
Peer To Peer Role Based Authentication
within JXTA

95.495 Final Report

Ryan Laginski
266229

Supervisor: Tony White

April 11th, 2003

Abstract:

To date, Peer-to-Peer networks (P2P) have difficulty determining an entity's

identity. Authentication is a challenging aspect of P2P networks due to the lack of

central authority. As such, authentication must be done distributely and use methods

such as public/private keys, X.509 certificates or even simple flat XML files. The

common belief that P2P is an anonymous method of communication and file

distribution has led to many systems that consists of one type of peer. However,

society has many different types of roles.

In this project, I intend to develop society based roles and integrate them with

an authentication technique. I plan to implement this on top of an existing P2P

framework, such as JXTA.

2

Table of Contents

1 Introduction..7

1.1 Limitations...8

Proposed solution...9

2 Proposed Design..9

2.1 Assumptions on the PeerTypes ..10

3 Use Cases...11

3.1 Scenario: Creating a peergroup...11

3.2 Scenario: Join a Peergroup..11

3.3 Scenario: Account Request...12

3.4 Scenario: VoteOnAnAccountRequest..13

3.5 Scenario: VoteOnAnAccountResponse..13

3.6 Scenario: Insufficient Number of SuperPeers available14

3.7 Scenario: Leaving the Peergroup..14

3.8 Scenario: Periodic Maintainance ...14

4 The API..16

4.1 AuthBasedPeerGroupService..16

4.2 VoteOnAnAccountService..19

4.3 SuperPeerPresenceService..21

4.4 ReplicatorService...22

5 Design Decisions...24

6 Problems Encountered...25

7 Future Consideration...25

8 Conclusion..27

9 Glossary..28

3

10 References..29

4

Index Of Figures

Figure 1: A AuthBasedPeerGroupAdvertisement Message 17

Figure 2: AuthBasedPeerGroupService UML Diagram 18

Figure 3: A VoteOnAnAccountRequest Message 19

Figure 4: AuthBasedPeerGroupAccountService UML Diagram 21

Figure 5: A SuperPeerPresenceAdvertisement Message 21

Figure 6: SuperPeerPresenceService UML Diagram 22

Figure 7: ReplicatorService UML Diagram 23

5

Index Of Tables

Table 1: Roles and Capabilities of the PeerTypes 9

6

1 Introduction

JXTA (jxta.org) is a open source P2P framework initiated by Sun Microsystems

(sun.com). As stated on their website: “JXTA technology is a set of open protocols

that allow any connected device on the network ranging from cell phones and wireless

PDAs to PCs and servers to communicate and collaborate in a P2P manner”

(jxta.org). It was chosen for it's available documentation and books, ability to add in

Services, and because a role-based authentication scheme does not exist.

First, a quick introduction to JXTA's terminology. A JXTA peer is “any entity

capable of performing some useful work and communicating the results of that work

to another eneity over a network...” (JXTA 16). A JXTA peergroup is “a set of peers

formed to serve a common interest or goal dictated by the peers involved. Peergroups

can provide services to their member peers that aren't accessible by other peers in the

P2P network” (JXTA 18). Authentication in JXTA is defined by the process required

in allowing a peer to join a peergroup after a provided set of credentials were verfied.

JXTA's current authentication scheme, as stated within the documentation, is

not practical for production use. By default, the NullMembershipService is used,

which allows anyone to join a peergroup. This scheme is similar to the nobody user in

the UNIX system. The second implementation JXTA has is the

PasswdMembershipService, which is more of a template for other developers. There

exists no formal application process, as PasswdMembershipService will accept

anyone who applies.

The goal of this project is to create society based roles and integrate them with

an authentication technique that would mimic real life scenarios. In real life terms,

being connected to the JXTA network is similar to walking down a city street. People

are all around you, but you do not know them or speak to every one. You can ask a

7

person directions, in which case, the person would answer or ignore you. You can

keep asking others until you get a response. With this example, you do not need to

authenticate yourself, as your question, nor the response is secret information.

Suppose you are visiting a club were you are on the guest list. You would

approach the doorman and he/she will ask you for your credentials. Provided you

have the correct credentials, you may enter, otherwise, you are asked to leave.

JXTA's peergroups, are analogous to a virtual rooms. This virtual room would contain

people who share a common interest.

1.1 Limitations

To maintain the goal of this project, some limitation must be imposed. This

project is not secure enough nor fully implemented. This design includes encryption

which protects the information stored on disk and passed between peers. However, it's

use is not fully implemented.

8

2 Proposed Design

In order to mimic real life roles in JXTA, a hiearchy of peertypes was created.

There are four different roles, which are FounderPeer, SuperPeer, AuthenticationPeer

and Peer. Each roles specifies a peer's capabilities within a peergroup. There is five

capabilities, which are Override, Add, Delete, Modify, Authenticate. The following

table explains the relationship between peertypes and their capabilities.

Capable \
PeerType

FounderPeer SuperPeer Authentication
Peer

Peer

Override X

Add X X

Delete X X

Modify X X

Authenticate X X X

Table 1: Roles and Capabilities of the PeerTypes

A FounderPeer is the peer who created the peergroup. This peer determines the

conditions of the peergroup, as described in the Uses Cases: Creating A Peer Group

(p. 11). This peer is also able to override any decision, thus is able to add, delete,

modify and authenticate any peer he/she wishes.

A SuperPeer is one step below the FounderPeer, and is able to add, delete,

modify any account as well as authenticate a peer. There can be many SuperPeers, but

generally, there will only be a few.

An AuthenticationPeer is only allowed to authenticate people based on a given

list of credentials. Their role is similar to a doorman at the club entrance, however,

since a virtual room has many entrances, there may be many AuthenticationPeers. The

purpose of this role is to alleviate the load on Upper Members, which are SuperPeers

and higher. This will also increase the odds that there will be a peer available to

9

authenticate others.

A Peer's position is simply described as just a normal JXTA peer. They are not

able to do anything administrative their position is defined by being members of the

peer group.

2.1 Assumptions on the PeerTypes

There is only one FounderPeer. This assumption is to simplify the creation and

maintainance of the peergroup.

The SuperPeers are well trusted by the FounderPeer, hence, there will be a

small number of them.

The AuthenticationPeers are likely to be greater in quantity than the SuperPeers,

however, they are not nearly as trusted as SuperPeers. This may seem to pose a risk,

as anyone who is an AuthenicationPeer may allow anyone to join, regardless of the

credentials provided. This issue is discussed in the Future Consideration (p. 25)

section where SuperPeers should randomly check AuthenicationPeers.

10

3 Use Cases

The following is a collection of use cases that described the typical use of this

project.

3.1 Scenario: Creating a peergroup

The first step in this project is to create a peergroup that requires authorization.

This involves the FounderPeer to fill in the required information, such as encryption

key size, how many SuperPeers are required to vote, are AuthenicationPeers allowed,

etc. More details on this are described in the API section (p. 16). After the details are

collect, a new AuthBasedPeerGroupAdvertisement is created and published.

3.2 Scenario: Join a Peergroup

There are two main scenarios in joining a peergroup. The first scenario is if the

peer is an AuthenticationPeer or higher, it will send a request for peergroup

advertisements. After the default period of time has past, the peer will check to see if

the desired peergroup (that this upper member belongs to) exists. If it does, the

AuthenicationPeer or higher will connect to it (as described below). If it does not

exist, the AuthenticationPeer or higher will create and publish an advertisement for

that peergroup. Once this occurs, there is a good chance that the same peergroup

exists in several places within the network, but they are not visible to each other. The

other scenario, the regular Peer must check their local advertisements for the group

they wish to join, or a remote discovery is sent. If one is found, it can proceed with

the connection, as described below. Otherwise, the peer must try again later.

The scenario begins when peer A attempts to establish a connection to the

remote peer, B, that is apart from the peergroup. Peer B will check to see if it is

capable of authenticating (ie, AuthenticationPeer or higher). Next, peer B will check

11

the provided credentials. If the credentials are good, peer A has successfully joined

the peergroup, otherwise, peer A is rejected. Also, if peer A is successful and is an

Upper Member, it's presence is broadcast within the peergroup. If peer B is not

capable of authenticating, peer B will send a list of known SuperPeers (if any) back so

that peer A can try them.

3.3 Scenario: Account Request

The current JXTA implement of PasswdMembershipService provides an

account to anyone who applies. This method is not practical in most situations

because a group may want to keep their resources protected. A possible solution to

this problem is have a peer request an account, then let the Upper Members of the

peergroup vote on the request. This process starts by peer A connecting to a member

within a peergroup and send it's desired credentials. The remote peer, B, will accept

the AuthBasedPeerGroupCredentials if itself is an Upper Member. Details of the

credentials is described in the API section (p. 16). If peer B is not an Upper Member,

it will inform peer A to contact a SuperPeer and provide a list of known SuperPeers,

from the presence updates.

Peer B will send a confirmation of application back to peer A. If peer B is the

FounderPeer, it may decide to grant or deny the account outright, as it has the

override capability. The FounderPeer does have the option to have the account voted

on. If peer B is a SuperPeer or is a FounderPeer that wishes to have the application

voted on, the request is stored in peer B's local queue and a

VoteOnAnAccountRequest is called.

12

3.4 Scenario: VoteOnAnAccountRequest

Once the application for an account is received, the SuperPeer peer locates X

number of other superpeers for a vote, where X is the number specified by the

FounderPeer upon peergroup creation. If the minimum number of SuperPeers are

found, the SuperPeer will send the request (including the RequestID) to the X number

of other SuperPeers. The SuperPeer will await responses to the vote, which is

described below on VoteOnAnAccountResponse. A timeout may occur, and is

handled by the Insufficient Number of SuperPeers Available scenario below (p. 14).

Once all the votes have been received, the SuperPeer will determine if the account is

granted or not. The peer is notified that it is accepted or rejected, however, if they are

offline, the message is stored in the local queue. If it is an approval and the peer has

received it's approval message, the peer is added to the local password file and that

file is sent to the Replicator. If not all X SuperPeers are found, send the request to all

available SuperPeers for them to queue the request. A vote will occur when sufficient

SuperPeers are online.

3.5 Scenario: VoteOnAnAccountResponse

Once a SuperPeer receives an application, it will check to see if the application

has the same RequestID as any in the local queue. If so, the SuperPeer will remove it

from the local queue. Ideally, the SuperPeer will notify the user (human) about the

application, however, for the scope of this project, a tester class will be hard coded

with the answer. The SuperPeer then takes the answer, signs it with it's private key,

and sends it to the originating SuperPeer.

13

3.6 Scenario: Insufficient Number of SuperPeers available

This scenario can be triggered by the a timeout while awaiting response, in the

event a SuperPeer went offline without warning. The SuperPeer has already tried to

discover other SuperPeers, but not enough are online. The SuperPeer will hold the

request until enough SuperPeers advertise their presence. At that point, the SuperPeer

will send request to all SuperPeers.

3.7 Scenario: Leaving the Peergroup

If peer is a SuperPeer, it's presence is updated as offline. This is required

because an accurate list of online SuperPeers are used by all peers in determining the

location of the SuperPeers. This list is sent to any peer that is trying to join or apply

for an account and the remote peer does not have the capability to do so.

3.8 Scenario: Periodic Maintainance

If a SuperPeer has a message to send back to a peer in it's local queue, it will

attempt to use the given PipeAdvertisement. If this fails, the SuperPeer will try to

query for a new PipeAdvertisement. If this fails, the message is placed back in the

queue. If the SuperPeer can find an advertisement, and the message from the queue is

an approval, then the approval is sent to the peer and the peer is added to the local

password file. That local password file is then sent to the Replicator.

After a request has gone through five attempts, whether or not it has been

approved, disapproved or not yet voted on, it will be removed from the queue.

A SuperPeer must republish it's Presence every time it expires in JXTA's

Discovery Service, so that an accurate list of SuperPeers is maintained.

Every so often, a SuperPeer should test AuthenicationPeers to make sure they

14

are actually properly authenticating. This is described in Future Consideration (p. 25)

section as Test Authentication Peers.

15

4 The API

This design is implemented over four services. The first service is

AuthBasedPeerGroupService, which handles the apply and join methods, as required

by Membership Service. The second service is the VoteOnAnAccountService, which

is called by AuthBasedPeerGroupService's apply method and handles the voting. The

third service is the SuperPeerPresenceService which handles the network status of the

SuperPeers within an AuthBasedPeerGroup. The final service is the Replicator

Service, which is responsible for password file distribution.

4.1 AuthBasedPeerGroupService

JXTA has interfaces for plugging in other authentication services. By default,

any peergroup that is created will implement JXTA's NullMembershipService.

Therefore, by replacing NullMembershipService with another implementation of

authentication, one can take advantage of existing peergroup membership

functionality. The membership service class in this implementation is called

AuthBasedPeerGroupService.

To create an authentication peergroup, first, a new instance of

AuthBasedPeerGroupService is created along with it's ModulesSpecID. A new

AuthBasedPeerGroupAdvertisement is created with the details required for the

AuthPeerGroupService. The details within the advertisement are shown in xml, which

is encoded and decoded by AuthBasedPeerGroupAdvertisement.

16

<?xml version=”1.0” encoding=”UTF-8”?>
<jxta:AuthBasedPeerGroupAdvertisement>

<FounderID> . . . </FounderID>
<KeySize> . . . </KeySize>
<MinNumSuperpeersRequiredVote> . . . </MinNumSuperpeersRequiredVote>
<MinNumSuperpeersRequiredApprove> . . . </ MinNumSuperpeersRequiredApprove>
<IsAuthPeersAllowed> . . . </IsAuthPeersAllowed>
<IsFullNameRequired> . . . </IsFullNameRequired>

</jxta:AuthBasedPeerGroupAdvertisement>

Figure 1: A AuthBasedPeerGroupAdvertisement Message

The FounderID is a reference to the peer who created this particular peergroup.

It can be used for purposes of communication or for determining other group interests.

The KeySize is set by the FounderPeer at advertisement creation which specifies the

key size for password file encryption, which is generally 1024. The

MinNumSuperpeerRequiredVote represents the minimum number of SuperPeers

required to vote on an application and is used during the VoteOnAnAccountRequest

process. MinNumSuperpeerRequiredApprove represents how many SuperPeers are

required for a vote to be successful. For example, four out of five SuperPeers are

required, where five is MinNumSuperpeersRequiredVote. The IsAuthPeersAllowed

field can enable or disable the AuthenicationPeer role, if the founder so chooses. This

option, when enabled, adds additional security, as only the SuperPeers and the

FounderPeer can authenticate peers. The downside is that since there is usually few

SuperPeers and only one FounderPeer, the probability of them being offline is greater.

The IsFullNameRequired field is optional and is purely for informational purposes.

Finally, the advertisement is published, and a new peergroup is cloned from the

NetPeerGroup.

17

Figure 2: AuthBasedPeerGroupService UML Diagram

18

4.2 VoteOnAnAccountService

This service is based on JXTA's Query Handler to send the remote SuperPeer an

application for an account. The application is outline in Figure 3 below.

<?xml version=”1.0” encoding=”UTF-8”?>
<jxta:VoteOnAnAccountRequest>

<RequestID> . . . </RequestID>
<FullName> . . . </FullName>
<RequestingPosition> . . . </RequestingPosition>
<PeerID> . . . </PeerID>
<Nickname> . . . </Nickname>
<Password> . . . </Password>
<PublicKey> . . . </PublicKey>
<Comment> . . . </Comment>
<PipeAdvertisement> . . . </PipeAdvertisement>

</jxta:VoteOnAnAccountRequest>

Figure 3: A VoteOnAnAccountRequest Message

The FullName is optional, as specified within the peergroup's advertisement

which is set by the FounderPeer. The RequestingPosition is the role the peer is

applying for. PeerID is the the requesting peer's ID. The nickname is the name used

by JXTA for it's peer name within a peergroup. The Password is an encrypted using

the remote SuperPeer's peer public key, which is obtained from the presence service.

The PublicKey is the peer's public key and comment is an optional string that is

displayed to the SuperPeer. The PipeAdvertisement is used to send the peer back

information, as below. Ideally, this information is sent over a secure pipe, so that

information cannot be tampered with during transit.

Next, the remote peer will create a RequestID for this application. The

RequestID is important, because it will be used as a reference by other Upper

Members with the voting scheme. The voting procedure is described in the Use Cases

(p 12)

19

20

Figure 4: AuthBasedPeerGroupAccountService UML Diagram

4.3 SuperPeerPresenceService

This presence service is required for determining how many and where the

SuperPeers are located. This is used by the VoteOnAnAccountService when a

SuperPeer must ask other SuperPeers to vote, and by AuthBasedPeerGroupService

when a peer asks to join, but the peer is not capable of authenticating. This service

uses JXTA's DiscoveryListener, which listens for SuperPeerPresenceEvent messages.

Once an event has been received, the peer will decode the SuperPeer's ID, the status

(offline or online), the SuperPeer's public key and PipeAdvertisement.

<?xml version=”1.0” encoding=”UTF-8”?>
<jxta:SuperPeerPresenceAdvertisement>

<PeerID> . . . </PeerID>
<Status> . . . </Status>
<PublicKey> . . . </PublicKey>
<PipeAdvertisement> . . . </PipeAdvertisement>

</jxta:SuperPeerPresenceAdvertisement>

Figure 5: A SuperPeerPresenceAdvertisement Message

To create an presence update, a peer will publish a new

SuperPeerPresenceAdvertisement. Optionally, a peer can send a query to the

discovery service to see if there is other superpeers that are online. This should only

be done when a peer does not have enough SuperPeers to vote or when a peer needs

to send another peer a list of SuperPeers, and has none. This will help reduce

bandwidth, as this scenario will only occur if a peer recently connected and no

SuperPeers have changed their status.

21

Figure 6: SuperPeerPresenceService UML Diagram

4.4 ReplicatorService

The ReplicatorService is used to check the password file with Upper Members.

This service was not completely implementated, and is considered out of scope for

this project. The Replicator contains three methods. The loadPasswdFile simply loads

the password file from disk and returns a vector. This is used by checkVersionRequest

and checkVersionResponse. CheckVersionRequest will check the presence service for

available SuperPeers, as a check can only be done against a SuperPeer, and sends

them a MD5 checksum and a time stamp of their local password file.

CheckVersionResponse will determine if a file transfer is necessary, based on

the received MD5 and time stamp. If so, requestFile is called and a file transfer is

negotiated. A problem with the Replicator is that a new account may take awhile to

propagate through the network, in which case, a peer may try to re-apply for an

account. This scenario is noted in the Future Consideration section (p. 25).

22

Figure 7: ReplicatorService UML Diagram

23

5 Design Decisions

� The peergroup information, as described in API AuthBasedPeerGroupService (p.

16), being stored in an advertisement can be seen as a security risk. Ideally, this

information should not be public knowledge. By placing it in the advertisement, it

made it easier to instantiate new AuthBasedPeerGroups.

� Due to the implementation of JXTA's MembershipService, a peer will send the

credentials to the remote peer. However, in this implementation, the remote end

may not be capable of authenticating or creating an account, so it will reject with a

location of SuperPeers. The downside is that the remote peer receives the

credentials by default, which is a security risk.

� The Presence Service does not keep track of AuthenicationPeers because they

cannot grant accounts to the remote peer.

� Regular Peers cannot create the peergroup if it cannot find an advertisement for the

desired AuthBasedPeerGroup, as there is no way for the peer to authenticate itself.

� For VoteOnAnAccount, the Account class created for decoupling, so that I can be

replaced with another Account class that has more attributes.

� For the Replicator Service, only files can be retrieved from the Upper Members.

This is to reduce the risk of a tampered password file from propagating, as Upper

Members are more trustworthy.

� An approval does not immediately add the peer into the password file, rather, it

ensures the peer receives the approval message first. After the peer has received

the approval, the peer is added to the local password file, and the file is sent to the

Replicator. This procedure is to prevent modifying the password file

unneccessarily, as the SuperPeer may never 'see' the peer again.

24

� Since JXTA does not control who has phyical access to the computer, the

password file is encrypted on disk to prevent people from tampering it's contains.

� The local queue is always loaded from disk and promptly saved to disk. This is

done for backup purposes, in case the peer suddenly killed.

6 Problems Encountered

The Membership Service was very difficult to integrate with. It appears to have

the assumption that all account applications will be granted. Extra information had to

be passed with the credentials to deal with issues such as communicating back the the

source peer. For example, if a peer attempt to apply to a Lower Member, it will have

to send it a list of superpeers. However, the apply application returns an

Authenticator, so null would be returned in the previous example.

It was also difficult to get JXTA to use the AuthBasedPeerGroupService instead

of NullMembershipService. One of the main problems was that the ModuleSpecID

must be generated based on PeerGroup's membershipClassID.

Another minor problem was with JXTA's caching scheme. The same bug that

was previously fixed would reappear afterward. This was due to the old advertisement

was still cache on a rendezvous server.

7 Future Consideration

The following is a list of features or ideas that were not implemented or

completely thought out.

� Scenario: Test AuthenticationPeers

Periodically, a upper member will 'test' the AuthenticationPeers for their

credibility. The upper member will create a random credentials and attempt to

25

join. If the peer allows the join, the AuthenticationPeer is removed from the

password file. The is done by modifying the local password file and changing

the position field, then replicating the password file. The problem is that the

AuthenicationPeer is still capable of reading the password file because it has the

key to decrypt it.

� To make this implementation fully functional, a complete Replicator Service and a

GUI would be required.

� This implementation is not entirely secure. As noted in the Design Descions (p.

24), there exists several security issues that are unavoidable if the

MembershipService is used. This design would have to abandon the Membership

Service in order to become more secure.

� The encryption is not fully implemented in this design, nor in JXTA's

PasswdMembershipService. JXTA's password protection is a simple character

substitution cipher. In the future, this design could utilize a third party encryption

scheme.

� The Replicator must find an efficient way of quickly distributing a new file.

Otherwise, peers who request for an account and are approved may not be able to

join for some time. The peer may try to reapply again, eventhough the credentials

are already in a password file elsewhere.

� The Replicator must also not overwrite other peer's modifications. Since updates to

the password file will be occurring at different areas of the network, it is likely that

many different versions will exist.

26

8 Conclusion

This paper addresses the lack of society based roles within JXTA's peer-to-peer

environment, by providing one of many possible solutions. In order to accomplish

this, several different PeerTypes were designed to carry out specific capabilities

within a group.

Unfortunately, JXTA's Membership Service is not adequate for this proposed

solution, and would be more secure and efficient by implementing it as a Service.

However, this would require rewriting much of the JXTA PeerGroup code.

27

9 Glossary

Capability: A capability is a task that a peer can do. For example, a peer may be
capable of authenticating a peer, but not adding one to the password file.

Local Queue: a Vector containing account applications and messages to hosts that are
currently offline. The local queue is load from file whenever a peer requires it, and is
saved to disk promptly.

Lower Members: refers to AuthenticationPeers and peers.

PeerType: A PeerType is reference to the capabilities that the peer posses. For
example, a SuperPeer can add/delete/modify/authenticate a peer.

Presence: Used by all peers that belong to a peergroup, in determining the location of
the SuperPeers.

Replicator: A black box that is in charge of sending a password file to peers that are
AuthenicationPeer and above. Please see Figure 7 for more details.

Upper Members: refers to superpeers and the FounderPeer.

28

10 References

Wilson, Brendon J. JXTA, New Riders Publishing, Indianapolis, 2002.

Oaks, Traversat & Gong. JXTA in a Nutshell, O'Reilly & Associates, Inc.,
Sebastopol, 2002.

Oram, Andy ed. Peer-To-Peer: Harnessing the Power of Disruptive Technologies,
O'Reilly & Associates, Inc., Sebastopol, 2001

Online Software Resources:

Project JXTA <http://jxta.org/>
Eclipse Project <http://www.eclipse.org/eclipse/index.html>
Sun JDK 1.4 <http://java.sun.com/j2se/1.4/index.html>

29

