
 1

School of Computer Science

Carleton University

COMP 4905

HONOUR PROJECT

Semantic Online-Store Aggregator
(SOSA)

Luan Nguyen

100337193

Supervisor: Dr Tony White

Date: April, 2008

 2

Abstract: Semantic Online Stores Aggregator (SOSA) is a Semantic Web

portal in which a user can search for products they want to buy in a

semantic way and know where the stores are that have the searched items

available on the Google Map. The product provider can also register for the

service via the web portal. The portal front-end has been developed with

Java Server Faces (JSF), and using REST web service to communicate

with the back-end which has been built using the Resource Description

Framework (RDF) and Web Ontology Language (OWL). All of these

technologies are combined in order to provide a new user experience for

searching the descriptions of the Web-accessible databases.

 3

Acknowledgment

I would like to give special thanks to my professor Tony White for all the help he

provided during the development of this project.

I would also like to acknowledge all the open source projects that made possible

this implementation specially SMART1 (Alexander De Leon s Honors Project) and

Protege2. Sources from these projects have been integrated directly into my source

code. Original package names were use in order to differentiate from the new code of

this project. Those packages are com.dumontierlab.smart.owl.model.cache.*, and

org.protege.editor.owl.model.*.

1 http://smart.googlecode.com

2 http://protege.stanford.edu/

 4

Table of Contents

I Introduction 7

1. Motivation 7

2. Project Description 8

II Background 8

1. Semantic Web 8

1.1 Resource Description Framework (RDF) 9

1.2 Web Ontology Language (OWL) 11

2. RESTful Web Services 12

III Packages Reused From Smart Project 13

1. com.dumontierlab.smart.owl.model.cache.* 13

2. org.protege.editor.owl.model.* 13

IV Project Design 14

1. High Level Architecture 15

2. Features and Functionality 15

V Project Implementation 16

1. Components Used for Development 16

2. Web Services Implementation 17

3. Web Portal Implementation 24

 5

4. Semantic Query Model 30

5. Deploying Application and Testing Scenarios 32

VI Conclusion 43

 1. Technologies Learned 43

 2. Future work 43

 3. Summary 44

 6

List of Figures

Figure 1: High level architecture 15

Figure 2: Main use cases 16

Figure 3: Web Services class diagram 23

Figure 4: Navigation Rules 27

Figure 5: SOSA s query answering sequence diagram 31

Figure 6: Store Registers Service 33

Figure 7: Query Suggestion 35

Figure 8: Filtering Items by Drag and Drop Property 36

Figure 9: Selected Item and Suggested Items 37

Figure 10: Add Item into Cart and View Map 38

Figure 11: Shopping Cart Check out 39

List Of Tables

Table 1. Catalog Endpoint HTTP API 20

Table 2. Orders Endpoint HTTP API 21

 7

I. Introduction

1. Motivation

 The Internet has changed the way people purchase goods and services. In

Canada alone, the statistics have shown that “almost 7 million Canadians aged 18 and

over placed an order on-line in 2005”. “The people who made an on-line purchase

represented about 41% of all adults who used the Internet in 2005” [1].

Online shopping can be efficient and pleasant for some. However, it imposes a

few limitations that are worthwhile analyzing. First, finding a desired product may require

visiting several online stores. This may seem natural since we do the same when we

shop at physical stores. Nevertheless, online store aggregators that combine multiple

stores into a common centralized interface can really improve the efficiency of online

shopping. Another important limitation of online shopping is the lack of semantics for

searching. It is sometimes hard to express exactly what we looking for; for example, “I

want to buy a blue long sleeved T-shirt, size small and made of cotton”. Today, no

search engine will be able to answer the former query, instead they will return a long list

of unrelated items that mach the words in the query. Semantic Web technologies are

staring to show potential solutions to this problem by providing machine-understandable

semantics to web content. This way machines can “understand” resources on the web

and provide precise answer to questions by means of automated reasoning.

.

 8

 2. Project Description

This paper presents the design and implementation of SOSA (Semantic Online-

Store Aggregator). SOSA is a web-based portal where providers can sell their products

and where consumers can transparently browse, search, and buy products made

available by multiple registered providers. SOSA collects information from multiple e-

commerce web services and information from these different sources is aggregated

under a common web portal. Each product description is annotated with a semantic

vocabulary provided by common ontology. Semantic metadata and location information

is used for aggregation and creating personalized user interface. SOSA provides a

semantic query answering interface where users can post queries similar to the

following: “Shirt that hasColor value brown and isDesignForSeason value winter”. In

addition, purchased orders are divided into smaller orders, which will be dispatched to

the corresponding suppliers.

II. Background

SOSA is based on two important web paradigms: the Semantic Web and the REST

architecture. This section presents some background information for these technologies.

1. The Semantic Web

The Semantic Web is the next generation of the Web; it is an extension of the

current Web where information is given well-defined semantics in a machine-readable

manner [2]. This can be achieved by augmenting web content with data that facilitates

its manipulation by computers [3. To date, new languages have been developed to

 9

represent this semantic metadata. Examples of such languages are XML (eXtensible

Markup Language) and RDF (Resource Description Framework), which have become

the foundation of the Semantic Web.

1.1 Resource Description Framework (RDF)

“RDF is a general-purpose language for representing information on the Web"

[4]. RDF provides a data model for describing resources and the relationships between

them. This model is constructed using statements in the form of a subject-predicate-

object known as a triple. The subject of the triple is the resource being described, the

predicate is the particular resource's property that is being described, and finally the

object is the value of the resource's property [3]. RDF documents are usually rendered

using an XML-based syntax. Let's look at the example statements to get a better

understanding:

<?xml version="1.0"?>

<RDF>

 <Description about=" http://www.ontoshop.org/item001">

 <size>small</size>

 </Description>

</RDF>

The combination of a Resource, a Property, and a Property value forms a Statement

(known as the subject, predicate and object of a Statement).

Statement: "The size of http://www.ontoshop.org/item001 is small".

 10

 * The subject of the statement above is: http://www.ontoshop.org/item001

 * The predicate is: size

 * The object is: small

RDF triples represent relationships among resources. These relationships are

described by the RDF property (predicate). `”RDF however, does not provides the

mechanism for describing these properties. This is the role of the RDF vocabulary

description language, RDF Schema. RDF Schema defines classes and properties that

are used to describe classes, properties and other resources" [5]. RDF Schema

provides a vocabulary for modeling object hierarchies by the use of primitives such as

subclass and sub-property relationships, and domain and range restrictions [6].

The term ontology has its origin in Philosophy where it is a branch of

metaphysics concerned with the basic properties and relationships of existence [6]. In

computer science, this term has been adopted by the artificial intelligence community. In

this field, an ontology is defined as ”an explicit and formal specification of a

conceptualization”[6]. In general, ontologies are data models for representing concepts

within a domain and the relationships between those concepts [7]. The significance of

ontology is in its capacity to enable machine reasoning using rules of logic. Such

reasoning, allows the machine to, at a certain level, “understand” part of the world that is

being modeled within the ontology [3]. For example, using an ontology describing the

world of universities and given a Person that is taking a course at Carleton University,

the machine could deduce that this person must be a student by understanding the

explicit and “inferring” the implicit relations between concepts being described. That

 11

includes the rule that every “Person” taking a course at a University is considered a

“Student”. Furthermore, it could infer that this is a student studying in Ottawa. The

ontology framework provides a key ingredient for the foundations of the Semantic Web.

Ontologies offer the Semantic Web the necessary constructs to express domain-based

terminologies and their semantics such that computers can interpret and reason.

 1.2 Web Ontology Language (OWL)

RDF expanded with RDF Schema can be considered as a basic ontology

language, it provides primitives for building hierarchies of objects and their relationships.

However, expressing that objects with different identifiers refer to the same concept is

not possible. For example, zip code and postal code. OWL (Web Ontology Language)

was designed to overcome the limitations of RDF and RDF Schema. OWL was

developed by a group of largely European researchers and it is built on top of RDF and

RDF Schema adding more vocabulary for describing properties and classes. These

additions include: relations between classes (e.g. disjointness), cardinality (e.g. "exactly

one"), equality, richer typing of properties, characteristics of properties (e.g. symmetry),

and enumerated classes, among others [8]. OWL provides three sublanguages: OWL

Full, OWL DL, OWL Lite, which are designed for use by different users.

- OWL Full is designed for the users who want no restriction on use of OWL

vocabulary.

 12

- OWL DL is designed for the users who want the benefits defined

semantics, formal properties well understood, …but still maximize the

expressiveness.

- OWL Lite supports those users primarily needing a classification hierarchy

and simple constraints.

2. RESTful Web Services

Representation State Transfer (REST) is an architectural style for distributed

systems such as the Web. Roy Fielding introduced the idea in his PhD dissertation in

the year 2000. REST is founded on the following principles:

• Every resource is identified by an URI (Uniform Resource Identifier). These

resources are manipulated by its representation.

• Multiples representations can be accepted or sent.

• Messages are self described and stateless.

• Interactions with these resource representations are supported by create, read,

update and delete (CRUD) operations.

• Hypertext provides the engine for application state.

REST provides a client-server architecture in which the web services are viewed

as resources and can be identified by their URLs. Web service clients that want to use

these resources access a particular representation by transferring application content.

 13

The HTTP operations GET, POST, PUT, and DELETE provides the necessary CRUD

operations for REST web services. [9].

III. Packages Reused From Smart Project

 1. com.dumontierlab.smart.owl.model.cache

 This package contains the codes for maintaining the index of entities that exist on

the active ontology. Entities can be classes, properties, or individual in the ontology. The

LuceneOWLEntityCache.java class eliminates the need for traversing the entire

ontology data structure when looking for particular entity. The

OWLEntityKeyGenerator.java class is used to add the prefix to each short name of the

entity in order to avoid ambiguity.

 2. org.protege.editor.owl.model

 This package provides the language for writing OWL class expression – the

Manchester OWL Syntax. This syntax is based on OWL abstract syntax but is more

readable and easier to understand. For example, the following class description is

expressed with the Manchester OWL Syntax

 “Shirt that hasColor value blue”

SOSA integrates those packages and adopts the Manchester OWL Syntax in order to

build the Semantic Query Model (more about this later on).

 14

IV. Project Design

1. High Level Architecture

SOSA is an online store aggregator. From the users perspective, it looks like any

other online store, in which the products are offered on the site are sold by some third-

party provider. However, SOSA gives users a new and simplified experience to find the

items in a semantic way. SOSA finds items that are for sale by communicating with

providers over the Web. Each provider publishes a set of RESTful web services that

enable B2B communication with SOSA. Fig. 1 illustrates the RESTful interfaces that are

exposed by providers. These include two standard endpoints Catalog and Orders. The

catalog endpoint is used to access and to query the items that the particular providers

want to make available. The main functionality of the orders endpoints is to allow SOSA

to post orders to the provider when a customer completes a purchase. Every resource

in the provider s domain is also accessible by its own RESTful interface. This allows

SOSA to obtain detailed descriptions of resources such items for sale.

 15

Figure 1: High-level architecture.

The interactions between SOSA and the providers involve interchanging

representations of resources. These representations are expressed using the Web

Ontology Language (OWL). By using OWL DL, we can make use of well-defined

semantics to build object representations. This approach enables automated reasoning

capabilities at both ends of the communication channel.

Semantic interoperability between SOSA and providers is possible because they

both use a common semantic vocabulary published by SOSA. This vocabulary is

contained in two main OWL ontologies http://www.ontoshop.org/Clothing.owl and

http://www.ontoshop.org/Store.owl. These ontologies consist of a collection of

OWLAxioms that provide an explicit context within which we can assert information

about classes and properties. The following use cases which mainly used in the

application are described in the figure below.

 16

Figure 2: Main use cases

2. Features and Functionality

- SOSA provides a common web-portal such that the providers can register and start

selling their products in a few steps.

 17

- SOSA provides friendly interface so that the customer can easily find the items they

want in a semantic way.

- Ajax suggestion vocabulary is implemented to help the user complete their query

for item searching.

- Recommended items will be shown when an item is selected.

- Integrating Google Map, user can see the store locations which selling the items.

- Filtering the items, by drag and drop of an item s properties.

- Even user may buy the items from different providers they only need to pay as one

order. Those purchased items will be dispatched to the corresponding suppliers.

V. Project Implementation

1. Components Used For Development

All the components and tools are used to develop the project are open source,

well supported and documented. They are also available for downloading from the Web.

- Development Tools: Eclipse Platform version 3.3.1.1. Can be downloaded

from http://www.eclipse.org/

- Application Server: Apache Tomcat version 6.0.14. Can be downloaded

from http://www.apache.org/

 18

- Ontology Editor: Protégé platform version 4.0 alpha. Can be downloaded

from http://protege.stanford.edu/

2. Web Services Implementation

Generic framework is implemented such that allows providers to automatically

instantiate and publish the necessary RESTful web services needed for communicating

with SOSA. The input is an OWL ontology that describes the on-line store (e.g. store

name, address, endpoints URIs, etc) and items that the store sells. This OWL ontology

must use and extend the classes, properties, and instances of the vocabulary ontologies

that SOSA provides (i.e. Clothing.owl and Store.owl). To avoid confusion I will refer to

this input ontology as O.

The framework extracts all resources from O. These resources include the store,

items, and addresses. For each of these resources it creates a RESTful web service

that allows one to resolve the URI of the resource to a subset of O that contains only the

description of the requested resource. The snipped from O that described the store

representation in OWL looks like the following:

<Store:Store rdf:about="http://localhost:8084/alexLittleStore">

 <rdfs:label rdf:datatype="&xsd;string">

 Alex's Little Store

 </rdfs:label>

 <Store:hasAddress

 rdf:resource="http://localhost:8084/alexLittleStoreAddress" />

 <Store:ordersEndpoint rdf:datatype="&xsd;anyURI"

 19

 >http://localhost:8084/orders

 </Store:ordersEndpoint>

 <Store:catalogEndpoint rdf:datatype="&xsd;anyURI"

 >http://localhost:8084/catalog

 </Store:catalogEndpoint>

</Store:Store>

From the descriptions the framework extracts the asserted catalogEndpoint and

ordersEndpoint URIs, and creates two special RESTful web services for these. The

HTTP APIs for these endpoints described in tables 1 and 2.

HTTP

Method

Request Parameters Response

none All instances are classifiable under the class

CatalogItem. These are basically all items for

sale.

GET

query , queryLang All instances in the catalog that satisfy the

query provided by the query parameter. The

queryLang is optional and specifies the

language used to compose the query.

Currently we only support the Manchester

OWL Syntax language.

 20

HTTP

Method

Request Parameters Response

POST HTTP 403 response (forbidden)

PUT HTTP 403 response (forbidden)

DELETE HTTP 403 response (forbidden)

 Table 1. Catalog Endpoint HTTP API

HTTP

Method

Request Parameters Response

GET none (Not implemented in current version) All

instances are classifiable under the class

Order. These are basically all orders that have

been submitted.

 21

HTTP

Method

Request Parameters Response

 query , queryLang All orders that satisfy the query. For example

one may request all orders for a specific

customer.

POST An OWL document

containing the

representation of an

Order using vocabulary

from Store.owl

HTTP 202 Response (If the order is accepted)

PUT HTTP 403 response (forbidden)

DELETE HTTP 403 response (forbidden)

 Table 2. Orders Endpoint HTTP API

The org.ontoshop.store.* package contains the implementation classes for this

the RESTful web services framework. Fig. 2 shows the main classes and interfaces

used for building RESTful web services. We can group classes into tree layers the

communication layer, the business logic layer and the model layer. In the

 22

communication layer, we found classes that extend the JAX-WS framework for creating

instances of web services. The JAX-WS abstracts the bindings to the HTTP protocol

and let the implementation of the Provider interface to handle the requests. The

business logic layer contains the StoreService interface and implementation this service

object providers the business functions that are expected from a Store. This service

object uses the StoreManager object to access the information coming for the OWL

ontology. The StoreManager uses the OWL API, a set of programming interfaces,

which allows access and manipulation of OWL ontologies in Java applications. The

primary goal of this API is to allow application programmers to work at a higher level of

abstraction, without concern over some of the problematic issues related to serialization

and parsing of OWL data structures. In addition, this API enables interoperability among

the different applications that make use of the API.

 23

Figure 3: Web Services class diagram

 24

3. Web Portal Implementation

The SOSA application consists of a core component and a web-based user

interface component. At the boundary of core component is the OntoshopService

interface and its corresponding implementation class. This service provides the set of

functionalities needed to support the interaction with the providers web service. This

class implements most of the business logic of the application such that is can be

abstracted from the user interface code. Following the same architecture as with the

web services, there is a singleton OntoshopManager object that abstracts most of the

OWL processing logic. For example, this manager provides the functionality to bind the

OWL representations to the corresponding java domain objects.

The SOSA user interface was implemented using the JSF (Java Server Faces)

framework. JSF provides a component-based framework for creating rich sever-side

user interfaces. This technology is based on the Model-View-Controller design pattern

for separating logic from presentation. This architecture enables reusable server-side

code that follows object-oriented practices. An important feature of JSF is that it

provides the mechanism for binding the user events to server-side event handlers,

making the user interface design similar to that on a desktop application.

The view of the application is represented by home page, item listing page,

checkout page, user register page, selected item page and register service page. These

pages are written in JSP using JSF built in components. In combination with these

 25

components are the beans that are used to bind value of the component to the property

of the bean or to refer method of the bean from component tag. For example, searching

input field is bound to the query attribute in the Query class using the syntax as below

<h:inputText id="query" value="#{Query.query}" />

In order to use the bean we need to declare it in the faces-config.xml

By specify the bean name, the bean class and the scope for the bean.

<managed-bean>

 <managed-bean-name>Query</managed-bean-name>

 <managed-bean-class>com.sosa.beans.Query</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

</managed-bean>

In the faces-config.xml we also need to specify the navigation rules from one page to

another. For example, we want the search result items will be display in the listing item

page when we enter the query into the searching input field in the home page and press

on the search button. We need to specify the navigation rules as the following:

<navigation-rule>

<navigation-case>

 <from-view-id>/home.jsp</from-view-id>

 <navigation-case>

 <from-outcome>stay</from-outcome>

 26

 <to-view-id>/home.jsp</to-view-id>

</navigation-case>

<navigation-case>

 <from-outcome>listItems</from-outcome>

 <to-view-id>/listingItems.jsp</to-view-id>

</navigation-case>

</navigation-rule>

The outcome “stay” and “listItems” are the string returned by the method name

search executed by the action on the search button.

<h:commandButton type="submit" action="#{Query.search}"

 value="#{bundle.search_button_label}"></h:commandButton>

The figure below shows the navigation rules of a number of pages in the application.

 27

Figure 4: Navigation Rules

In addition, Rich Faces, an open source framework, is added on top of the JSF in

order to enable the Ajax capability for vocabulary suggestion and filtering. Rich Faces

provides two component libraries -- Core Ajax, and UI -- with components that require

no JavaScript coding. For example, the code below are used for the suggestion query

box

<h:inputTextarea id="expressionBox" value="#{Query.query}" styleClass="solidBorder"

style="width: 442px">

 <a4j:support id="expression_ajax" event="onkeyup" />

</h:inputTextarea>

<rich:suggestionbox for="expressionBox" suggestionAction="#{Query.findSuggestions}"

 28

var="suggestion" width="200" height="150" border="1" tokens=" ({" shadowOpacity="4"

shadowDepth="4" fetchValue="#{suggestion.suggestedSentence}" ajaxSingle="true">

 <h:column>

 <h:outputText value="#{suggestion.suggestedWord}"/>

 h:column>

</rich:suggestionbox>

The web portal has been integrated with Google Maps. When the user finds the

items that they are interested in, they can check the location of the stores that has those

items. If there is more than one store, the map will display multiple makers

corresponding to the location of the stores. In order to implement this feature, we need

to register for the Google Maps API key for the page that will be displayed the map. The

JavaScript below has been added:

<script

src="http://maps.google.com/maps?file=api&v=2&key=ABQIAAAAOOv1_3ecZ9OvyF

bTyMit3xS32-EYe2hdSt5FnzEztlHpbTXYKBSzAQNxWBtfRnUZ3HrqawwYdN9SNQ"

 type="text/javascript"></script>

<script type="text/javascript">

function load(addresses) {

 if (GBrowserIsCompatible()) {

 var map = new GMap2(document.getElementById("map"));

 var geocoder = new GClientGeocoder();

 map.addControl(new GSmallMapControl());

 29

var arr = addresses.split(",");

 for (var i=0;i<arr.length;i++)

 { var postalCode = arr[i];

 geocoder.getLatLng(arr[i],function(point) {

 alert(arr[i] + " not found");

 } else {

 var marker = new GMarker(point);

 marker.value = i;

 map.setCenter(point, 9);

 map.addOverlay(marker);

 GEvent.addListener(marker, "click", function() {

 var myHtml = "" + postalCode + "
";

 map.openInfoWindowHtml(point, myHtml);

 })

 }

 });

 }

 }

}

</script>

The load function above is the main function which gets the addresses and finds the

locations of those addresses and display the corresponding points onto the map. The

expected parameter passing to the load function is a string with more than many

 30

addresses separated by the comma. The first important class we need to use in the

Google Map API is the GMap2. The GMap2 class constructor creates a new map inside

the given HTML container normally is a DIV element. The next important class used in

the JavaScript is the GClientGeocoder. The instance geocode will send a request to

Google servers to get the longitude and latitude of the specified address. If the address

was successfully located, the user-specified callback function is invoked with a GLatLng

point. Otherwise, the callback function is given a null point. Lastly, the GMarker is used

to display the marker on the map at the corresponding points. And the markers can

have an event listener, so every time you click on the marker it can show a message.

4. Semantic Query Model

 Base on the Manchester OWL syntax, SOSA adopts the Manchester OWL

Syntax query functionality of Protégé 4.0.1 so that users can describe what they are

looking for, as a class expression. The OWLDescriptionParser will parse the query and

then infer the individuals of the ontology, which can be classified under the user s

descriptions. These individual instances are used with the Reasoner for querying as it

shown in the figure below.

 31

 Figure 5: SOSA s query answering sequence diagram.

To demonstrate how the diagram above is working, let consider the class expression as

the following:

 T-Shirt that hasColor value blue

 32

The definition of T-Shirt matches exactly the description of the query by finding the

individuals that is instance of T-Shirt class and has properties hasColor. The properties

hasColor blue which also matched to the instance of class Color. If there is no instance

of class T-Shirt or Color matched, there will be no individuals returned.

 The query model has been build with a limited time, so there are some limitations

such as

- The query must be enter in exact syntax (e.g. case sensitive, must have

keyword “value” before the value of the properties)

 “Shirt that hasColor value blue”

- The user can search for the item with exact price, but not from max or min price.

“Shirt that price value 19.9”, but not “Shirt that price value max 19.9”

 5. Deploying Application and Testing Scenarios

 The application can be run on Apache Tomcat server version 6.0.14. You just

simply deploy the SOSA_Ajax. War onto Tomcat, and everything will be ready for

running. Assume that you are using port 8080 for your local host.

4.1 Service Register

 Before you can search for the items, the SOSA portal needs have the

stores register their service. In order to register the store service, open the

browser and go to http://localhost:8080/SOSA_Ajax/serviceRegistration.faces

 33

or you can go to SOSA home page http://localhost:8080/SOSA_Ajax/home.faces

and click on Service Register . On the store URL input box enter

http://localhost:8084/alexLittleStore and hit submit. You will get the

information for the store registered.

Figure 6: Store Registers Service

 34

5.2 Searching Items with Ajax suggestion

Let say you want to search for a T-Shirt that has color black. In the search box

you type: “T-Shirt that hasColor value black”. When you are typing the

suggestion box will appear.

 35

Figure 7: Query Suggestion

 36

4.3 Filtering Items

 For example, when you have searched for T-Shirt and now you want to

filter items base on their properties, instead of entering the query in the search

box again, you can simply drop and drag the properties into the Drop Zone and

select the value of the properties you want to filter.

Figure 8: Filtering Items by Drag and Drop Properties

 37

4.4 Select Item and Item Recommended

 Depending on the properties of each item, the recommendation will be

dynamically find the items, which are matched those properties and not the

same type. For example, if you select the T-Shirt that has color green and

white, has sleeve style long and is designed for spring season. The suggested

items will not be T-Shirt, and has color white or green or has sleeve style long

or designed for spring season.

Figure 9: Selected Item and Suggested Items

 38

4.5 Add Item into Cart and View Store on Google Map

Figure 10: Add Item into Cart and View Map

 39

4.5 Checking out and dispatching orders

Figure 11: Shopping Cart Check out

When you finish enter the information and press on submit, on the other end the store

will receive the information of your orders in xml form which tells the provider that the

items has been ordered and user s information (name, shipping address, credit card

number)

**** Received Order: *****

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://www.ontoshop.org/order123457890.owl"

xmlns="http://www.ontoshop.org/order123457890.owl#"

xmlns:Store="http://www.ontoshop.org/Store.owl#"

xmlns:localhost="http://localhost:8084/"

xmlns:owl11="http://www.w3.org/2006/12/owl11#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

 40

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:order123457890="http://www.ontoshop.org/order123457890.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about="">

 <owl:imports

rdf:resource="http://www.ontoshop.org/Store.owl"/>

 </owl:Ontology>

 <owl:ObjectProperty

rdf:about="http://www.ontoshop.org/Store.owl#hasAddress"/>

 <owl:ObjectProperty

rdf:about="http://www.ontoshop.org/Store.owl#hasItem"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#buyersName"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#city"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#country"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#creditcard"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#phone"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#postalCode"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#province"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#street"/>

 <owl:Class

rdf:about="http://www.ontoshop.org/Store.owl#Address"/>

 <owl:Class

rdf:about="http://www.ontoshop.org/Store.owl#Order"/>

 <rdf:Description rdf:about="http://localhost:8084/item022"/>

 <Store:Order rdf:about="#order123457890">

 <Store:hasItem

rdf:resource="http://localhost:8084/item022"/>

 <Store:phone

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">613-123-

4567</Store:phone>

 <Store:buyersName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">luan

nguyen</Store:buyersName>

 <Store:creditcard

 41

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">123457890</Stor

e:creditcard>

 <Store:hasAddress

rdf:resource="#order123457890Address"/>

 </Store:Order>

 <Store:Address rdf:about="#order123457890Address">

 <Store:city

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Nepean</Store:c

ity>

 <Store:postalCode

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">K2G7B2</Store:p

ostalCode>

 <Store:country

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Canada</Store:c

ountry>

 <Store:province

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Ontario</Store:

province>

 <Store:street

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">133 Rocky Hill

Drive</Store:street>

 </Store:Address>

 </rdf:RDF>

 **** Received Order: ******

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xml:base="http://www.ontoshop.org/order123457890.owl"

xmlns="http://www.ontoshop.org/order123457890.owl#"

xmlns:Store="http://www.ontoshop.org/Store.owl#"

xmlns:localhost="http://localhost:8084/"

xmlns:owl11="http://www.w3.org/2006/12/owl11#"

xmlns:owl11xml="http://www.w3.org/2006/12/owl11-xml#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:order123457890="http://www.ontoshop.org/order123457890.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#">

 <owl:Ontology rdf:about="">

 <owl:imports

rdf:resource="http://www.ontoshop.org/Store.owl"/>

 </owl:Ontology>

 <owl:ObjectProperty

rdf:about="http://www.ontoshop.org/Store.owl#hasAddress"/>

 <owl:ObjectProperty

 42

rdf:about="http://www.ontoshop.org/Store.owl#hasItem"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#buyersName"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#city"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#country"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#creditcard"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#phone"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#postalCode"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#province"/>

 <owl:DatatypeProperty

rdf:about="http://www.ontoshop.org/Store.owl#street"/>

 <owl:Class

rdf:about="http://www.ontoshop.org/Store.owl#Address"/>

 <owl:Class

rdf:about="http://www.ontoshop.org/Store.owl#Order"/>

 <rdf:Description rdf:about="http://localhost:8084/item003"/>

 <rdf:Description rdf:about="http://localhost:8084/item022"/>

 <Store:Order rdf:about="#order123457890">

 <Store:hasItem

rdf:resource="http://localhost:8084/item022"/>

 <Store:phone

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">613-123-

4567</Store:phone>

 <Store:buyersName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">luan

nguyen</Store:buyersName>

 <Store:hasItem

rdf:resource="http://localhost:8084/item003"/>

 <Store:creditcard

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">123457890</Stor

e:creditcard>

 <Store:hasAddress

rdf:resource="#order123457890Address"/>

 </Store:Order>

 <Store:Address rdf:about="#order123457890Address">

 <Store:city

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Nepean</Store:c

ity>

 43

 <Store:postalCode

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">K2G7B2</Store:p

ostalCode>

 <Store:country

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Canada</Store:c

ountry>

 <Store:province

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Ontario</Store:

province>

 <Store:street

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">133 Rocky Hill

Drive</Store:street>

 </Store:Address>

 </rdf:RDF>

VI. Conclusions

 1. Technologies Learned

The implementation provided with this project can only be considered a proof of

concept because it ignores many real world issues such as trust management,

concurrency and scalability. However, working on this project has given me the

opportunity to learn about RESTful web services and how they can be use for

integrating distributed system on the Web. I also learn about Semantic Web and

specially OWL. In addition, I have also learned using JSF in which has Ajax supporting

components to build the user interface more dynamic and user interacting.

2. Future work

- Building complex suggestion model base on rules and axiom of the ontology in

a way that the providers can sell more items and easy to change those

 44

suggestion rules such as “White Shirt goes with Black Pant”, “Color Red go with

Blue or Yellow.

- Considering about the concurrency and scalability so that the application can be

used in the real environment.

- The application needs to be more flexible to integrate with other applications

such as reuse this application not only for searching clothing but may be for

others.

- Create an interactive user interface in a way that allows the user to create their

own rules as to how they want to see item information every time they visit the

web site.

 3. Summary

I presented in this report a summary of the design and implementation of the

SOSA project. SOSA is an implementation of an online-store aggregator, is built using

Semantic Web technologies and RESTful web service. SOSA was designed to improve

the experience of shopping online.

During the implementation of this project I explored an interesting architecture. I

combined the RESTful architectural pattern and OWL to enable interoperability along

distributed peers on the Web. The main advantage of this approach is that A-box

ontologies can be spited into smaller pieces that can be accessed individually by

RESTful interfaces. This can be beneficial when working with large knowledge bases

 45

(KB). By interchanging representations in OWL each peer can send new assertions to

another peer. The assertions can be used in combination with the KB of the receiving

peer for automated reasoning, which results can be sent back to the sender when

appropriated. For example one user can specify the class Shirt as a “Shirt that hasColor

value brown and hasSize value medium”. This query can be sent to different stores

along with the description of Shirt. Each store can import the description of Shirt into its

KB and try to classify its inventory items under this class.

 46

References

[1] Statistics Canada, E-commerce: Shopping on the Internet, The Daily, Nobmber 1,

2006, Available at: http://www.statcan.ca/Daily/English/061101/d061101a.htm

[2] Tim Berners-Lee and James Hendler and Ora Lassila , The Semantic Web, Scientific

American, 2001, Available at: http://www.sciam.com/article.cfm?articleID=00048144-

10D2-1C70-84A9809EC588EF21

[3] Bo Leuf, The Semantic Web : Crafting Infrastructure for Agency, John Wiley & Sons,

January 2006.

[4] W3C Recommendation , RDF/XML Syntax Specification (Revised), Available at:

http://www.w3.org/TR/rdf-syntax-grammar/

[5] W3C Recommendation, RDF Vocabulary Description Language 1.0: RDF Schema,

Available at: http://www.w3.org/TR/rdf-schema

[6] Grigoris Antoniou and Frank van Harmelen, A Semantic Web Primer, The MIT

Press, 2004.

[7] Wikipedia, Ontology, computer science, Available at:

http://en.wikipedia.org/wiki/Ontology_(computer_science)

[8] W3C Recommendation, OWL Web Ontology Language, Available at:

http://www.w3.org/TR/owl-features/

 47

[9] Sameer Tyagi, RESTful Web Services, August 2006, Available at:

http://java.sun.com/developer/technicalArticles/WebServices/restful/

[10] W3C (Feb 10th, 2004) OWL Web Ontology Language Guide.

Retrieve from http://www.w3.org/TR/owl-guide/ (Dec 15th, 2007)

[11] W3C (Nov 22nd, 2004) OWL-S: Semantic Markup for Web Service. Retrieve from

http://www.w3.org/Submission/OWL-S/ (Dec, 15th, 2007)

[12] Google Google Map API Concepts.

Retrieve from http://code.google.com/apis/maps/documentation/ (Dec, 13th, 2007)

[13] John j. Yates (Feb 1, 2006) JAX-RPC Evolves into Simpler, More Powerful JAX-WS

2.0.

Retrieve from http://www.devx.com/Java/Article/30459 (Dec, 15th, 2007)

 [14] Stanford Center for Biomedical Informatics Research Protégé

Retrieve from http://protege.stanford.edu/ (Dec 9th, 2007)

