
 1

Creating a Workflow Editor Eclipse Plug-in Using
the Graphical Editing Framework (GEF)

Mei Tang

Carleton University

COMP 4905

Supervisor: Prof. Tony White

August 13, 2004

 2

Abstract

Eclipse platform is a universal tool integration platform. As an important plug-in in

Eclipse, Graphical Editor Framework (GEF) provides fundamental operations for

developer to map any existing model to a graphical editing environment.

This project makes use of GEF and extends its operations to create a graphical

workflow editor Eclipse plug-in, which will have the functionality to drag and drop

specific components on the canvas, establish particular associations between them,

hook the components with external application model and simulate model behaviors

with the workflow diagram. The project implements with Java and can be integrated

into Eclipse platform.

This report will give an introduction to the project, briefly overview the Eclipse and

GEF, as well outline the project design architecture, implementation and limitation.

Moreover it gives a description about how to use this workflow editor.

 3

Acknowledge

I would like to appreciate my supervisor Professor Tony White for his guidance, ideas

and advices for this project.

Also I would like to thank the following people for their patient assistant throughout

this term:

Zhiyong Liu

Michael Gold

Weimin Mao

 4

Table of Contents

1 Introduction... 6

2 Eclipse and GEF Overview... 8

2.1 Eclipse Platform Working Principal ... 8

2.2 GEF Working Principle .. 9

3 Workflow Editor Design Description ... 12

3.1 Workflow Editor Design Overview.. 12

3.2 Design Description of Editor Part... 13

3.3 Design Description of Application Model.. 14

3.4 Design Description of the Edit Parts... 15

3.5 Design Description of the manifest file .. 18

4 Workflow Editor Implementation... 19

4.1 Application Model Implementation.. 19

4.2 Edit Part Implementation .. 23

4.3 Command and Action Implementation... 27

4.4 Editor Part and Palette Viewer Implementation ... 28

5 Workflow Editor Testing .. 31

6 Workflow Editor Application Process .. 32

7 Workflow Editor Design Limitations ... 34

8 Conclusion .. 35

9 Reference .. 36

 5

List of Figures

Figure 1: GEF MVC Structure………………………………………………10

Figure 2: Workflow Editor Structure………………………………………..12

Figure 3: Editor Part Contents………………………………………………14

Figure 3: Workflow Editor Application Model Class Hierarchy Diagram…19

Figure 4: Workflow Editor Edit Part Class Hierarchy Diagram…………….23

 6

1 Introduction

IBM Eclipse is a microkernel framework, which is designed for building integrated

development environment. Software such as modeling tools, programming tools and

testing tools are fit into Eclipse as plug-ins to integrate a universal tool platform,

which can support the construction of a variety of tools for application development,

arbitrary content types (XML, HTML, GIF, etc.) manipulation and graphical user

interface development. As an essential plug-in in Eclipse, Graphical Editing

Framework (GEF) has provided fundamental functionality for developer to follow

and extend so that a graphical editor can be created from an existing application

model.

In general the workflow editor is used to draw a workflow diagram for an application

model. In this project, the Eclipse plug-in workflow editor will take advantage of the

common operations of GEF and extend them such that it has the functionality to draw

a workflow diagram and simulate the behaviors for the external application model.

The workflow diagram consists of components such as condition, activity and

transition. In order to simulate the model behavior, external application model objects

also have to be part of the components in the editor. The editor will have a palette,

from which those components can be selected and dragged, and a canvas, on which

the dragged components will be drawn. Components that represent external

application model can be added on the palette via a palette customization user

interface. Transitions are established between activities and conditions to indicate the

workflow direction, and particular user interfaces are associated with the activity and

 7

condition components to define their relationship with the external application model.

After the workflow diagram is defined, it can be run to check the correctness of its

definition. Furthermore the editor follows an open-save-close life cycle, so the

workflow diagram can be open and saved as a file.

Even though the workflow editor plug-in has realized most useful functionality, how

to implement a perfect editor is still a complicated issue. Some restrictions are related

to this editor, which only can be used to simulate the behavior of the simple

application model. Further improvement is necessary.

 8

2 Eclipse and GEF Overview

2.1 Eclipse Platform Working Principal

As we know, the Eclipse Platform can be used to develop various applications. It uses

an innovative plug-in architecture allowing near-infinite extensions to the base IDE,

the core of which is built in the same way as all the tools that extend it are built.

Many useful building blocks and frameworks are provided to facilitate the application

tool development.

All functionalities of the Eclipse Platform are achieved with plug-ins, which can do

anything from syntax highlighting to interfacing with a source code control system.

According to the complexity of its functionality, a tool can be implemented with one

or several plug-ins. Generally a plug-in includes a JAR library, a manifest file, and

some resource files such as images, web templates, native code libraries, etc. The

manifest file is a XML schema that declares the relationship between this plug-in and

other plug-ins. For instance, it specifies the extension points, actions contribution and

the runtime JAR library, etc. An in-memory plug-in registry will be built to register

the available plug-ins when the Eclipse platform is launched, and find the

corresponding contributed extensions when a plug-in is activated to run.

The Eclipse Platform UI paradigm consists of views, editors and perspectives. Editors

and views are tightly integrated into the workbench window, a GUI that Eclipse

Platform interacts with the user. When an editor is activated, actions will be

 9

contributed to the workbench menus and toolbars. Views provide information about

what user is working with in the workbench. The package explorer, navigator and

outline are all views to display different information about the workbench.

Modification is tightly consistent between editor and views.

The workbench provides diversity of extension points that allow tools to be integrated

into the editors-views-perspectives UI paradigm. The main extension points are

editor, view and perspective, which make it easy to add new editors, views and

perspectives. Within those parts, new actions can be contributed to the workbench

menu and toolbar, related view or editor’s pop-up context menu, and view’s local

menu and toolbar. Moreover, new views, action sets and shortcuts can be added to an

existing perspective. Eclipse platform is responsible for the management of the

workbench window and platform perspective. It automatically instantiated the

required editors and views, disposed of them if no longer needed, and provide

workbench services to keep track of the activation and selection.

2.2 GEF Working Principle

Graphical environment is an important functionality in the Eclipse platform. GEF and

Draw2d, two major plug-in in the Eclipse Platform, work together and make it

possible to create a graphical application from a non-graphical application model.

Draw2d is an SWT-based drawing plug-in, which provides a standalone rendering

and layout package for an SWT canvas. Common shapes and layouts are defined and

can be assembled and extended to render what users want.

 10

The GEF plug-in uses Draw2d for rendering, but employs the MVC (model-view-

controller) architecture for its editing framework, which makes sure that most

graphical applications look and behave in a similar way. GEF implements a unique

MVC architecture, which generally has no link between the view and model. The

model in the GEF should be independent on any view or controller and can be

changed only via GEF Commands. The view includes the visual part, which serves as

the primary representation for the model object(s), and other things that are visible to

the users such as feedbacks, tool tips, etc. Draw2d provides the common figures and

layouts to compose of the graphical view. The controller in the GEF is named Edit

Part, which directly represent an object in the model. It plays a vital role between the

view and the model. In one hand, according to its functionality an Edit Part can install

one or more Edit Policies that will trigger the execution of specific commands to

change the model. On the other hand it works as a modification event handler to

enables the visual part consistent with the model. For instance while a deletion

operation is made for a visual part, the Edit Policy on the Edit Part will trigger the

corresponding delete command to modify the model. Then the model will fire a

modification event, and the Edit Part handles it to make corresponding change on the

visual part.

 Figure 1: GEF MVC architecture

 11

GEF has a variety of features. It provides a bunch of common tools such as Selection,

Creation, Connection and Marquee tools. Users also can define their own components

to be used in an editor via a palette. The palette is designed to display all the tools and

components that an editor wants to use. Moreover, GEF includes functionality to

manipulate the connection, resize objects and display the model in two different ways

as Graphical and Tree structure.

The majority of GEF applications will be Eclipse Editors. The workflow editor in this

project will be one of the GEF applications. Its implementation will be involved with

the Eclipse workbench, GEF, Draw2d and Eclipse PDE (Plug-in Development

Environment).

 12

3 Workflow Editor Design Description

3.1 Workflow Editor Design Overview

Workflow Editor is designed to be an Eclipse plug-in. It will be written in Java and

the basic unit of the editor is Java class. The extension point is chosen to be the

Eclipse Editors.

In order to couple with the GEF plug-in, the design principle will use GEF MVC

architecture. The structure of the Workflow Editor will consist of three parts -

Application model, Edit Part and Visual part. In order to achieve the interactions

between them, it can be divided into more detailed basic components as following:

 • Application Model

 • Command

 • Edit Part

 • Edit Policy

 • Editor Part

The following diagram has shown interactions between those components.

 Figure 2: Workflow Editor Structure

 13

3.2 Design Description of Editor Part

As a typical GEF editor, the Workflow Editor will consist of a Palette Viewer, an

Editor Part, an Edit Domain and lot of Edit Part Viewers. In this project, the Editor

Part is the main frame of the Workflow Editor. When the editor is activated, the

Editor Part will configure and initialize an Edit Domain which will create a single

editing session for the editor, a Palette Viewer which will display all the editing tools

and components, and an Graphical Viewer which is corresponding to a top level Edit

Part and works as a blank canvas. Once the canvas is realized, the editor will be ready

to populate the viewer with additional Edit Parts.

The Palette Viewer has a palette model that defines the editing tool, such as Selection,

Marquee and Connection, and the component groups. A palette factory will define all

tool entries and template creation entries for the model. Those template creation

entries are the real engine to create component instances on the canvas. For the

purpose to add new component on the Palette Viewer, the palette customizer on the

context menu will be used to define the component type for the template creation

entry.

It is Editor Part’s responsibility to registry the editor actions, create the adapters for

different views and define how to open and save the workflow diagram as a file.

 14

 Figure 3: Editor Part Contents

3.3 Design Description of Application Model

The application model is composed of two parts - the components that used to draw

the workflow diagram and an interface for the external application model.

A workflow diagram consists of many activities, conditions and transitions. In this

project, application model also has those three fundamental components. In case the

properties of the components change, the model should notify the controller to

interact with the visual part. A super class WorkingFlowElement is defined for all

model object classes to include the functions such as adding and removing property

change listener, firing property change event, setting the property source and so on.

Corresponding to the blank canvas initialized by the Editor Part, a class is defined so

that the components on the palette can be added and removed. Activity and condition

component classes inherit from the canvas class because they also need to add other

components inside. For example activity will have a label to describe its action

 15

property, and condition can include other condition instances. Conditions can be

separated to three classes - simple condition, OR and AND conditions. The simple

condition will define the properties that are used to do condition check. The OR and

AND conditions are combination of many simple, OR and AND conditions and do

corresponding OR or AND condition check. Activity component class needs to define

its related object, the action and how to run. Another important class is used to define

the transition, which connects the condition and activity and have bendpoints to make

it smooth. But each activity only has one outgoing transition, and the condition will

have two, one defines as yes and the other defines as no.

An interface is defined for the objects of the external application model. Because

user’s object will be part of the editor, the interface is an abstract class that inherits

from the WorkingFlowElement super class. It specifies the functions that will be used

by the activity and condition components, such as user’s model objects have to define

its properties and actions list, how to run with the given action, which information

need to be logged on the visual part and so on.

3.4 Design Description of the Edit Parts

Corresponding to the application model, the Edit Parts also will separate to two

groups. The Edit Parts that represent the diagram components will be shown on the

canvas, and those that represent the external application model will be shown on the

outline view.

 16

Each Edit Part will be a controller to manipulate the application model and the

viewer. It will be shown up on the canvas as the content of an Edit Part Viewer to

form the workflow diagram, as well handle the modification between the model and

viewer. So every Edit Part will implement as a property change listener, create a

figure representation and install some edit policies. Edit policy is the actual agent to

finish the editing request. For the diagram components, Edit Part classes will be

defined for activity, three conditions, transition, start point and the top-level canvas.

In this project, the transition Edit Part class will represent the transition model object

and inherit from the GEF AbstractConnectionEditPart. It will have a context menu,

from which user can define its status to be yes or no. Via installing specific Edit

Policies, it will have the roles to create connection, bendpoints and pop up the context

menu. A connection anchor class is defined to specify the connection point on the

activity and condition Edit Part for establishing the transition Edit Part.

All other Edit Parts will inherit from the GEF AbstractGraphicalEditPart class. A

dialog will be associated with the activity Edit Part to define its related object, the

action and the arguments that are used for the action. The activity Edit Part need to

install the Edit Policies to work as graphical connection node, and do deletion,

creation and move operations. There are three condition Edit Parts to represent the

three different condition components. All of them have the editing role as a graphical

node for the transition, and can do creation, deletion, move and other general

component operation. But they have different visual representation and context menu.

The simple condition Edit Part has a dialog that can be opened to define the condition

 17

comparison rule. However its editing role will permit only a label child to be added

on it. The other two Edit Parts have the capability to add any condition instances

inside to form an OR or AND condition, therefore user can assemble the condition

that he wants.

A diagram Edit Part will represent the top-level canvas. It installs the editing roles to

work as a root component and can add any components inside. Also it is a connection

layer with a specific router definition such that the transition Edit Part has a route rule

to follow when it creates. A start point Edit Part will be added on the diagram Edit

Part when the canvas is initialized and cannot be deleted. It will connect to an activity

or condition Edit Part to specify the beginning component for the run command.

Some components on the editor represent external model objects. It is not reasonable

to add them as a part of the workflow diagram on the canvas, but they are necessary

to achieve the run functionality. So outline viewer is chosen to be a good place to put

those instances. From the outline viewer, we can know which external model

component is added or deleted, and how their properties change when the diagram is

run. An outline page class will be defined to be the adapter for the

IContentOutlinePage class. Those Edit Part classes that represent the external model

objects inherit from the AbstractTreeEditPart class and have the functionality to be

deleted, redo and undo.

 18

In order to realize the editing roles of those Edit Parts, different Edit Policies are

defined for them. The Edit Polices are mainly used to finish the graphical node role,

component role, layout role, connection role and bendpoint role. Those Edit Policies

will trigger the command to execute to do deletion, creation, move, redo, undo and

other operations. All those command classes are extended from GEF Command class

and define the execution, redo and undo functions to modify the model. Two

important commands – run and step command – will define how to run the diagram in

different ways. Moreover various action classes is necessary for the operations from

the context menu and toolbar, such as actions to run the diagram, open the dialog for

the activity and condition Edit Part, set the transition status and so on. Those actions

will be registered when the editor part is initialized and can be contributed to the

editor toolbar and context menu.

Finally a WorkingFlowPartFactory class is defined to create those Edit Part instances

on the canvas when model objects are instantiated. For those on the outline viewer, a

FlowTreePartFactory class is clarified to create instances for the outline tree. Then

the workflow editor will have all the fundamental parts to finish its functionality.

3.5 Design Description of the manifest file

The manifest XML file is the most essential part of the Eclipse plug-in. In this

project, the manifest file defines the extension point to be the Eclipse Editor. The

editor file extension, run time JAR library, action bar contribution class, dependency

libraries and other information will be specified on this file.

 19

4 Workflow Editor Implementation

As described in last section, the workflow editor will be implemented as an Eclipse

plug-in. According to the MVC architecture, its implementation will divided into four

primary tasks – application model implementation, edit parts and their edit policies

implementation, command and action implementation, editor part and palette

implementation. Detailed description of the implementation will be described in this

section.

4.1 Application Model Implementation

The application model has a hierarchy structure, which is shown on the following

diagram.

 Figure 4: Workflow Editor Application Model Structure

 20

4.1.1 WorkingFlowElement Class

The class is a super abstract class and inherited by all other component classes in this

editor. Because the components on the editor has the same attributes such as need to

be saved on the file, be responsible to fire model change event and register the edit

part as the property change listener, this class will implement IPropertySource,

Cloneable and Serializable interfaces.

4.1.2 WorkingFlowSubpart Class

This class has defined the functions for all the components that have the attribute to

be a graphical node. It includes method to add and remove the transition, and defines

the properties such as size, location and name. Those properties will be used by the

Edit Part to create and refresh the visual part.

4.1.3 WorkingFlowDiagram class

This class will define the property of the canvas on the editor. It includes methods to

add and remove children and initialize the start point on the canvas. When external

model objects are added on the diagram, they will be stored in a hashtable and past to

start point, activity and condition object instances such that those instances can define

their properties with the information provided by one or some of them. Then the

workflow diagram can realize to interact with user’s model. For example an activity

instance can define that it represent a specific action of one external model object.

The WorkingFlowStartPoint class will define a start point for the diagram. It has a

function to reset all the property of the user model when the diagram is ready to run.

 21

4.1.4 WorkingFlowActivity Class

This class implements the activity component on the editor. It defines the function to

set its related external model object, its action and the action related arguments. A

method run() implements what the activity will be run and the next() method is used

to interact with the visual part to indicate this activity will be run next step. It also has

a function to set the hashtable that holds all external object instances.

4.1.5 Workflow Editor Condition Classes

The condition components in the workflow editor are categorized to three kinds. A

super class WorkingFlowCondition defines the function to check whether the

condition is success, set the condition comparison rule and register the user model

objects. As drawn on the model structure diagram, other three classes will implement

their own functions to check the condition in different way. However the

WorkingFlowSimpleCondition class is the actual one to interact with external model.

It implements all the functions to set the necessary properties for the comparison rule

and check whether the comparison is success. The comparison rules of the other two

classes are based on the simple condition. They define combination conditions and do

OR or AND check for them.

4.1.6 WorkingFlowGlobalComponent Class

This abstract class is the interface that all user model objects need to be extended. Via

this class the workflow diagram will have a relationship with user application model.

It defines all the functions that other editor components, such as activity and

condition, need to use.

 22

• public abstract void run(String action, Vector arguments);

Run the function that matches with the action name and arguments.

• public abstract List getProperties();

Return a list of properties that will be used to define the condition.

• public abstract List getActions();

 Return a list of actions that will be used to define the activity.

• public abstract boolean checkCondition(String prp, String opt, String val);

 Check condition with the given three arguments.

• public abstract void initialProperties();

 Initialize the properties in order to reset the property of the external model object.

• public abstract String logProperties();

 Return the string for outline viewer to trace the property changes.

4.1.7 WorkingFlowTransition Class

Transition is an important part on the workflow diagram. It describes which activity

will be run next. This class defines the function to add and remove the transition to its

source and target node, set the status to be yes/no, and insert bendpoints. The

WorkingFlowBendpoint class will set the relative dimensions of a bendpoint, which

will be used for the transition Edit Part to draw it on the canvas.

The important classes in the application model have been described above. Other

auxiliary classes that used for the editor will not be listed detailed at this time.

 23

4.2 Edit Part Implementation

Edit Part implementation is the most important task in this project. It can be divided

into two parts – Edit Part and its Edit Policies. Every Edit Part class will represent an

object in the application model. They have the same functionality to be the event

handlers for the model modification and create a figure representation on the canvas

for the model object. Moreover, the Edit Policy classes will be defined to accomplish

corresponding editing roles for the Edit Parts. The commands that are triggered by the

Edit Policy will be introduced later. Here the description of each Edit Part class will

be focus on its editing role and related Edit Policies. The class hierarchy structure of

the Edit Part is described on the following diagram, but Edit Policies classes are not

list.

 Figure 5: Workflow Editor Edit Part Class Structure

 24

4.2.1 WorkingFlowTransitionPart Class

This class will be the Edit Part of the transition object. It installs the Edit Policies to

manipulate the connection. The FlowBendpointPolicy class will be responsible for

the CONNECTION_BENDPOINTS_ROLE to create command for creating, deleting and

moving the bendpoints on the transition figure. The FlowTransitionPolicy class will

extend the ConnectionEditPolicy and realize the CONNECTION_ROLE to create

connection deletion command, and the FlowTranComponentPlicy class will be

related to the COMPONENT_ROLE to create the command for setting the transition status

to be yes or no.

4.2.2 WorkingFlowPart Class

This class is the super class for all the Edit Part classes that have the Edit Policy for

the GRAPHICAL_NODE_ROLE. The FlowNodeEditPolicy class extends the

GraphicalNodeEditPolicy, and creates the commands to create transition and

reconnect the transition with its source or target nodes. If the node is an OR or AND

condition Edit Part, all the condition Edit Parts in which will not be a valid source or

target node. Moreover, this class has defined the connection anchor for the source and

target nodes.

4.2.3 WorkingFlowSubpartPart and FlowDiagramTreePart Class

In WorkingFlowSubpartPart class, an important function is defined to extract the user

model objects from the children list such that only the components that used to draw

the workflow diagram will be shown on the canvas. In the FlowDiagramTreePart

class it will have a function to return only the user model objects in the children list.

 25

Therefore user’s objects will be displayed on the outline viewer and separate from the

workflow diagram.

4.2.4 WorkingFlowDiagramPart Class

This Edit Part class will represent the top-level canvas of the editor. It defines the

RootComponentEditPolicy class to handle its COMPONENT_ROLE. Since all other

Edit Part instances will be drawn on it, the FlowDiagramLayoutPolicy class is

installed for its LAYOUT_ROLE, which will trigger commands to create new

components and handle move operation. It defines the canvas to be a FreeformLayer

and have a specific router rules for the transition and its bendpoints to follow.

4.2.5 WorkingFlowActivityPart Class

WorkingFlowActivityPart class defines editing role for the activity object in the

model. The LAYOUT_ROLE is implemented with FlowActivityLayoutPolicy class,

which will permit only one Label object to be added on it to describe the activity

definition. The FlowActivityPolicy class is defined for its COMPONENT_ROLE,

which will create commands to run or step run the diagram in addition to the deletion

command. Also when the diagram runs, this Edit Part will refresh the visual part to

indicate the change.

4.2.6 Workflow Editor Condition Edit Part Classes

As drawn on the class hierarchy diagram, the Workflow Editor condition Edit Part

will separate to three classes. The WorkingFlowSimpleConditionPart class has all the

editing roles as the WorkingFlowActivityPart class, but its COMPONENT_ROLE

class only handles deletion command. The WorkingFlowOrPart and

 26

WorkingFlowAndPart classes have the same LAYOUT_ROLE, which will allow the

instances of the three kind conditions to be added on them.

4.2.7 WorkingFlowGlobalComponentPart Class

This class will be corresponding to object in user’s application model. When the

diagram runs, it will keep track of the property change information. But after I decide

to display user’s model on the outline viewer, this class is deprecated. Now it keeps

as a point for future extension.

4.2.8 FlowComponentTreePart Classes

All the objects in user’s application model can be mapped to a component on the

workflow editor. This class will represent those objects and display them as figures

on the outline tree.

4.2.9 ActivitySettingDialog and ConditionSettingDialog Classes

These two classes define the UI to hook the activity and condition components with

the real actions and properties in user’s application model. The ActivitySettingDialog

will provide place for user to choose the activity related object, its action name and

action related arguments. The ConditionSettingDialog also allow user to set the

condition related object, its property name, compare operator and user defined

property value. But now the operator is fixed to be some simple comparison, such as

“>”, “<” , “==” and so on, so only simple condition can be defined for this workflow

editor.

 27

4.3 Command and Action Implementation

Edit Policy will trigger the command to execute, so every command in the editor will

do a specific operation to change the model. The CreateCommand and

DeleteCommand class will be triggered to response for the LAYOUT_ROLE and

COMPONENT_ROLE to create and delete a component in other components. The

SetContraintCommand class will set new location and size for the components when

they are moved on the canvas. There are six commands to manipulate the transition

component. Two commands are used to create and delete the transition, other four

commands are used to insert, remove and move the bendpoints in the transition

figure. The ReconnectNodeCommand class defines the way to attach the transition

with another source or target node.

How to run the diagram is an important issue for this editor, the algorithm is defined

on two commands. The FlowRunCommand class defines the principle for running the

diagram. From the start point on the canvas, the command will find the first activity

component it connects to. Then the first activity begins to run. Via the transition the

next component that defines in the diagram will be found, if the component is an

activity, keep on running. Otherwise it will be a condition, which then check its

condition to decide which transition will be chosen. Because the transition has set its

status to be yes/or, the command will follow the matched transition to find the next

component. Keep on doing this procedure, until the running process is finished. If the

workflow defines an infinite loop, the run command will not stop. The

FlowStepCommand class has the same way as the run command to find the next

 28

running activity, but it only run one activity, then stop and specify the next activity to

be run. This command provides a way for user to keep track of the logic of the

workflow diagram and check its correctness.

In the Workflow Editor some operations are done through the context menu or

toolbar, for instance setting the activity and condition, running the diagram and

resetting the properties of user model. Five actions will be contributed to the toolbar

or context menu, which are FlowActivitySetAction, FlowConditionSetAction,

WorkingFlowRunAction, WorkingFlowStepAction and WorkingFlowResetAction.

Except the last action class extends the Action class, the other four all inherit from the

SelectionAction. The FlowActivitySetAction can be performed by the activity Edit

Part and popu up the activity setting dialog; The FlowConditionSetAction is

performed by the condition Edit Part and pop up the condition setting dialog. The

WorkingFlowRunAction and WorkingFlowStepAction will be performed by the start

point on the canvas to begin executing the run or step command. When the step

command is executed, the next running activity can perform these two actions to

continue the run process.

4.4 Editor Part and Palette Viewer Implementation

Editor Part is the class that will be specified in the manifest file to initialize the

workflow editor. The WorkingFlowEditor class is defined to perform this task. It

extends the GraphicalEditorWithPalette class so that a Palette Viewer will be created

with the canvas. The instance of WorkingFlowDiagram is set to be the content of the

 29

GraphicalViewer, and a WorkingFlowEditorPaletteFactory class will define the

content of the Palette Viewer. Components such as selection, marquee, connection,

activity, three kind of conditions, label will be created by this factory class and

displayed on the palette. A context menu with palette customizer is associated with

the palette. In the WorkingFlowEditor class, functions also define to initialize the

contents of the GraphicalViewer and PaletteViewer, configure them so that the Edit

Part factory, key handler and context menu provider can be used by the editor, get the

adapter for the outline viewer, and create actions that will be used to operate the

editor. Corresponding functions are defined to save the diagram as object stream.

An OutlinePage class that extends the ContentOutlinePage is defined to be adapter of

the outline viewer for the editor. It will synchronize with the selection operation on

the editor canvas to create and delete component. The FlowTreePartFactory will be

set for it to add user’s object in the outline tree.

The difficult implementation for the PaletteViewer is to add new components on the

palette. The palette customization dialog has been redefined so that a new EntryPage

UI will be shown for user to set the component name, description and its template

type. With this object type, the FlowTemplateCreationEntry class that extends

ToolEntry can set the template type, and then creates corresponding object instances.

 30

It is a challenge work to implement the workflow editor plug-in, but with the four

parts that described above most functionality has been finished. A workflow diagram

can be drawn and run on this editor.

 31

5 Workflow Editor Testing

In order to test the functionality of the workflow editor, a clock application model is

simulated to apply on the editor.

The clock model consists of three classes – Second, Minute and Hour, which all

extends the WorkingFlowGlobalComponent class. Each class defines the content of

the six abstract functions, in which it will do necessary task and fire property change

event such that editor will handle its change and do corresponding update on the

outline viewer.

After the model is finished, the three objects are added on the palette via the

customizier on the context menu. Then they can be dragged from the palette and drop

on the canvas to create instances. The figure representation will be displayed on the

outline viewer. With the other components on the palette, a workflow diagram is

drawn for the clock model. After defined the activity and condition components on

the diagram with the properties and actions that are provided by the clock model, the

diagram can be ready to run.

Different workflow diagrams are assembled for the clock application model on this

editor. It proves that the editor has the functionality to draw the workflow diagram,

simulate the behavior of a simple model, and check the correctness of the logic of the

workflow.

 32

6 Workflow Editor Application Process

The Workflow Editor is implemented with Eclipse 2.1.3 and GEF 2.1.3. It has been

tested under Window 2000 and Window XP operating system. Other operating

system may not support. Because the Eclipse and GEF is updated all the time, this

plug-in may not consist with the new version Eclipse or GEF structure.

This manual has described the process to install and use the Workflow Editor.

 • The workflow editor is a generic Eclipse plug-in, so it needs to be copied into the

Eclipse plug-in directory.

• Open the Eclipse workbench window and add a new simple project. In the new

simple project, create a file with extension “.wfe”. A workflow editor with a palette

will be opened for this file.

• There is a context menu associated with the palette; user can add new components

via the palette customizer. Users’ own model objects have to inherit from an abstract

class (WorkingFlowGlobalComponent) in order to make it a part of the editor. In the

palette customizer, the complete path of the model object has to be specified on the

type text area such that the object will be created correctly. For instance in the clock

application model, the Second class is defined at the package

edu.carleton.workingfloweditor.model, so the whole path –

edu.Carleton.workingfloweditor.model.Second need to input on the type text area.

 33

• The component can be dragged from the palette and dropped on the canvas to

create the workflow diagram. The components that represent user’s objects will be

displayed on the outline viewer.

• Transition can be connected between activities and conditions. From its context

menu, user can define its status to be yes or no.

• Select an activity or condition on the canvas. From its context menu, a dialog will

be popped up for user to define the action or comparison rule.

• Connect the start point on the canvas with the first activity or condition you want

to run.

• Select the start point, then click the run or step on the context menu or the toolbar,

the diagram will begin to run. If the run by step is chosen, running process will stop at

the next will-running activity, which will display different color. Selects this activity

and clicks run or step, the diagram will continue to run.

• There is a reset button on the toolbar. The properties of the components on the

outline viewer will be reset after the button is clicked at any time. If the diagram is

running by step but not terminated, it will be stopped.

• The diagram file can be saved with the save action on the context menu or the

toolbar. It also can be open for editing next time.

 34

7 Workflow Editor Design Limitations

This project has finished many functionalities of the workflow editor, but there are

still some improvements for it to be continued, for instance:

• The workflow editor is a single thread program. When the diagram is run to

simulate the behavior of the model, each step only one activity can be run or one

condition can be checked even thought you can draw the diagram with many parallel

activities or conditions.

• The UI of the condition component is still simple such that complicated

comparison rule cannot be defined, for instance string and object instance cannot be

compared.

• User’s model has to extend an abstract class in the workflow editor to define some

functions such that activity and condition components can hook with the user model.

It’s better if the super class is a simple interface that user model can implement but

not need to extend.

• Only simple project model can be run on the workflow editor. If the model is

involved with complicated object setting or other operations, the workflow editor

cannot handle.

• The components that user adds via the context menu cannot be saved for next open.

 35

8 Conclusion

After four months endeavor on this project, a Workflow Editor has been

accomplished. Much functionality has been implemented and works robust. Most of

all I have experienced a process from a novice that know nothing about the Eclipse to

a person that understand the Eclipse Platform, its Plug-in Development Environment

and its GEF plug-in, as well as master how to use its Plug-in and how to implement

my own plug-in. It is a tough process, but I’m proud that I have made it. Through this

process, I also have consolidated my technical skills with Java programming and have

a deep understanding about the software design process. I’m so glad that I have

experienced a meaningful process.

 36

9 Reference

http://www.eclipse.org

http://www.devx.com/ibm/Article/6884

http://eclipse-wiki.info/GEF

http://eclipse-wiki.info/GefExamples

Eclipse GEF User Forum

Eclipse Logic Example

Eclipse Flow Example

Eclipse Help Manual

