invoked multiple
times to pass page data to the Web Agent for
filtering.

2.1.3 Page Request Mediation

If SR-Web determines that a user cannot access
a page, the page that will be returned to the
requesting user will be identical to one the web
server would have returned if it had blocked the
page access. This has the advantage of making
the authorization engine transparent to the user,
identical errors being returned with or without
SR-Web.

SR-Web mediation occurs after any
mediation done by the web server. At that point,
the adapter will invoke the ‘canAccessPage’
callback with the authenticated user name and
the requested file name.

2.1.4 Page Content Filtering

Filtering of web pages is a significant new
security function. A filtered page is one that may
have had portions of the page content removed
as determined by the privileges of the requesting
user and the policies attached to that portion of
the page. A page to be filtered, whether it is a
static or dynamic web page, must properly
enclose the block that is to be filtered in a pair of
‘srf’ start and end tags. An example is shown
below, with the content filtering tags shown in
bold text. The ‘srf’ start tag must have a ‘filter’
attribute. The value of the filter attribute is one
or more name/value pairs. The attribute name
corresponds to an entity called a filter entity. A
web page, modified to allow for sub-page level
filtering now looks like:

<html>
<head>
<meta name="srf" content="FilterEntityA,
FilterEntityB">
</head>
<body>
<p>Some text.</p>
<srf filter="(FilterEntityA userid),
(FilterEntityB userid)">
<p>Text to be secured.</p>

</srf>
</body>
</html>

As the Web Agent filters the original page,

the second paragraph (and its enclosing ‘srf’ tag)
may be removed from the final output if the
Web Agent, working with the Realm Controller,
determines that the requesting user cannot
access the material.

2.1.4.1 Filter Entities

Filter entities are ways of naming content that
share similar characteristics. The characteristics
are identified by end-user analysis of web page
data. A filter entity is a regular VRAD entity to
which a policy may be attached. The indirection
allows different policies to be attached to a filter
entity (and by extension to a fragment of a web
page) without having to alter the source page
data. Filter entities are explicitly created by
management activity.

2.1.4.2 Filter Operation

Filtering proceeds in several steps. For each ‘srf’
tag the filter entity names and requesting user
name are bundled into a Plan Nein Tevaluate
message for transmission to the Realm
Controller. The Realm Controller evaluates the
policies bound to each filter entity in the context
of the user name and packages the results into an
Revaluate for return to the Web Agent.

The filtering software then matches the
values returned for each filter entity with the
required value from the page. If all the returned
filter entity values evaluate to true, the secured
content will be passed on to the requesting user,
otherwise it will disappear from the output.

Should a web page contain a filter entity
name that does not have a corresponding entity
in the VRAD, a false value will be returned to
the Web Agent for that filter entity. This will
have the effect of suppressing the affected data.

Filtering is potentially an expensive
operation, as every output page has to be
checked for the presence of ‘srf’ tags. To

increase performance, a ‘srf’ meta-tag must be
present in the head portion of a web page. The
contents of the meta-tag will be a list of all filter
entities referenced in the page body. The filter
entity names will be bundled up with the
requesting user name to be sent to the Realm
Controller via the Plan Nein Tevaluate message.
This can be done even before the balance of the
web page is available. If no filtering meta-tags
are found in the page head, the rest of the page
does not have to be screened.

3. Future Work
Policies have begun to be of greater and

greater interest. The recent work on the
eXtensible Access Control Markup Language
(XACML) at OASIS [9] is a case in point. The
SecureRealms architecture and Idyllic in
particular were an outgrowth of years of R&D
effort. Idyllic was designed to be syntactically
correct and provable via denotational logic [10]
and reflected existing technologies of the time.

XACML specifies a “subject-target-action-
condition” oriented policy for XML documents.
A subject is a unique identity, group, or role
while a target is what is typically referred to as a
resource or object. XACML includes conditional
authorization policies, as well as policies with
external post-conditions to specify actions that
must be executed prior to permitting access.

With XACML being both an access control
policy language and a request/response language
it appears similar in scope and intent to Idyllic.
Hence, the XACML policy language is used to
express access control policies while the
request/response language expresses queries as
to whether a particular access request should be
allowed and provides the appropriate response.

For example, in the case where a subject
wants to take some action on a particular object,
or resource, the subject submits its query to the
component protecting the resource (e.g., file
system, web server). This component is called a
Policy Enforcement Point (PEP). The PEP forms
a request (using the request language) based on
the attributes of the subject, action, resource, and
any other relevant information. The PEP then
sends this request to a Policy Decision Point

(PDP), which examines the request, retrieves the
relevant policies, and determines whether access
should be granted. That answer (expressed in the
response language) is returned to the PEP, which
can then allow or deny access.

With XML becoming a lingua franca for
communication of logic between disparate
components it only stands to reason that efforts
should be made to see whether or not the lessons
learned from SecureRealms, Idyllic, and the
Realm Controller can be migrated to a full
XML-based implementation.

4. Conclusion

As computer networks grow, security is
becoming more of a concern with each passing
day. Organizations view and relate to
information differently and have differing
requirements for the protection, dissemination,
and modification of their resources. There are
now important legal considerations in granting
individuals access to information. Content
filtering as well as access management become
important considerations when designing a web-
based information system.

To date, many organizations have met their
security concerns by implementing access
prevention mechanisms such as firewalls,
cryptography, and virtual private networks.
General access to host systems is provided based
on the premise that once authenticated, users can
be given full freedom to perform their duties.
Existing security products protect only the
perimeter creating islands of security and
although each performs their individual tasks
very well, interoperability and workflow-related
issues constantly arise. Solutions to the
interoperability problems include special servers
accessible to external partners and the use of
web servers to store restricted views of
information. Such duplication of information
often leads to errors due to inconsistency and is
expensive to maintain.

This paper has described an architecture
where content can be modified after creation,
based upon policy-based filtering. Legacy n-tier
web applications require minimal modification

in order to take advantage of the enhanced
security – new srf tags need only be added to
page content. Content filtering and access
control is delegated to a centralized security
server that is capable of understanding
workflow. Security, independent of access path,
is clearly provided by the design. We believe
that it represents a significant step forward in
providing technology-independent authorization.

References

[1] Department of Defense Trusted Computer
System Evaluation Criteria. DoD 5200.28-
STD, December 1985.

[2] Communications Security Establishment,
The Canadian Trusted Computer Product
Evaluation Criteria. Version 3.0e, January
1993. The Communications Security
Establishment, Government of Canada.

[3] Information Technology Security
Evaluation Criteria. Harmonised Criteria of
France - Germany - the Netherlands - the
United Kingdom. Version 1, May 2, 1990.

[4] Bell, David E. and L.J. LaPadula. Secure
Computer Systems: Mathematical
Foundations, ESD-TR-73-278, Volumes I,
II, and III. The MITRE Corporation,
March, May, and December 1973.

[5] http://www.w3.org/TR/xexpr/
[6] See SAML references on http://www.oasis-

open.org/committees/security/
[7] Lee, P. and Pleban, U.F., “On the Use of

LISP in Implementing Denotational
Semantics”, Proceedings of 1986 ACM
Conference on LISP and Functional
Programming, Cambridge, Mass., 1986. pp.
233 - 248.

[8] White T. and Bacic E. Authorization as a
Service provided by a Generic Policy
Engine. In Proceedings of the 2002
International Conference on Security and
Management, Las Vegas, June 24-27 2002.

[9] http://www.oasis-
open.org/committees/xacml/.

[10] Bacic, E. The Generic Policy Engine.
Master of Computer Science Thesis,
Carleton University, May 1998.

