Binary Search Trees

COMP2402
Carleton University
Winter 2018
Binary Trees

• Rooted, acyclic graphs
 – Each node organized into a hierarchy
 • 1 Parent node
 • 2 Child nodes

• Reading:
 – ODS Section 6.1
Binary Search Trees

• Binary Tree with an invariant:
 \[\text{left.value} < \text{this.value} < \text{right.value} \]

• Reading:
 – ODS Section 6.2
BinarySearchTree

• add()/remove()/contains() operations depend on searching the tree

• Length of the search path in a perfectly balanced tree is $O(\log n)$

• Binary tree may be completely imbalanced, making the length $O(n)$
BinarySearchTree

Theorem:

A BinarySearchTree implements the SSet interface and supports the operations:

- **find(x)**/**add(x)**/**remove(x)** in O(n) time per operation.
Random Binary Search Trees

- Random permutation of elements put into a Binary Search Tree
 - Achieve balance through randomness

- Reading:
 - ODS Section 7.1
15! permutations of the elements \{1...15\}
- 1 permutation leads to the tree on the left
- 21964800 permutations lead to the tree on the right

Balanced trees are much more likely
RandomBinarySearchTree

Lemma:

The expected length of the search path in a RandomBinarySearchTree is at most $2\ln(n) + O(1)$.

Theorem:

A RandomBinarySearchTree can be constructed in $O(n \log n)$ time and supports the operation:

• $\text{find}(x)$ in $O(\log n)$ expected time.
Treaps

• Randomized BinarySearchTree
 – Stores (key, priority) pairs
 – BST on keys
 – Heap on priorities

• Reading:
 – ODS Section 7.2
Theorem:

A Treap implements the SSet interface and supports the operations:

- $\text{find}(x)/\text{add}(x)/\text{remove}(x)$ in $O(\log n)$ expected time per operation.
Scapegoat Trees

• Deterministically balanced BST
 – Height maintained within $O(\log n)$
 – Rebuilding operations

• Reading:
 – ODS Chapter 8
Binary Search Trees

<table>
<thead>
<tr>
<th>Operation</th>
<th>BST</th>
<th>RBST/Treaps</th>
<th>Scapegoat Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>find(x)</td>
<td>$O(n)$</td>
<td>$O(\log n)$ expected</td>
<td>$O(\log n)$ amortized</td>
</tr>
<tr>
<td>add(x)</td>
<td>$O(n)$</td>
<td>$O(\log n)$ expected</td>
<td>$O(\log n)$ amortized</td>
</tr>
<tr>
<td>remove(x)</td>
<td>$O(n)$</td>
<td>$O(\log n)$ expected</td>
<td>$O(\log n)$ amortized</td>
</tr>
</tbody>
</table>
Scapegoat Trees

Theorem:

A ScapegoatTree implements the SSet interface. Ignoring the cost of rebuilding() operations, a ScapegoatTree supports the operations:

- **find(x)/add(x)/remove(x)** in \(O(\log n)\) time per operation.

In addition, starting with an empty ScapegoatTree, any sequence of \(m\) add(x) and remove(x) operations results in a total of \(O(m \log n)\) time spent during all calls to rebuild().
2-4 Trees

• Each node has 2, 3, or 4 children
• Every leaf has the same depth
• Basis for RedBlack trees

• Reading:
 – ODS Section 9.1
 – Data Struc. & Alg. Section 11.5
Sorted Sets

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Runtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skiplist</td>
<td>$O(\log n)$ expected</td>
</tr>
<tr>
<td>Treaps</td>
<td>$O(\log n)$ expected</td>
</tr>
<tr>
<td>Scapegoat Trees</td>
<td>$O(\log n)$ amortized</td>
</tr>
<tr>
<td>2-4/RedBlack Trees</td>
<td>$O(\log n)$ worst case</td>
</tr>
</tbody>
</table>
RedBlack Trees

• Implementation of 2-4 Trees using only binary nodes

• Height is $\leq 2\log(n)$

• Reading:
 – ODS Section 9.2
 – Data Struc. & Alg. Section 11.6
RedBlack Tree Insertion

• **add(x):**
 – Find the external node to put x
 – Insert x, as a new **red** node
 – 3 cases...

• **Case 0: x's parent is black**
 – Complete.

![RedBlack Tree Insertion Diagram](image)
RedBlack Tree Insertion

• Case 1: red-red w/ black uncle
 – Label nodes:
 • x: new node (red)
 • y: x's parent (red)
 • z: x's grandparent (black)
 – 4 scenarios...
RedBlack Tree Insertion

• Case 1 solution: restructure 3 nodes
 – Order x, y, z according to in-order traversal
 – Label them a, b, c
 – Structure/colour into tree as follows
RedBlack Tree Insertion

• Case 2: **red-red w/ red uncle**
 – Corresponds to overflow in 2-4 tree node
 • Recolour accordingly
 • Repeat up the tree if necessary
RedBlack Trees

Theorem:

A **RedBlackTree** implements the **SSet** interface. A RedBlackTree supports the operations:

- **find(x)/add(x)/remove(x)** in **O(logn)** time per operation.