

MEDIA MONITORING USING

SOCIAL NETWORKS

Submitted by:
Wayne Chu (100280442)

Honours Project
COMP 4905
Carleton University

Supervised by:
Dr. Tony White
School of Computer Science

April 8, 2005

 i

Media Monitoring Using Social Networks Wayne Chu (100280442)

ABSTRACT

With the rapid rise in the number of weblogs, or blogs, on the World Wide Web, there is

a growing need to be able to quickly search for discussion on specific topics. While

keyword searches using tools such as Google or Technorati can yield some useful results,

we run into the problem of having to enter contextualizing keywords to filter out

unwanted and irrelevant search results. This has the unfortunate consequence of make

the search process more complicated and possibly filtering out search hits that we would

want. This paper outlines an approach to narrow search results to only relevant hits,

while allowing for general keyword queries. Since the blogosphere constitutes a social

network, the solution, BlogCrawler, attempts to use the properties of social networks to

narrow the focus of search queries to only those blogs that the user is interested in.

 ii

Media Monitoring Using Social Networks Wayne Chu (100280442)

ACKNOWLEDGEMENTS

I would like to thank Dr. Tony White for supervising me and providing the support

needed to successfully complete this project.

I would also like to acknowledge Bart Ramson who got me blogging in the first place.

 iii

Media Monitoring Using Social Networks Wayne Chu (100280442)

TABLE OF CONTENTS

1. Introduction... 1

1.1 Background Information... 1
1.2 Problem Description ... 2

2. Social Networks and Blogs... 5
3. Solution... 9

3.1 Overview... 9
3.2 Software .. 11
3.3 Web Crawler ... 12
3.4 Blog Validator... 16
3.5 Page Ranker .. 18
3.6 User Interface.. 20

4. Results... 24
4.1 Crawler Effectiveness ... 24
4.2 Relevance of Search Results... 26
4.3 Overall Results.. 30

5. Potential Improvements .. 31
6. Conclusion .. 34
References... 37
Appendix A – Software Used in BlogCrawler ... 39
Appendix B – Blog List .. 40
Appendix C – Deployment Instructions ... 45

 iv

Media Monitoring Using Social Networks Wayne Chu (100280442)

LIST OF TABLES

Table 1: Search Results of Various Keyword Queries ... 3
Table 2: Topics of Top 10 Hits for “budget” Keyword Search .. 29
Table 3: Topics of Top 10 Hits for “senate” Keyword Search ... 29
Table B-1: Top 100 Canadian Political Blogs .. 40
Table B-2: Top 100 Cathlolic Themed Blogs... 42

 v

Media Monitoring Using Social Networks Wayne Chu (100280442)

LIST OF FIGURES

Figure 1: Graph of Social Network... 8
Figure 2: System Architecture .. 11
Figure 3: Sample of a Blog with Date Entries .. 18
Figure 4: Google Search Interface .. 22
Figure 5: BlogCrawler Search Interface ... 22
Figure 6: BlogCrawler Search Results.. 23
Figure 7: Results Returned by BlogCrawler... 28
Figure 8: Results Returned by Technorati .. 28

Introduction 1

Media Monitoring Using Social Networks Wayne Chu (100280442)

1. INTRODUCTION

1.1 Background Information

 Increasingly today, corporations, governments, and private citizens are

demanding to know what others are thinking. Corporations would like to know what the

latest trends are in society today, governments need to know how policies are being

received amongst the grassroots, and private citizens often are simply interested in

knowing what their peers are thinking about. Weblogs, or blogs for short, are a recent

phenomenon in cyberspace that has emerged which offers an incredibly useful collection

of information for media analysis. Blogs offer individuals the ability to read what people

on the Internet are thinking right now. Indeed, the nature of blogs, online journals written

by individuals around the world that are updated frequently, often daily, present an

unfiltered view of world, discussing whatever the author feels like talking about. The

content found on blogs vary greatly from topics such as technology tips and tricks,

politics, arts and entertainment, and even personal accounts of the author’s daily life.

The unedited, uncontrolled nature of this media means that there are no limits to what

blogs can talk about.

 The rapid growth in the number of blogs on the Internet also means that this

phenomenon is not something restricted to a small subset of the most technologically

savvy individuals in society. This makes blogs highly relevant and an attractive target for

data mining. While, only a handful of blogs initially existed in 1998, the numbers have

grown exponentially over the years to the point that they now number in the millions,

according to leading blog tracker, Technorati [Lindahl and Blount, 2003; Technorati,

2005]. Many blogs also have high readership numbers, such as the popular technology

Introduction 2

Media Monitoring Using Social Networks Wayne Chu (100280442)

blog, Slashdot, which has an audience numbering in the hundreds of thousands [Slashdot,

2005]. With millions of blogs and their associated authors, or “bloggers”, expressing

ideas, the amount of information one could find in this subset of the World Wide Web is

clearly immense.

 More important to this paper, however, is the fact that blogs are not simply self-

contained journals on the web. Like any website, blogs contain links to other sites – this

includes other blogs. Bloggers will link to others with similar interests. These linkages

allow sites to interact with each other, forming an online community. What emerges

from this is the formation of social networks within the so-called blogosphere [Herring et.

al., 2005], creating order amongst the chaos of the web. As Section 2.0 of this paper

outlines, the power of social networks is great, so exploiting the inherent social networks

in the blogosphere is something of great interest.

1.2 Problem Description

 The project described in this report attempts determine if we can search the

blogosphere to see what people are saying about any particular topic. We will attempt to

harness the power of the blogosphere determining if useful, relevant search results can be

returned using simple keyword queries. This may seem simple like a simple task since

keyword searching is something that even the simplest search engines are capable of.

However, with the ability for anyone, anywhere to start publishing a blog, finding the

information one wants while minimizing the complexity of a query may not be as simple

as searching every single blog for a specific search term. The meaning of a keyword is

dependent not only on the dictionary meaning of the word, but also the meaning the

human user placed on it and the context in which it is found. For example, if one were to

Introduction 3

Media Monitoring Using Social Networks Wayne Chu (100280442)

want information regarding the recent Canadian federal budget, a simple search for the

term “budget” would be inadequate. Searching for the term on the popular search engine

Google produces over 93 million results – far too many for anyone to sift through. Even

restricting the search to blogs using the blog search engine Technorati produces over

180,000 results with posts about a disparate range of topics. The trick for conventional

searches, then, is to expand the keyword search to provide the needed context. For

example, searching for the terms “Canadian federal budget” on Google reduces the

number of hits to 3.2 million. Table 1 outlines the results of various keyword searches

performed on the blog search engine Technorati. As we can see from the table, providing

context clearly narrows the amount of hits returned. The trade off, however, is that

search queries must become more complex.

Table 1: Search Results of Various Keyword Queries

Query Hits Query Hits
budget 193,061 canadian federal budget 2211
senate 163,333 canadian senate

appointments
152

hotel 440,388 moby cd hotel 326

Source: http://www.technorat.com on 2005/03/31at 7:04pm.

 The question that this paper attempts to answer, then, is whether or not it is

possible to return concise, relevant search results from the blogosphere while minimizing

the complexity required in the actual search query. To do this, we will use the power of

social networks to limit the scope of search queries such that a simple keyword such as

“budget” will return only pages that the user will want to see. More specifically, if we

search only within blogs located within, to continue our example, a social network of

Canadian political sites, then the need to provide contextualizing keywords in the search

Introduction 4

Media Monitoring Using Social Networks Wayne Chu (100280442)

query will no longer exist. This is analogous to searching for books only within a

specific genre. It may be helpful first, however, to outline what a social network is in the

context of computer networks and the web.

Social Networks and Blogs 5

Media Monitoring Using Social Networks Wayne Chu (100280442)

2. SOCIAL NETWORKS AND BLOGS

 In the physical world, a social network is a “network of friendships or other

acquaintances between individuals” [Girvan and Newman, 2002]. As friends or

acquaintances, these individuals often share common interests and backgrounds with

each other. At a basic level, everyone participates in a social network, defined by the

everyday interactions one goes through. The concept is one that spans disciplines such as

sociology, political science, and in our case, computer science, since in all cases the

nature of how we form and keep human relationships is of great interest. We can easily

transfer the idea of the social network to that of computer networks, and more

specifically, to the blogosphere. In this case, each blog acts as an individual, or a node in

the network, and the hyperlinks on each blog act as the connections between the nodes.

Figure 1 demonstrates the basic structure of a social network in the blogosphere as an

undirected graph, showing how the network of blogs is analogous to a physical network

of friends and classmates. We can further transfer the concept to computer networks

when we observe that the people who use computer networks “have social relationships

with each other that are embedded in social networks” [Wellman, 1996]. From this, we

can infer that the network of blogs within the blogosphere has an inherently intelligent

human-based organizational structure. This structure has several important properties

which we will apply here to solve our searching problem.

 The first significant property is that of “community structure” in which we see

similar nodes densely clustered together within a wider network. In the context of a

physical social network, these clusters of nodes represent social groupings of those with

common interests or backgrounds [Girvan and Newman, 2002]. Applying this to the

Social Networks and Blogs 6

Media Monitoring Using Social Networks Wayne Chu (100280442)

blogosphere, and treating the hyperlinks between blogs as connections in the network, we

would expect blogs to be clustered together such that they all cover similar types of

topics. Therefore, we can infer that if we were to start at a specific blog and search

within it and it’s neighbours, we would be predominantly searching blogs of a similar

nature and type, providing the context that we were seeking earlier in our problem

description.

 The second property is the “small world effect”, which states that the distance

between two vertices in any network is short. Indeed work has suggested that this

property is “pervasive in networks arising in nature and technology, and a fundamental

ingredient in the structural evolution of the World Wide Web” [Kleinberg, 1999]. The

basis of this is an experiment performed by Stanley Milgram in which complete strangers

in Nebraska were tasked with getting a letter to a stockbroker in Boston. These strangers

could only pass the letter on to someone with whom he or she was on a first-name basis.

Milgram found that the average number handoffs required for a letter to be received by

the stockbroker were only about six [Newman, 2001]. If one were to take each handoff

of the letter as a connection in a network, we can see that within a social network of any

sort, one can expect that the distance between any two nodes would be small. As a

corollary, this means that a web crawler would only need to crawl very few levels before

a sizable amount of the social network is covered. Moreover, Girvan and Newman

discuss that many networks display a property of transitivity, in that nodes which share a

common neighbour are likely neighbours of one another [2002]. As will be discussed

later in Section 3.1 this makes extracting a community of blogs from within the greater

Social Networks and Blogs 7

Media Monitoring Using Social Networks Wayne Chu (100280442)

blogosphere much less complex since the depth one must crawl to retrieve a suitable

number of blogs is low.

 A third property is the idea of trust relationships in the social network. When a

human decides to form a relationship with another, this forms a social exchange. In one

regard, the exchange occurs to fulfill a purpose of some kinds. In another regard,

“exchanges involve investments, gains and losses of time, money, energy, emotions,

expectation, and many other energetic and motivational elements” [Rodrigues et. al.,

2003]. Put simply, when someone in a social network creates a connection with another

individual, then there is an implicit recognition that making that connection was

worthwhile. In other words, an individual trusts the other enough to make a connection.

Within the blogosphere, connections are made in the form of hyperlinks to other blogs.

The fact that a blog has linked to another means that there is some value in the other blog.

Extending this idea, if a blog is linked to by many people, then, theoretically, this means

that the blog is found to be worthwhile by many, improving its level of trustworthiness.

This concept, as will see later in the paper, is important in determining which blogs are

more valuable than others.

Social Networks and Blogs 8

Media Monitoring Using Social Networks Wayne Chu (100280442)

Figure 1: Graph of Social Network

Math Student A

Math Student C

Science Student A

Math TA

Math Student B

Classm
ate Of

Classmate Of

Student Of

Classmate Of

Friends W
ith

Links to other
people

Blog

Blog

Blog

Blog
Blog

Hyperlink to

Hyperlink to
Hyperlin

k to

Hyperlink to
Hyperlink to

Links to other
blogs

In the same way that a network of friends are connected by their relationships with each other, blogs in
the blogosphere are connected by the collection of hyperlinks located on each page.

Solution 9

Media Monitoring Using Social Networks Wayne Chu (100280442)

3. SOLUTION

3.1 Overview

 Let us return, now, to the original problem outlined in this paper. Namely, that of

narrowing search results while maximizing the amount of generalization possible within

a keyword search query. To accomplish this, we will implement a blog search engine,

called BlogCrawler which will use the inherent social networking properties of the

blogosphere, ensuring that to the end user searching for information is as simple as using

any other search engine available on the web. In the perspective of the end-user, he or

she will still be required to enter at least one keyword to search on. However, we will

eliminate the need for context specifying keywords, such as “Canadian” and “federal”, to

use our previous example, by limiting the number of sites that we will search to those of a

specific topic. Instead of searching millions of sites for a specific keyword, we will only

search hundreds.

 This obviously leads to the question of how we determine which sites to include

in our query and which to ignore. This is where we use the properties of social networks

to aid us. We know that because of the property of community structure, neighbours of a

blog will be of similar type. We also know that due to the small-world effect, the

members of the social network of blogs we want to search will all be situated near each

other in terms of number of links traversed to get from one to another. Finally, in the

context of our problem, we know what types of blogs we are interested in. For example,

we will know beforehand that we want information about Canadian politics. Therefore,

in our solution we will pre-select a small number of “expert” blogs deemed to be

representative of the type of blogs we want to search. We will treat these selected blogs

Solution 10

Media Monitoring Using Social Networks Wayne Chu (100280442)

as the root nodes of the social network being traversed, and then crawl through the blogs

connected to them. The end result is that after traversing only a few levels of links, we

will have indexed a sizable number of blogs, most of which should be similar in type to

the root blogs.

 Once we have a collection of blogs to search from, then finding the information

we want is simply a matter of entering a general keyword and performing a text-based

search of the content of the blogs collected. If we were successful in limiting the type of

blogs in our collection, then the results returned should be limited to only those topics

that we are interested in. There is one caveat. Because of the uncontrolled nature of the

blogosphere, anyone can write anything they want. As well, some blogs have more

relevant information and are more trustworthy than others. This is where the idea of trust

relationships within a social network comes into play. Each blog will be assigned a rank,

similar to that of the PageRank score given to websites on Google [Nanno et. al., 2004].

This rank will represent a blog’s level of trustworthiness. Hence, the results of a

keyword search will be sorted such that those sites with the highest rank are situated at

the top of the search results, ensuring the most relevant and trustworthy hits are the first

ones the user sees.

 There are several components we will need to create to implement such a

solution. Those are a web crawler, a ranking module to calculate the expert level of

blogs, and a front-end user interface for the user to access when performing search

queries. Figure 2 outlines the architecture of the system.

Solution 11

Media Monitoring Using Social Networks Wayne Chu (100280442)

3.2 Software

 BlogCrawler will be implemented using a pure Java solution for all the modules,

including a Java Server Pages (JSP) application for the front-end web-based search

engine. Java was chosen for a variety of reasons, including the fact that it is cross-

platform compatible, allowing all types of machines to use the same code base. This

simplifies the task of ensuring that the code can run on the widest range of machines as

possible. In addition, the standard Java library also includes tools to easily connect to,

retrieve, and tokenize HTML web pages, which is helpful in the implementation of the

search engine.

Figure 2: System Architecture

Web Crawler

Page Ranker UpdaterLucene
Index

Blog
Validator

Search Page (JSP)

World Wide Web

 Another deciding factor to use Java was also the decision to use the Apache

Lucene library, a full-featured text search engine. Lucene allows developers to

efficiently store and search large amounts of any type of data, including web sites

Solution 12

Media Monitoring Using Social Networks Wayne Chu (100280442)

[Apache Jakarta Project, 2005]. Since a large portion of the project involves performing

keyword searches on text, it was felt that using Lucene would ensure the overall

efficiency of the system. Because the engine is written entirely in Java, and the fact that

every element of the project would need to access the index, it was felt that the use of

Java was the most appropriate choice of environment.

3.3 Web Crawler

 The web crawler is responsible for gathering the blogs which we want to search

and is the most complex component in the system. Unlike standard web crawlers, the

requirements of the system mean that it cannot blindly follow every single link on a blog.

Since the blogosphere is only a subset of the greater World Wide Web and individual

blogs often post links to sites that are not blogs, doing so would lead to a massive amount

of web sites crawled that are outside the scope of our search parameters. Clearly, the web

crawler needs to be intelligent enough to crawl only those sites we want. To solve this

issue, the crawler needs to be equipped with a validation module that verifies whether or

not a web page is a blog. Only if the validation determines that a page is a blog will it

allow the crawler to index the site. The end result should be that only those sites situated

within the blogosphere will be searched.

 The basic algorithm for web crawling is a simple one. Simply access a site, store

its contents in the index, extract the links on the site, and recursively crawl those links.

Note, however, that due to the nature of the web, actually using a recursive algorithm

would create an exponential number of instances of the crawler. We can easily solve this

problem by using a queue instead as seen in Algorithm 1.

Algorithm 1: Basic Web Crawler

Solution 13

Media Monitoring Using Social Networks Wayne Chu (100280442)

Algorithm Crawl(firstSite)
 Queue queue := new Queue;
 queue.enqueue(firstSite)
 While queue not empty
 currSite := queue.dequeue();
 siteContents := getContents(firstSite);
 outgoingLinks := getLinks(firstSite);
 index(currSite, siteContents);
 queue.enqueue(outgoingLinks);
 Loop

[Blum et. al, 1998]

 As we noted earlier, we cannot follow every single link. There are several issues

when programming a web crawler that we need to be cognisant of. First, we need to

ensure that the web crawler does not continue to run for an indeterminate amount of time.

This is a distinct possibility with millions of blogs on the web online today and the

number of web hosts doubling every year [Kobayashi and Takeda, 2000]. To resolve this

issue, we simply need to limit the depth that our web crawler will crawl. For example,

assume that the initial list of blogs we crawl represent depth zero. Then every blog

linked from those at depth zero would be depth one, those linked from depth one will be

depth two, and so on. Therefore, we simply place a condition on our crawler to stop

indexing blogs that exceed a user defined depth.

 The second issue we need to address is that of ensuring that only blogs are

crawled. We must remember that the blogosphere is not self-contained within the World

Wide Web since blogs not only link to other blogs, but to other websites that we do not

want to index. If we allow the crawler to exit the blogosphere into the greater web, then

the chances are slim that the crawler will return to where we want it to. This problem can

be addressed by validating each page the crawler retrieves before indexing it. If the page

validates as a blog, then the crawler will index it, extract the links on the page, and

Solution 14

Media Monitoring Using Social Networks Wayne Chu (100280442)

continue crawling. If it does not validate it, the crawler will ignore the page. Section 3.4

goes into further details on how the validation works.

 Finally, we need to ensure that we do not index pages twice, since most blogs, and

web pages for that matter, maintain a many-to-many link relationship with other blogs.

This is resolved by maintaining a list of websites already crawled and skipping those

links which lead to previously traversed pages.

 From our basic algorithm, then, we now have a more intelligent and efficient

crawling algorithm, as seen in Algorithm 2. This algorithm forms the basis of the

Crawler class implemented in our solution, traversing the social network of blogs we are

interested in.

Algorithm 2: Intelligent Crawling Algorithm

Algorithm IntelligentCrawl(rootSites, maxDepth)
 List visited = new List;
 Queue queue = new Queue;
 queue.enqueue(rootSite)
 while queue not empty
 currSite := queue.dequeue();
 if currSite.depth <= maxDepth then
 visited.add(currSite)

 if not visited.contains(currSite) then
 if isBlog(currSite) then
 siteContents := getContents(currSite);
 outgoingLinks := getLinks(currSite);
 index(currSite, siteContents);
 queue.enqueue(outgoingLinks);
 end if
 end if
 end if
 loop

 Looking at each individual blog to be indexed, we now have to determine what

properties of an individual blog we need to store. We have already mentioned that we

will be using the Lucene library to index the pages that we crawl. As part of its

Solution 15

Media Monitoring Using Social Networks Wayne Chu (100280442)

implementation, Lucene allows us to index any number of fields with whatever content

we wish. The obvious fields to index are the ones the end-user is interested in, namely

the address, title, and contents of the page. These are not the only things that need to be

indexed, since we also need to store attributes that relates the page to its position within

the social network. Our discussion of social networks identified two key aspects of blogs

that we are interested in. Firstly, we need to know what other blogs the page is connected

to. To that end, we also index the complete list of outgoing links contained on the page.

Secondly, we need to know the rank of the page to determine which blogs are the most

trustworthy. Therefore, we will also index the page’s rank. Since a page’s rank is

dependent on the rank of other pages in the index, we will not be able to calculate the

rank during the web crawl, so we index the page with an initial rank of zero. All of this is

accomplished with the PageIndexer class of the project.

 Now that we have the overall structure of the crawler module designed, we turn to

ensuring that the module is as efficient as possible. Like any algorithm that we design,

we are particularly concerned with time and speed efficiency and memory usage. In both

cases, implementing the web crawler created many challenges in ensuring that our

algorithm was as efficient as possible.

 With respect to speed efficiency, we needed to ensure that crawler indexed as

many pages as possible in a minimal amount of time. Particularly troublesome was the

fact that as the crawler traversed deeper into the network, the number of links queued to

crawl grew exponentially in the same way that the number of leaves on a tree grows

exponentially at each height. Since a particular instance of a crawler can only

realistically crawl the web one page at a time, we attempt to reduce the required time to

Solution 16

Media Monitoring Using Social Networks Wayne Chu (100280442)

crawl the network by making our crawler multithreaded. Therefore, at any given

moment, several sites are being retrieved, validated and indexed at once. These threads

share a common queue and visited list so that we reduce duplication of work.

 In terms of memory usage, we immediately see that if the number of links we

need to crawl grows exponentially, then that means that the storage space required to

contain the queue of links grows at a similar rate. Therefore a disk-based queue was used

to maximize the amount of storage available for the queue. As implemented in the

DiskQueue class of the project, we store the queue in a text file. Data access is

accomplished by maintaining two file pointers: an output stream that appends to the end

of the file where we write to when queuing an item, and an input stream that begins at the

top of the file and reads each line successively whenever we remove an item from the

queue. The two pointers minimize the seek time required to access the data. Although

memory access on a hard drive is slower than through volatile memory storage, we

benefit by ensuring that we will not run out of memory when crawling.

3.4 Blog Validator

 To validate whether a site is a blog or not, we created a BlogValidator class

which is designed to filter out unwanted sites. We accomplish this by recognizing the

fact that blogs share common formatting characteristics, including a consistent sequence

of date-entry pairs [Nanno et. al., 2004]. Figure 3 shows an example of a blog with this

characteristic. Particularly, we note that the date on each entry is consistently formatted

in terms of date expression (such as “dd/mm/yy”) and formatting style (such as font size,

bolded). The validator takes advantage of this by analysing the structure of an HTML

document, extracting the dates on the page and determining if the sequence of dates is

Solution 17

Media Monitoring Using Social Networks Wayne Chu (100280442)

consistent with that of a blog. Specifically, the validator determines that a site is a blog if

and only if:

1. There exists a sequence of dates, spaced out by a user defined minimum
number of characters.

2. The sequence of dates is ordered in ascending or descending order.
3. The HTML tag sequence surrounding each date instance is uniform for all

entries in the sequence.

 To accomplish this, the BlogValidator class extracts all the dates on a page that

match one of a number of predefined regular expressions. If a date follows another date

within a specified number of characters, however, it is ignored. Once extracted, the dates

are sorted into bins based on the regular expression that the date matches. For example,

the dates “2005/02/14” and “2004/12/01” would go in the same bin, having matched

against the date format “yyyy/mm/dd”. The bins are then further split by the HTML tag

sequence the date was found in. For example, a date may be found following an tag

sequence of “<div><p>”. We then take the largest list of dates, and assume that

the list represents the sequence of date entries for the articles on the potential blog. If

those entries are found to be in ascending or descending order, then the page is

determined to be a blog and the validator returns true.

 Using this algorithm, we are able to detect blogs produced by any type of blog

software and presented using any type of template. While thought was given to simply

using a precompiled list of “acceptable” blogs, this approach of determining whether a

page is a blog in real-time allows for much more flexibility in discovering lesser known

blogs. In fact, as will be discussed in Section 4.1, this algorithm is remarkably successful

in identifying blogs.

Solution 18

Media Monitoring Using Social Networks Wayne Chu (100280442)

Figure 3: Sample of a Blog with Date Entries

Screenshot of http://401blog.blogspot.com illustrating a sequence of date-article entries.

3.5 Page Ranker

 After we use our web crawler to extract and index the blogs were are interested in,

we now turn to ranking the blogs to ensure that the most important ones are given the

most weight when performing keyword searches. Doing this prevents blogs that are

relatively new and those that are unpopular from being returned ahead of the blogs that

the end-user actually wants to see. We accomplish this by assigning a rank to each blog

which represents its relative importance or trust level compared to other sites in the

index. When performing a keyword search, blogs with higher rankings will appear first

in the results listing, followed by those with lower ranks. This is not a new concept, as

demonstrated by Google, which returns search results based on the rank of a page

calculated by the highly successful PageRank algorithm [Eiron et. al., 2004]. So, rather

Solution 19

Media Monitoring Using Social Networks Wayne Chu (100280442)

than create our own algorithm, we will use a modified version of the PageRank algorithm

to calculate the ranks for the blogs in our index.

 PageRank is premised on the idea that the more important a web page is, the more

other pages will link to it. Therefore, the more links to a page, the higher its rank is and

the higher its importance. Mathematically, PageRank begins by assigning each page an

initial rank of 1/N, where N is the number of pages in the index. Let Nu be the outdegree,

or number of outgoing links, on page u, and let Rank(p) be the rank of a page p. Also, let

Bv be the set of all pages with a hyperlink to page v. The rank of a page, v, at iteration i is

calculated as follows:

 ∑
∈

+ =
vBu

uii NuRankvRank /)()(1 (1)

Since the rank of a page is dependent on the rank of others, we iterate through all of the

pages in the set of pages until the ranks stabilize to within a specified threshold. The rank

vector that is calculated from this formula is calculated once and the results are used for

every search query.

 The PageRank algorithm, however, is susceptible to the problem of assigning

pages with little actual authority a high rank simply because the page was heavily linked

to [Haveliwala, 2002]. This is a problem if we want to generalize keyword searches as

much as possible while maximizing the relevancy of the search results. To overcome this

obstacle, we bias the rankings by creating a “topic-sensitive” PageRank. As Haveliwala

argues, biasing the page ranking towards specific pages allows for personalization in the

ranking. In this case of BlogCrawler, we will personalize the rankings so that blogs

which we deem are experts or important will bias the ranking of all the blogs in the index

towards them. Take the example of someone searching political blogs. If a user is

Solution 20

Media Monitoring Using Social Networks Wayne Chu (100280442)

specifically interested in conservative blogs, then it would make the most sense to bias

the rankings towards those sites which present a conservative viewpoint. If the user is

interested in liberal blogs, then using same index, the user can bias the rankings towards

those blogs with a liberal viewpoint. This allows us to further narrow the search results

to what the end-user wants.

 Biasing the ranking algorithm is actually quite simple. Essentially, we want to

ensure that those blogs which the user finds important have high scores. To do this, we

modify the initial rank given to a page, such that a page has a rank of 1 if it is in the list of

“expert” blogs, and a rank of 0 if the blog is not in the list. On each iteration, the

PageRank is calculated as outlined in (1). The difference is that on each iteration, the

initial rank given to the expert blogs is further diffused across the entire network,

meaning that a blog’s ranking is almost entirely dependent on its proximity to an expert

blog.

 Implementing this algorithm using the Lucene index is simply a matter of

updating the appropriate rank field for each blog in the index. One final issue that needs

to be resolved is that often times, there will be multiple pages from the same blog site

indexed. To ensure that these internal linkages do not affect the final rank of a blog, we

exclude outgoing links that point to pages on the same web host when calculating the

rank. Once the ranks are calculated the index is now ready for keyword searching via a

web-based search engine.

3.6 User Interface

 To the end-user, searching through the blogs we have crawled should be as simple

as using any other search engine. Figure 4 shows what a standard search box looks like,

Solution 21

Media Monitoring Using Social Networks Wayne Chu (100280442)

and Figure 5 shows what the BlogCrawler search box looks like. The common element

necessary present is a text box to enter the keywords the user wishes to search for. To

search for information, all the user is required to do is enter his or her search query in the

textbox, click Search and, as seen in Figure 6, wait for the search engine to display a list

of appropriate blogs. Also present are two options to further refine the query. The user is

able to enter a variety of keywords, separated by a space. Selecting “All Terms” will

search through the index for items containing all of the keywords entered in the text box.

Selecting “Any Terms” will return items that contain one or more of the keywords

entered. In any case, if results are found, the search engine will return a sorted list of

blogs, complete with an excerpt from the blog that matches the keywords entered.

 Programmed using JSP, the search page interfaces directly with the Lucene index

and uses the Lucene’s built in boolean search query objects to return a list of blogs.

Furthermore, the list is sorted by the blogs’ calculated ranks (see Section 3.5), and then

by the query score which is calculated by Lucene and reflects the amount a blog matches

the keywords in the query.

Solution 22

Media Monitoring Using Social Networks Wayne Chu (100280442)

Figure 4: Google Search Interface

Main search page for Google (via the Firefox web browser)

Figure 5: BlogCrawler Search Interface

Search interface for BlogCrawler search engine

Solution 23

Media Monitoring Using Social Networks Wayne Chu (100280442)

Figure 6: BlogCrawler Search Results

Screenshot of results page after searching for keyword “budget”

Results 24

Media Monitoring Using Social Networks Wayne Chu (100280442)

4. RESULTS

 With implementation of BlogCrawler complete, we now move to evaluating the

system. Recall that in the original problem statement, we wanted to know if it were

possible to use the inherent social networking properties of blogs so that relevant hits

would be returned using a generalized search query. Based on these parameters, we will

focus on two main issues. We will first look at the web crawler’s effectiveness in

extracting the blogs we want, while filtering out everything else. Success in this regard is

paramount since the success of the system requires that we actually have blogs to search

from. Secondly, we will look at the actual results of keyword search queries performed

on the index of blogs we constructed. We will determine whether or not we can retrieve

relevant results from generalized queries and, if this is the case, relate this back to idea of

social networks.

4.1 Crawler Effectiveness

 The web crawling portion of the BlogCrawler system can be evaluated in terms of

two criteria. Firstly, how efficient was the actual crawling process. For this criterion, we

can look at how fast web sites are crawled, and examine where the bottlenecks were

during the crawling process. The second criterion is the accuracy of the validator and

whether or not we were successful in extracting only blogs.

 In terms of the efficiency of the crawler, we were relatively successful in

producing a web crawler that maintained a consistent rate of operation in that regardless

of how long the system was running, a web page was examined at least once every 10

seconds. This is in contrast to previous versions of the web crawler that appeared to slow

Results 25

Media Monitoring Using Social Networks Wayne Chu (100280442)

down the longer the system was crawling. This slow down was predominantly caused by

lengthy seek times as the disk-based queue grew, since we were only using one file

pointer. For example, at one point, we observed that the file storing the list of sites

already visited was approximately 500 kb. The file storing the list of sites waiting to be

crawled, however, was approximately 80 Mb, which caused lengthy seek times when

appending new sites to the end of the file. We were able to overcome this limitation by

implementing a disk-based queue with two file pointers; one pointing at the head of the

file and the other pointing to the end of the file, ensuring that the seek time required to

access either end of the disk-based queue remained constant. With the final version of

the web crawler submitted with this paper, our main test run was able to index 1480

Canadian political blogs over the course of 2 days, not including sites that were rejected

by the blog validator. This equates to approximately 30 blogs indexed per hour. While

this performance rate is not poor, we were hoping to increase the rate of crawl. Section 5

outlines potential improvements that we can make to increase the web crawler’s

efficiency.

 Accuracy is the second criterion in which we can evaluate the web crawler.

Indeed, for all other aspects of the system to work, we need to be confident that the sites

being indexed are actually blogs. In this regard, we were very successful in

implementing a validation module that more often than not, correctly identified web

pages as blogs. These blogs include those based on standardized templates (e.g.

http://calgarygrit.blogspot.com), and custom designed templates (e.g.

http://www.freethought.ca). Using our list of blogs crawled, as outlined in Appendix B, a

random sample of 50 blogs revealed the validator incorrectly identified 4 web pages as

Results 26

Media Monitoring Using Social Networks Wayne Chu (100280442)

blogs. In one case, there would be no way beyond natural language analysis to determine

that the site was not a blog. That gives us a success rate of 94%, which for our purposes

is more than adequate. Further random sampling returns similar results.

 For the most part, then, our web crawler was successful in giving us a good base

of blogs to analyze and search upon. Although there were difficulties in overcoming the

memory storage problems caused by the massive amount of links that accumulated over

days of crawling, we were able to crawl a significant portion of the blogosphere that we

were interested in.

4.2 Relevance of Search Results

 Given that we have an acceptable base of blogs to search from, we now turn to

evaluating the actual search results returned from BlogCrawler. In Section 1.3, we

discussed how generalized search queries were inadequate in narrowing the scope of the

returned results. Consequently, when we evaluate the effectiveness of our system, we

need to look at how relevant the returned results are when using very general keywords.

The main example used in this paper has been Canadian political blogs, so we continue to

use this example in our evaluation of BlogCrawler. In our sample index, we begin by

feeding two Canadian political sites (http://www.freethought.ca and

http://calgarygrit.blogspot.com) into the web crawler and then allow it to run for two

days. Afterwards, we rank the blogs using the two previously mentioned blogs to bias

the rankings, then run the Updater module to ensure that all the pages in the index are

recent. Finally, we perform various keyword searches using the BlogCrawler web

application. For the purpose of comparison, we will also examine the results returned by

Results 27

Media Monitoring Using Social Networks Wayne Chu (100280442)

the blog search engine Technorati (http://www.technorati.com) using the same keyword

query.

 Let us first examine a search on the keyword “budget”, which happens to be a

very general keyword that can apply to many situations. To satisfy the requirements of

the system, we would like to only receive blogs that discuss issues surrounding the

federal budget, an item prominent in the public consciousness at the time writing. More

specifically, on March 31, 2005, when the search was run, the main issue was the federal

government’s decision to include environmental protection measures in the bill approving

the budget. We therefore, would expect that the returned blogs would be discussing this

issue. After running a search on BlogCrawler for the keyword “budget”, we see that the

returned blogs do discuss this issue for the most part. In contrast, a keyword search for

“budget” on Technorati returns a plethora of blogs, with no consistent topic of

conversation. Figures 7 and 8 show the results of the two search engines, while Table 2

summarizes the main topics of the top 10 hits returned by both search engines. Searching

for another keyword, in this case “senate”, we now expect to retrieve blogs that have

information regarding the appointments to the Canadian Senate that occurred in March

2005. BlogCrawler again provides the results we expect as Table 3 demonstrates.

Hence, we can conclude that by feeding a specific type of site into the web crawler as the

root node in the social network, and following the links to other blogs, we are able to

restrict the search engine to a specific topic without needing to enter clarifying keywords

in the search query.

Results 28

Media Monitoring Using Social Networks Wayne Chu (100280442)

Figure 7: Results Returned by BlogCrawler

The results returned for the keyword “budget” predominantly discuss the same issues. Although we
have one false positive (Globe and Mail), the topic remains consistent with the other blogs.

Figure 8: Results Returned by Technorati

Results returned by Technorati (http://www.technorati.com) for the same keyword search.

Results 29

Media Monitoring Using Social Networks Wayne Chu (100280442)

Table 2: Topics of Top 10 Hits for “budget” Keyword Search

BlogCrawler Technorati
Blog Topic Blog Topic
Warren Kinsella Provincial budget Childe Roland Film
CalgaryGrit Federal budget Smoke Filled Doom Israel budget
Monte Solberg Federal budget Deficient Brain American budget
Globe and Mail Federal budget

(False positive)
Brewtown Politico State budget

My Blahg Federal budget Brewtown Politico American budget
Living in a Society Federal budget Mac Professionell (German language

post)
TDH Strategies Federal budget Oleg Dulin American budget
On the Fence American budget unLively Lives Personal diary
Freethought.ca International trade The Reminisce Mind Personal diary
Capitalist Pig vs.
Socialist Swine

Federal budget New Leadership Blog American election

BlogCrawler search performed for “budget” on 2005/03/31 at 2:45pm. Technorati search for
“budget” performed on 2005/03/31 at 2:47pm.

Table 3: Topics of Top 10 Hits for “senate” Keyword Search

BlogCrawler Technorati
Blog Topic Blog Topic
CalgaryGrit Canadian Senate Semidi American Senate
Peace, order, and good
government

American Senate Swing State Project American election

My Blahg Canadian Senate Gluetree.com Star Wars trailer
On the Fence Canadian Senate Dudes Drivel American Senate
Capitalist Pig vs.
Socialist Swine

Canadian Senate Dudes Drivel American Senate

Highway 401 Blog Canadian Senate Centerfield American Senate
Warren Kinsella Government audit Uncountable Spoons American Senate
Lotusland American Senate Blast Off! Obituary
BlogsCanada Canadian Senate Citrus Commando American election
Crawl Across the
Ocean

Canadian Senate LANL: The Real Story University/student
politics

BlogCrawler search performed for “senate” on 2005/03/31 at 3:38pm. Technorati search for “senate”
performed on 2005/03/31 at 3:38pm.

Results 30

Media Monitoring Using Social Networks Wayne Chu (100280442)

 We also discussed the idea that blogs returned from searches should also be

trustworthy. From our analysis of social networks, we concluded that if we rank blogs

based on the number of links to it, then we should be able to order our collection of blogs

by relative importance within the greater blogosphere. Since our search engine sorts hits

by the rank of a blog, this leaves us to show that the actual page ranks calculated by

BlogCrawler are accurate. Qualitatively, we see that the rankings calculated by

BlogCrawler, supplemented by the biasing discussed in Section 3.5 appear to reflect this

idea (see Appendix B for a sorted list of blogs). Indeed, the sites we deemed “expert”

blogs when calculating the page ranks all appear at or near the top of the ranked list of

blogs contained in the index. We also note that the problem of the BlogValidator

incorrectly identifying sites as blogs is overcome by the fact that those sites tend to have

low page ranks relative to actual blogs.

4.3 Overall Results

 Based on the results we have observed, we can safely conclude that BlogCrawler

is successful in implementing a solution demonstrating the properties of the blogosphere

and the power that social networks have. This is not to say that the system is perfect, as

will be discussed in the following section. However as a prototype, BlogCrawler was

able to provide us with fairly accurate and very relevant hits on our generalized keyword

queries. The system was also able to rank blogs according to our personal preferences as

defined by the blogs we used to bias the page rank calculations. As a basis for evaluating

the use of social networks within the application of searching, the software succeeded.

Potential Improvements 31

Media Monitoring Using Social Networks Wayne Chu (100280442)

5. POTENTIAL IMPROVEMENTS

 As a prototype, there are several improvements that can be made to BlogCrawler

in many aspects of the system. Firstly, changes to make the system more efficient come

to mind. These include speeding up the crawling process and making the system easier to

use. However, we also note improvements to expand the scope of the system. This

stems from the fact that the system was designed to be a personal search engine – that is,

the index of blogs stored and the rankings calculated for each page reflect the personal

tastes and biases of the individual to which the search results are geared towards.

Because of this, the system is not intended for use by many people at the same time,

unless they all happen to want search results from the same topic. Therefore, there are

issues related to how we can allow for expansion of BlogCrawler to accommodate a

wider scope for a wider audience.

 In its current state, the web crawler is designed to be run on one machine.

Although the crawler is multi-threaded, there still is a processing power limitation created

by the validation module. We would suggest then, that the crawler be designed to run on

many machines at the same time, parallelizing the crawling process. This is what many

commercial search engines do, in fact. To accomplish this, it would simply be a matter

of making the disk-based queue of links accessible by multiple machines over a network.

A suitable solution could be a database system, for example. Not much more needs to be

done, however, since the crawler is already designed to have multiple instances of it

running in memory.

 The validation module can also be improved. We stated earlier that although we

are very successful in correctly identifying blogs, we still occasionally receive false

Potential Improvements 32

Media Monitoring Using Social Networks Wayne Chu (100280442)

positives. Ultimately, the ideal solution would be to implement a natural language

analyzer to determine that a site was a blog and not, for example, a list of press releases

listed in descending order with extracts displayed on the page. The current design of the

blog validation module looks at web pages structurally, but does not analyze the language

being used in the page. Improving the module so that it can analyze both aspects of a

web page would go a long way in ensuring that false positives are kept to a minimum.

 Also in terms of efficiency, the process can be automated much more. Appendix

C outlines how to deploy and use the software. The system is currently designed so that

the user must manually begin the crawling, ranking, and updating processes. This was

done to accommodate the use of shell scripts and other scheduling systems, such as cron

jobs in the Linux operating system. As a personal search engine, however, greater steps

can be taken to making the system easier for users who are not skilled in server

administration, such as creating a graphical user interface, or eliminating the requirement

of a web server to access the search interface.

 In terms of expanding the system, BlogCrawler can be designed to accommodate

many social networks of blogs, not just the one we decided to focus on. Appendix B lists

two indexes of blogs we have crawled, however they are kept independent of each other.

Therefore, if the search engine is configured to search political blogs, then the end-user

can only search those sites. The system can be improved by allowing multiple networks

of blogs to coexist within the same index, and indeed, multiple sets of page rankings.

This allows the user to not only enter the keywords he or she wishes to look for, but also

to select the network of blogs to search and which personalized page rank vector to use.

Potential Improvements 33

Media Monitoring Using Social Networks Wayne Chu (100280442)

 By implementing these changes, we should be able to transform BlogCrawler

from a prototype designed to demonstrate the theoretical properties of social networks, to

a fully functional search engine that allows users to search for the information they want

efficiently.

Conclusion 34

Media Monitoring Using Social Networks Wayne Chu (100280442)

6. CONCLUSION

 As we noted in the opening of this paper, blogs are increasingly being used by a

variety of users in the field of media analysis. Blogs inherently express the thoughts of

the public at large, so the importance of knowing what is being said on the many blogs on

the internet is important. With this comes the requirement to be able to search for what

types of views we want in a more efficient fashion than is usually used. Indeed, unlike

searching for a particular piece of information, looking for a specific string of text, media

analysis requires people to look for a specific topic, but any type of viewpoint. Searches

like this require the use of more general keyword queries, which we showed earlier to be

cumbersome in terms of the amount of irrelevant sites the user would have to filter out.

Therefore, this paper ultimately needed to answer two questions. First, do blogs exhibit

properties of a social network? Secondly, can we use these properties to provide a level

of human intelligence to search results while keeping the actual searching process

simple? With BlogCrawler successfully implementing a solution that satisfies our

requirements we can conclude several things regarding blogs in particular and social

networks in general.

 First, we can conclude that the blogosphere does constitute a social network with

its interconnected set of hyperlinks and references. As our web crawler demonstrated,

given any blog, its set of outgoing links linked it to other blogs of the same type,

exhibiting the property of clustering, forming a community structure of blogs. The

cluster of blogs we crawled all tended to be focus on the same issues, even if the opinions

and viewpoints expressed on them differed. Moreover, we observed that the set of

hyperlinks from one blog to another exposed embedded trust relationships in the

Conclusion 35

Media Monitoring Using Social Networks Wayne Chu (100280442)

blogosphere, with the most important and trustworthy blogs being linked to the most.

Blogs clearly do constitute a social network.

 From our experimental search results, we also can conclude that using social

networks in a searching application can make the searching process much more efficient.

By limiting the search engine to a specific cluster of blogs, we see that effectively filter

out irrelevant blogs that we would normally have had to filter out using contextualizing

keywords. This also limits the numbers of blogs to only those with some level of

authority since blogs that no one reads or trust will hardly ever be linked to. Social

networks, then, add a modicum of human intelligence into the search process by

recognizing and leveraging the human efforts made when constructing the social network

in the form of linking to other blogs.

 Interestingly, the conclusions we have found through our analysis of the blog

social network also means that communities of blogs can be hierarchical. Blogs that

focus on Jazz music form their own social networks, but may fall under a more general

category of music blogs. Indeed, we would go so far as to say that the entire blog

community may be hierarchical – using ontologies and intelligent agents to analyze and

categorize individual blogs it is entirely possible to generate an overall blog network

topology [Heflin, 2004]. We have already seen in a simple manner how we can use the

inherent organization of social networks to aid us in implementing practical applications

for common problems. Knowledge of how the entire blogosphere is structured would,

therefore, bring many benefits.

 In all facets of life, we use social networks because we recognize that the

relationships we build with others are valuable and useful. In the world of Computer

Conclusion 36

Media Monitoring Using Social Networks Wayne Chu (100280442)

Science, social networks allow us to add a human element to networking problems by

recognizing the inherent organization structure social networks provide and realizing that

there is information imparted whenever we decide to connect one resource to another.

The common problem with searching is often that our search engine is not intelligent

enough to recognize what we want. As we have seen with the BlogCrawler project, by

using social networks, search engines can be intelligent enough to ensure that we are

always satisfied by what we get back.

References 37

Media Monitoring Using Social Networks Wayne Chu (100280442)

REFERENCES

Blom, Thom et. al. (1998) Writing a Web Crawler in the Java Programming Language.

Retrieved 12 February 2005 from
http://java.sun.com/developer/technicalArticles/ThirdParty/WebCrawler/.

Eiron, Nadav et. al. (2004) “Ranking the web frontier,” Proceedings of the 13th

international conference on World Wide Web, pp. 309-318.

Girvan, M. and Newman, M.E.J. (2002) “Community structure in social and biological

networks,” Proceedings of the National Academy of Sciences, Volume 99, Issue 12,
pp. 7821-7826.

Google (2005) Google. Retrieved 30 March 2005 from http://www.google.com.

Haveliwala, Taher H. (2002) “Topic-Sensitive PageRank,” Proceedings of the 11th

World Wide Web conference, pp. 517-526.

Heflin, Jeff (2004) OWL Web Ontology Language Use Cases and Requirements.

Retrieved 4 April 2005 from http://www.w3.org/TR/webont-req/.

Henzinger, Monika. (2000) “Link Analysis in Web Information Retrieval,” Bulletin of

the IEEE Computer Society Technical Committee on Data Engineering

Herring, Susan C. et. al. (2004) “Bridging the Gap: A Genre Analysis of Weblogs,”

Proceedings of the 37th Hawaii International Conference on System Sciences.

Herring, Susan C. et. al. (2005) “Conversations in the Blogosphere: Analysis ‘From the

Bottom Up’,” Proceedings of the the 38th Hawaii International Conference on System
Sciences.

Kleinberg, Jon (1999) “The Small-World Phenomenon: An Algorithmic Perspective,”

Proceedings of the 32nd Annual ACM Symposium on Theory of Computing, pp. 163-
170.

Krishnan, Sriram (2004) Writing a web crawler. Retrieved 15 March 2005 from

http://dotnetjunkies.com/WebLog/sriram/archive/2004/10/10/28253.aspx.

Lindahl, Charlie & Blount, Elise. (2003) “Weblogs: Simplifying Web Publishing,”

Computer, Volume 36, Issue 11, pp. 114 -116.

Nanno, Tomoyuki et. al. (2004) “Automatically Collecting, Monitoring, and Mining

Japanese Weblogs,” Proceedings of the 13th international World Wide Web
conference, pp. 320-321.

References 38

Media Monitoring Using Social Networks Wayne Chu (100280442)

Nardi, Bonnie A. et. al. (2004) “Blogging as Social Activity, or, Would You Let 900
Million People Read Your Diary?” Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, pp. 222-231.

Newman, M.E.J. (2001) “The structure of scientific collaboration networks,”

Proceedings of the National Academy of Sciences, Volume 98, Issue 2, pp. 404-409.

Slashdot (2005) About Slashdot. Retrieved 28 March 2005, from

http://www.slashdot.org/about.shtml.

Wellman, Barry (1996) “A Sociological Perspective on Collaborative Work and Virtual

Community,” Proceedings of the 1996 ACM SIGCPR/SIGMIS Conference, pp. 1-11.

Rodrigues, Maira Ribeiro et. al. (2003) “A System of Exchange Values to Support Social

Interactions in Artificial Societies,” Proceedings of the Second Annual International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 81-88.

Technorati (2005) Technorati: What’s happening on the Web right now. Retrieved 31

March 2005 from http://www.technorati.com.

Appendix A 39

Media Monitoring Using Social Networks Wayne Chu (100280442)

APPENDIX A – SOFTWARE USED IN BLOGCRAWLER

Programming Libraries

Java SDK 1.5.0 (http://java.sun.com)
Apache Lucene API 1.4.3 (http://lucene.apache.org)

Web Server

Apache Jakarta Tomcat JSP Server 5.0 (http://jakarta.apache.org/tomcat)

Appendix B 40

Media Monitoring Using Social Networks Wayne Chu (100280442)

APPENDIX B – BLOG LIST

The following tables are the blogs indexed by the web crawling module, using the

specified sites as the initial blogs in the queue.

Table B-1: Top 100 Canadian Political Blogs
Root Sites: http://www.freethought.ca, http://calgarygrit.blogspot.com

 Site Page Rank

1 Warren Kinsella 1.68E-05
2 CalgaryGrit 1.63E-05
3 Monte Solberg, Member of Parliament for Medicine Hat 1.60E-05
4 Peace, order and good government, eh? 1.48E-05
5 Blogs Canada : Canada's Blog Site 1.39E-05
6 weblog :: jordoncooper.com 7.68E-06
7 Revolutionary Moderation 7.61E-06
8 Monte Solberg, Member of Parliament for Medicine Hat 7.04E-06
9 Monte Solberg, Member of Parliament for Medicine Hat 7.04E-06

10 The Globe and Mail: Sparring officials to delay Kyoto proposals 6.76E-06
11 My Blahg 6.70E-06
12 sean incognito 6.53E-06
13 LIVING IN A SOCIETY 6.35E-06
14 TDH Strategies - Solutions For Everyone 6.14E-06
15 On the Fence (www.nestruck.com) 5.75E-06
16 BlueTory.ca 5.38E-06
17 Gauntlet.ca - the politics of .ca 5.27E-06
18 The Brock Press 5.02E-06
19 freethought.ca :: welcome 4.87E-06
20 The Reasonable Tory 4.68E-06
21 Capitalist Pig vs. Socialist Swine 4.51E-06
22 Highway 401 Blog 4.46E-06
23 Warren Kinsella 4.32E-06
24 Warren Kinsella 4.32E-06
25 Babbling Brooks 4.26E-06
26 lotusland - nervous politics from a laid-back city 4.26E-06
27 The Armchair Garbageman 4.23E-06
28 Just in From Cowtown 4.17E-06
29 PolSpy - Canadian Political Commentary and Satire 4.09E-06
30 The Heart of the Matter 4.06E-06
31 BlogsCanada: E-Group 4.04E-06
32 Crawl Across the Ocean 4.02E-06
33 Silly Conservatives. 3.90E-06
34 andrewcoyne.com 3.69E-06
35 John Murney's Blog 3.58E-06
36 daveberta 3.53E-06
37 CalgaryGrit: 06/13/2004 - 06/19/2004 3.52E-06

Appendix B 41

Media Monitoring Using Social Networks Wayne Chu (100280442)

38 CalgaryGrit: 03/20/2005 - 03/26/2005 3.52E-06
39 CalgaryGrit: 05/30/2004 - 06/05/2004 3.52E-06
40 CalgaryGrit: 02/06/2005 - 02/12/2005 3.52E-06
41 CalgaryGrit: 10/03/2004 - 10/09/2004 3.52E-06
42 CalgaryGrit: 10/31/2004 - 11/06/2004 3.52E-06
43 CalgaryGrit: 05/16/2004 - 05/22/2004 3.52E-06
44 CalgaryGrit: 01/30/2005 - 02/05/2005 3.52E-06
45 CalgaryGrit: 01/23/2005 - 01/29/2005 3.52E-06
46 CalgaryGrit: 06/27/2004 - 07/03/2004 3.52E-06
47 CalgaryGrit: 06/06/2004 - 06/12/2004 3.52E-06
48 CalgaryGrit: 06/20/2004 - 06/26/2004 3.52E-06
49 CalgaryGrit: 01/02/2005 - 01/08/2005 3.52E-06
50 CalgaryGrit: 01/09/2005 - 01/15/2005 3.52E-06
51 CalgaryGrit: 01/16/2005 - 01/22/2005 3.52E-06
52 CalgaryGrit: 02/13/2005 - 02/19/2005 3.52E-06
53 CalgaryGrit: 11/14/2004 - 11/20/2004 3.52E-06
54 CalgaryGrit: 02/20/2005 - 02/26/2005 3.52E-06
55 CalgaryGrit: 11/21/2004 - 11/27/2004 3.52E-06
56 CalgaryGrit: 05/23/2004 - 05/29/2004 3.52E-06
57 CalgaryGrit: 09/12/2004 - 09/18/2004 3.52E-06
58 Crawl Across the Ocean 3.48E-06
59 Sinister Thoughts 3.38E-06
60 Tilting at Windmills 3.17E-06
61 Paul Wolfowitz - Wikipedia, the free encyclopedia 3.12E-06
62 JimBobby Sez 3.00E-06
63 CathiefromCanada 2.84E-06
64 Voice in the Wilderness 2.78E-06

65
Peace, order and good government, eh?: Who are you and what have you done with Irwin
Cotler? 2.62E-06

66 Stageleft:. Life on the left side 2.58E-06
67 Dean Rushes the Vote 2.58E-06
68 Stephen Taylor - Conservative Party of Canada Pundit 2.52E-06
69 Daimnation! 2.16E-06
70 Eschaton 2.09E-06
71 The Upper Canadian 2.00E-06
72 Instapundit.com 1.99E-06
73 No More Shall I Roam 1.99E-06
74 The Dominion Daily Weblog 1.96E-06
75 BlogsCanada : Canadian Politics Sites 1.93E-06
76 BlogsCanada : Canadian Politics Sites 1.93E-06
77 What it takes to win... 1.91E-06
78 BlogsCanada: E-Group 1.88E-06
79 Citizens' Assembly on Electoral Reform - IMPROVING DEMOCRACY IN B.C. 1.88E-06
80 Trudeaupia 1.87E-06
81 VanRamblings.com - reflections from vancouver, british columbia, canada 1.87E-06
82 OCCAM'S CARBUNCLE 1.85E-06
83 www.AndrewSullivan.com - Daily Dish 1.81E-06
84 Peace, order and good government, eh?: The people's medium 1.80E-06
85 Peace, order and good government, eh?: The people's medium 1.80E-06
86 Path of the Paddle 1.77E-06
87 Babbling Brooks 1.77E-06

Appendix B 42

Media Monitoring Using Social Networks Wayne Chu (100280442)

88 Daily Kos 1.73E-06
89 Gen X at 40 1.72E-06
90 The Washington Monthly 1.68E-06
91 Ianism 1.63E-06
92 Gauntlet.ca - the politics of .ca: February 2005 1.59E-06
93 Gauntlet.ca - the politics of .ca: January 2005 1.59E-06
94 Gauntlet.ca - the politics of .ca: March 2005 1.59E-06
95 Sex, Drugs, and Rock and Roll 1.59E-06
96 Burkean Canuck 1.58E-06
97 Section 15 1.50E-06
98 The Armchair Garbageman 1.48E-06
99 sean incognito 1.47E-06

100 Footprints of a Gigantic Hound 1.46E-06

Table B-2: Top 100 Cathlolic Themed Blogs
Root Site: http://www.lovingit.co.uk

 Site Page Rank

1 And Why Not? 1.40E-04
2 And Why Not? 1.31E-04
3 And Why Not? 1.31E-04
4 And Why Not? 1.31E-04
5 And Why Not? 1.31E-04
6 And Why Not? 3.53E-05
7 Catholic and Loving it! 3.09E-05
8 Zosh's online journal 2.76E-05
9 (Untitled) 2.68E-05

10 (Untitled) 2.09E-05
11 Zosh's online journal 1.84E-05
12 (Untitled) 1.75E-05
13 Zosh's online journal 1.60E-05
14 Zosh's online journal 1.60E-05
15 (Untitled) 1.49E-05
16 Zosh's online journal 1.40E-05
17 Zosh's online journal 1.18E-05
18 A Saintly Salmagundi 1.13E-05
19 The Curt Jester 9.09E-06
20 Zosh's online journal 7.77E-06
21 Musings of a Catholic Convert 7.12E-06
22 Dob-log 6.89E-06
23 Zosh's online journal 5.92E-06
24 Catholic and Loving it! : Archive : March 2005 5.72E-06
25 Gen X Revert 5.66E-06
26 Catholic and Loving it! : Entries by Ella 5.59E-06
27 Catholic and Loving it! : Archive : Book Reviews 5.59E-06
28 Catholic and Loving it! : Archive : Game Reviews 5.59E-06
29 Catholic and Loving it! : Archive : Juggling Stuff 5.59E-06
30 Catholic and Loving it! : Archive : Software Reviews 5.59E-06
31 Catholic and Loving it! : Archive : Religious Stuff 5.59E-06

Appendix B 43

Media Monitoring Using Social Networks Wayne Chu (100280442)

32 Catholic and Loving it! : Archive : Film Reviews 5.59E-06
33 Catholic and Loving it! : Archive : April 2003 5.59E-06
34 Catholic and Loving it! : Archive : September 2003 5.59E-06
35 Catholic and Loving it! : Archive : May 2004 5.59E-06
36 Catholic and Loving it! : Archive : February 2004 5.59E-06
37 Zosh's online journal 4.78E-06
38 Zosh's online journal 3.90E-06
39 Bettnet - Musings from Domenico Bettinelli, Jr. 3.71E-06
40 Zosh's online journal 3.21E-06
41 JIMMY AKIN.ORG 2.75E-06
42 Zosh's online journal 2.68E-06
43 Meet Joe Convert - JoeConvert.com - Meet Joe Convert 2.34E-06
44 Why Catholic? 2.34E-06
45 Catholic and Loving it! : Archive : February 2005 2.30E-06
46 Catholic and Loving it! : Archive : February 2005 2.30E-06
47 Catholic and Loving it! : Archive : February 2005 2.30E-06
48 Catholic Light 1.96E-06
49 Danger! Falling Brainwaves 1.85E-06
50 Musings of a Catholic Convert 1.85E-06
51 Musings of a Catholic Convert 1.85E-06
52 Musings of a Catholic Convert 1.85E-06
53 Conversion of St. Paul: Today celebrates the co... 1.85E-06
54 Musings of a Catholic Convert 1.85E-06
55 Catholic Ragemonkey 1.55E-06
56 Disputations 1.44E-06
57 laodicea 1.39E-06
58 EveTushnet.com 1.36E-06
59 Dob-log 1.32E-06
60 Moleskine On A Bus 1.30E-06
61 De Fidei Oboedientia 1.26E-06
62 My Chcken Rantings 1.17E-06
63 Carpe Biem - Seize the Beer 1.17E-06
64 Oh Happy Day! 1.17E-06
65 Rosie's Blog 1.17E-06
66 Dob-log 1.17E-06
67 Dob-log 1.17E-06
68 Dob-log 1.17E-06
69 Dob-log 1.17E-06
70 Dob-log 1.17E-06
71 Dob-log 1.17E-06
72 Dob-log 1.17E-06
73 Dob-log 1.17E-06
74 Dob-log 1.17E-06
75 Dob-log 1.17E-06
76 Dob-log 1.17E-06
77 Dob-log 1.17E-06
78 Dob-log 1.17E-06
79 Dob-log 1.17E-06
80 Dob-log 1.17E-06
81 Dob-log 1.17E-06

Appendix B 44

Media Monitoring Using Social Networks Wayne Chu (100280442)

82 Dappled Things 1.12E-06
83 Irish Elk 1.11E-06
84 Fructus Ventris 1.10E-06
85 Thrown Back 1.09E-06
86 E-Pression 1.08E-06
87 Summa Mamas 1.05E-06
88 man with black hat 1.03E-06
89 Heart, Mind & Strength - Blog Admin Panel 1.01E-06
90 Veritas 9.89E-07
91 moleskinerie 9.80E-07
92 Insight Scoop 2004 9.77E-07
93 A brushpen, a bat, and other cool things. 9.55E-07
94 Musings of a Catholic Convert 9.45E-07
95 Sed Contra 9.31E-07
96 The Mighty Barrister - Catholic Commentary Online 8.81E-07
97 Catholic and Loving it! : Archive : January 2005 8.75E-07
98 Dyspeptic Mutterings 8.45E-07
99 Shrine of the Holy Whapping 8.28E-07

100 The Blog from the Core - America's Small-Town Weblog 8.21E-07

Appendix C 45

Media Monitoring Using Social Networks Wayne Chu (100280442)

APPENDIX C – DEPLOYMENT INSTRUCTIONS

Requirements

• Java Runtime Environment, version 1.5
• Apache Jakarta Tomcat Web Server, version 5.0

Installation Instructions

1. Copy the entire contents of the /blogcrawler/tomcat directory on the application
CD to the root directory of your Tomcat installation.

2. Copy the contents of the /blogcrawler/bin directory to the hard drive.
3. Edit the file “settings.jsp” and change the value of the LUCENE_DIR variable to

that the directory where you want the blog index to be located.

Usage

First, you must crawl the web to obtain a set of blogs to search from. To do this:

1. Change the directory to where you copied the files from /blogcrawler/bin
2. On the command line, start the crawler by typing the following:

> crawl [DATA_DIR] [MAX_DEPTH] [THREADS] [URL1] [URL2] ...

DATA_DIR: Directory to store the blog index
MAX_DEPTH: Maximum depth to crawl as an integer
THREADS: Number of threads to instantiate as an integer
URL: The initial list of sites to crawl

i.e. crawl c:\crawler\data 10 25 http://www.blogsite.com http://www.site.com

After the crawler finishes, generate the page ranks for the index by typing the following:

 > pagerank [DATA_DIR] [URL1] [URL2]

 Where URL1, URL2, etc. are the list of blogs to bias the rankings towards.

Finally, at any time, you may update the index with new content by typing the following:

 > update [DATA_DIR]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

