
Carleton University
School of Computer Science
COMP4905 Honours Project

Remote Tracking of a GPS Tracking Device
with Google Maps via GSM Cellular Networks
By: Michael Nemat

Supervised By: Dr. Michel Barbeau
 School of Computer Science
 Carleton University

Submitted on July 30, 2010

1

1

Abstract

In the past few years, there has been a growing trend of incorporating geo-location technologies
with mobile communication devices. Recently, this growth has been spurred by social
networking and location-aware software applications. The demand for real-time geo-location
tracking of assets and persons has been growing while the costs associated with these
technologies have been dropping. As a result, many corporations, even individuals, are using
these technologies in a cost-effective fashion to achieve goals which may have been too complex
or prohibitively expensive to achieve in the past. This project will demonstrate how to build an
end-to-end solution for near-real-time geo-location tracking by integrating a wide variety of
readily available components and some custom hardware and software into a purpose-built geo-
location platform. This solution, as opposed to purchasing an end-to-end product commercially,
is much more desirable, both from a cost and security perspective.

2

2

Table Of Contents
1 Background and Objectives 5

2 Tracking Device Hardware Design 6

2.1! Hardware Architecture! 6

2.2! Circuit Board Design and Fabrication! 7

2.3! Breakout Boards and Component Selection! 12

2.4! Bill of Materials! 13

3 Tracking Device Hardware Assembly 15

3.1! Assembly Procedure! 15

3.2! Assembly Pictures! 17

3.3! Design Errors and Workarounds! 29

4 Tracking Device Software Development 30

4.1! Software Architecture! 30

4.2! Development Environment! 30

4.3! Software Functionality! 31

4.4! Power-Saving Considerations! 34

4.5 ! Platform Limitations! 34

4.6! Atmel Microcontroller Software! 34

5 Tracking Device Software Testing 35

5.1 No GSM Signal at Initialization! 35

5.2 No GPS Signal at Initialization! 36

5.3 Normal Initialization and Successful Run Loops! 36

5.4 Unexpected Loss of GPS Signal During Run Loop ! 37

5.5 Unexpected Loss of GSM Signal During Run Loop ! 38

3

3

6 Application Server Development 39

7 Google Maps Front-End Service 41

7.1 Login! 41

7.2 View! 41

7.3 Database Schema! 43

8 Usage Overview and Procedures 44

9 System Testing and Performance Results 51

9.1 Battery Life and Time to Transmit! 51

9.2 Accuracy Testing! 51

10 Lessons Learned 67

11 Potential Improvements 68

12 Conclusion 69

13 Relation and Contribution to Computer Science 70

14 References 71

Appendix A - Submitted Files 72

4

4

1 Background and Objectives

An end-to-end commercial off-the-shelf tracking solution can be defined a product that consists
of a hardware device and a software solution for viewing the location of that device in near-real-
time using some sort of a service (web-based, etc...). Most often, these services are subscription
based, with a monthly fee or licensing fee associated to their use. Additionally, these services are
often closed and proprietary in nature, making them extremely undesirable for sensitive
applications due to security and privacy concerns.

Typical applications of these technologies can include:
• Tracking a fleet of delivery vehicles to optimize re-routes, and optimal distribution of

new pickup/delivery requests
• Tracking a fleet of public transportation vehicles to report accurate and dynamic stop

schedules to passengers as opposed to static printed time-tables
• Tracking rental vehicles to ensure that policies regarding regional use and distance

are followed
• Parents tracking the location of their children to/from school
• Parents tracking the location of their children as new drivers
• Covert tracking of business assets (company vehicles, domestic shipments)
• Covert tracking of human targets by law enforcement (either by planting a tracking

device on or inside a target’s vehicle or in an accessory carried by the target)
• Tracking for personal statistics (exercise related: bike rides, walking distance, etc...)
• Personal asset tracking (tracking personal vehicle in case of theft, etc...)

The objective of this project is to demonstrate how to develop both hardware and software
solutions for near-real-time remote geo-location using GPS geo-location technology and GSM
cellular mobile communication networks. In addition, this project will focus on approaching
these issues with the primary objective of reducing the complexity of incorporating these
technologies into a functional product by making use of existing technologies, many of which
are open-source and/or free. As a result, persons or organizations interested in these solutions can
develop their own products without any of the licensing or usage fees of similar commercial off-
the-shelf technologies. Similarly, due to the often sensitive nature of the use of these
technologies (privacy and/or covert monitoring), it is in one’s own advantage from a security
perspective to develop their own solution with as much open-source technology as possible to
ensure that there is no unwanted, malicious, or otherwise undesirable functionality in the product
which could compromise the successful application of the technology. This project will outline
how to build a self-contained GPS tracking device capable of reporting its position to a remote
server using GSM cellular networks and GPRS. The remote server will make use of the Google
Maps API to generate a real-time view of this data. This data will be stored in an open format
using an SQL database to simplify the task of developing an application which makes use of
location information (whether it be for viewing a location on the map, generating statistics, etc..).

5

5

2 Tracking Device Hardware Design

This project will take an informal approach to hardware design due to skill and cost constraints.
The only component that will be formally designed is the circuit board which facilitates
integrating the various components. The enclosure (plastic case) will be an off-the-shelf product
and modified in an ad-hoc fashion to fit any antennas, switches, or mounts as required.

2.1 Hardware Architecture

6

6

2.2 Circuit Board Design and Fabrication

In order for this project to fit in a small enclosure, it was necessary to build a custom circuit
board to do a variety of things. This board offers the following facilities and all of the supporting
circuity for them:

• USB connector (data lines to USB/Serial chip, power line to breakout pin for battery
charge boards)

• Voltage regulation for powering GPS receiver (3.3V), UART I/O reference voltage
(2.8V), load sharing voltage (4.3V)

• Indicator LEDs (Status LED, USB I/O LEDs)
• SIM Card breakout
• Atmel Microcontroller for controlling GSM Module initialization
• Voltage divider for GPS UART (3.3V) to GSM Module UART (2.8V)

The circuit board was designed in EAGLE 5.6.0 Light [1]. The first generation board makes
minimal use of surface mount components and utilizes a variety of secondary breakout boards
for the GSM module, charge controllers, etc... This project will be built with the first generation
board. A second generation surface-mount board with everything integrated was designed but
never fabricated, but the schematic will be shown below as a system electrical schematic
showing the entire system interconnected titled EAGLE System Schematic. This system
schematic also makes use of some improvements like a load switch suggested throughout this
report.

7

7

EAGLE Board Schematic Design:

8

8

EAGLE PCB Layout for Fabrication:

9

9

10

10

The design “PCB Layout for Fabrication” was sent to BatchPCB for fabrication
(BatchPCB.com). BatchPCB produces circuit boards in quantities as little as one piece for a very
reasonable price [2]. Turnaround time is roughly one month, sometimes less.

11

11

2.3 Breakout Boards and Component Selection

Several of the components referred to in the above sections are not located on the custom circuit
board but are rather located on secondary breakout boards (separate circuit boards with pin
headers for wiring). In fact, due to either manufacturing error or assembly error, the FT232R
USB to serial conversion chip located on the custom circuit board was non-functional and thus is
also located on a breakout board in the assembled product.

The following breakout boards are used in this project:

• 2x Microchip MCP73871EV Li-Ion Battery Charging and System Load Sharing
boards.
• Used for charging the two lithium ion batteries and powering the system from

USB while not charging
• Two were required because the current peak requirement of the GSM modem can

slightly exceed the maximum current output of a single board
• Sparkfun GE865 Breakout board

• Contains a Telit GE865 GSM module and allows access to every pin via pin
headers

• Also has a surface mount U.Fl antenna jack for the GSM antenna
• Sparkfun FTDI FT232RL USB to Serial breakout board

• Has a USB mini-B connector and the FT232RL chip
• DIYDrones GS406/407 Breakout board

• Converts the surface mount connector on the GPS unit to pin headers for easy
access

In addition to the breakout boards, this project contains several large commercially available
products as well as various smaller components (LEDs, resistors, etc described in the bill of
materials):

• 2x Union Battery 2000mAh Lithium-Polymer batteries
• GS407 GPS Receiver

• This is a generic GPS receiver which combines a Sarantel GeoHelix antenna with a
U-Blox 5 GPS chipset. The Sarantel GeoHelix antenna is suited to projects where the
antenna is not guaranteed to face the sky, as opposed to typical ceramic GPS
antennas. This made the GS407 receiver very desirable.

• The U-Blox 5 chipset also supports software configuration of various GPS functions
and output formats which simplifies the work required to implement it into a project
(especially from a software perspective). It also supports AGPS.

• Atmel ATMega168 microcontroller with arduino boot loader
• Microcontroller that can be programmed with the Arduino development environment.

Very straightforward to incorporate into a project.

12

12

2.4 Bill of Materials

Item Store Price
DIYDrones uBlox GS406/GS407 breakout adapter board diydrones 19.50

Custom Circuit Board manufactured by BatchPCB batchpcb 25.04

PRT-00587 USB miniB SMD Connector sparkfun 1.50

2x PRT-08483 Polymer Lithium Ion Batteries - 2000mAh sparkfun 33.90

COM-08532 Basic LED - Green sparkfun 0.35

CEL-00675 Quad-band Cellular Duck Antenna SMA sparkfun 7.95

COM-00521 Common BJT Transistors - NPN 2N3904 sparkfun 0.75

PRT-00548 SIM Socket sparkfun 0.95

COM-07844 Triple Output LED RGB - SMD sparkfun 2.25

WRL-09145 Interface Cable SMA to U.FL sparkfun 4.95

GPS-09436 50 Channel GS407 Helical GPS Receiver sparkfun 89.95

CEL-09297 GE865 Breakout sparkfun 99.95

COM-00536 Crystal 16MHz sparkfun 1.50

DEV-08846 ATmega168 with Arduino Bootloader sparkfun 4.95

BOB-00718 Breakout Board for FT232RL USB to Serial sparkfun 14.95

490-3810-ND 10x 0.1uF Radial Ceramic Capacitor digikey 1.52

LP3990MF-2.8CT-ND Micrel 2.8VDC LDO Regulator digikey 1.31

445-4804-ND 5x 1.0uF Radial Ceramic Capacitor digikey 1.35

1.0KXBK-ND 5x 1.0KOhm 1/4W 1% Metal Film Resistor digikey 0.60

490-3678-ND 2x 10pF Radial Ceramic Capacitor digikey 0.80

490-3725-ND 4x 33pF Radial Ceramic Capacitor digikey 1.56

445-2882-ND 5x 22uF Radial Ceramic Capacitor digikey 2.98

478-1847-ND 100uF 20V 10% Radial Tantalum Capacitor digikey 9.17

10.0KXBK-ND 5x 10.0KOhm 1.4W 1% Metal Film Resistor digikey 0.60

330QBK-ND 5x 330 Ohm 1/4W 5% Carbon Film Resistor digikey 0.36

47KQBK-ND 5x 47KOhm 1/4W 5% Carbon Film Resistor digikey 0.36

LP3990MF-3.3CT-ND Micrel 3.3VDC LDO Regulator digikey 1.31

13

13

Item Store Price
BC337-ND NPN Transistor digikey 0.44

679-1886-ND Mini Slide Switch digikey 4.24

377-1651-ND Plastic Box 3.62x2.60x1.10 digikey 3.29

1.1KQBK-ND 5x 1.1KOhm 1/4W 5% Carbon Film Resistor digikey 0.36

2x MCP73871EV-ND Breakout board for MCP73871 charge chip digikey 22.26

576-1281-1-ND Micrel Adjustable 500mA DC LDO Regulator digikey 1.93

CMF8.66KHFCT-ND 2x 8.66KOhm 1% 1/2W Resistor digikey 0.38

P22.0KCACT-ND 10x 22.0KOhm 1% 1/4W Metal Film Resistor digikey 1.94

Total: $360.20$360.20

14

14

3 Tracking Device Hardware Assembly

3.1 Assembly Procedure

Building the hardware device assumed the availability of a number of tools: multimeter,
soldering iron(s), illuminated loup, Arduino, kynar wire, 16/18 gauge stranded copper wire,
electrical tape, hot glue and glue gun, double sided tape, tweezers, pliers, screwdrivers, wire
cutters, and a USB mini-B cable.

The assembly procedure can be outlined generally as follows:

1. Tape batteries together
2. Tape charging boards on to the top of one of the batteries
3. Solder battery connections to respective inputs on the charging boards
4. Connect CHARGE_ENABLE pads on charging boards to Voltage Input pins (Kynar

wire)
5. Connect Voltage Input and Voltage Output pads on charging boards together (wire the

input and outputs in parallel)
6. Set DIP switches on charging boards to low-current USB charging (5V @ 100mA

each)
7. Program microcontroller using Arduino
8. Solder components to circuit board
9. Insert SIM card in to SIM card slot
10. Use a dremel to remove protrusions from case (if any exist) so that it is flat
11. Cut holes for antennas, LEDs, and switches in the casing using a dremel
12. Mount batteries and charging boards with double-sided tape in to casing
13. Attach GS407 Breakout board to GS407 GPS using hot glue
14. Solder TX/RX/VIN/GND wires to GPS breakout board
15. Hot glue GPS receiver into case
16. Mount GSM Antenna jack (nut and bolt) to case (hot glue in place as well)
17. Mount power switch to case (hot glue).
18. Connect GPS receiver to ardunio USB/Serial adapter pins to interface with

development PC for software configuration and testing (optional step)
19. Connect bench power supply or some other 5V source to voltage input pins on

charging boards to test and charge batteries
20. Solder wires from voltage output pins of charging boards to power switch
21. Solder wires from power switch to voltage input pin of the GE865 breakout board
22. Solder tantalum capacitor between voltage input and ground pin of the GE865

breakout board
23. Connect serial pins of GE865 board to arduino USB/serial adapter pins for testing
24. Connect SIM card pins, status LED pin, and power on pin from custom PCB to

GE865 board

15

15

25. Connect power pins from custom PCB to power switch
26. Connect GPS power pins to custom PCB and TX/RX pins to GE865 board
27. Connect serial I/O pins from USB/Serial (FT232) breakout board to GE865 module
28. Connect GPS TX/RX pins to GE865 module
29. Connect USB 5V pin from FT232 Breakout board to voltage input pins on charging

boards
30. Connect GSM antenna to antenna jack on GE865 breakout board
31. Test every subcomponent and communications to ensure functionality
32. Tape and glue all remaining components in place and close/seal the case

16

16

3.2 Assembly Pictures

Battery and charging boards taped together.

Testing the charging board with a bench power supply

17

17

Dremel rotary tool used for flattening mounting posts in the case.

Top half of the plastic case. Rough areas of plastic are where protrusions were removed.

18

18

GPS Receiver and connecter breakout board glued in to position.

GSM SMA to U.Fl jack and cable mounted to case.

19

19

GSM antenna connected to jack. Power switch position at the back of the case (white object in
the picture with the 3 pins).

Power switch glued in to position.

20

20

Battery and charging boards positioned inside the case.

Ground wire of GPS receiver connected to voltage output on the charging boards.

21

21

Telit GE865 breakout board with power wires and tantalum capacitor connected. Serial RX/TX
pins connected to USB/Serial pins on Arduino development board (with USB cable connected).

Multimeter, copper wire, and various tools used in the project.

22

22

Testing both charging boards at once while mounted in the case.

Circuit board fabricated by BatchPCB

23

23

Circuit board assembly started. Various capacitors, resistors, and USB connector mounted.

All components (sans FT232R chip) soldered to circuit board. Circuit board mounted on top of
charging boards and battery. Flux pen, soldering wick, and kynar wire reel also present.

24

24

SIM card inserted into SIM card slot. Power wires connected. SIM card wires connected.

Beginning to align components together inside the case. (Telit GE865 turned upside down).

25

25

FT232R USB to Serial UART breakout breakout board with pins soldered and mounted to top of
the case. USB mini cable connected.

All wiring is complete. LEDs from charging board are visibly shining through the custom PCB.

26

26

Completed and fully assembled product.

Comparison in thickness between device and iPhone 3G.

27

27

Close-up shot completed device.

28

28

3.3 Design Errors and Workarounds

There were several design errors and workarounds.

1) GE865 maximum voltage is 4.3V, but system load sharing controller outputs 5V during
charging. The solution was to refine the PCB design and add a third voltage regulator to
regulate USB incoming voltage to 4.2V (which is the minimum voltage to charge the battery,
but it still works)

2) GE865 does not start up if there is traffic on UART2 when as it is starting up with input
voltages above 4V (rough estimate). This is documented in the data-sheet but is very unclear.
The workaround to this is to disconnect the USB cable while starting the device. The GPS is
constantly sending data on UART2. The solution of adding a load switch tied to a GPIO pin of
the GE865 to be triggered after startup to power the GPS could be added into future PCB
designs, but the workaround will suffice for the time being.

3) There was a short between ground and 2.8V out on the PCB. Clearly a design error. This was
resolved in EAGLE and fixed in a future revision of the PCB (original rev was 3, final
revision is 6).

4) The microchip battery charge controllers are powered in a way so that they are only active
while the USB cable is connected, meaning that it does not show a low battery warning when
running on battery. The solution could most likely be discovered by further research on the
component, but is not needed for the scope of this report.

5) Measurements of the components were inaccurate (thickness) and the plastic case does not
close completely. This is a human error but was not resolved due to cost constraints. Some
electrical tape to seal the enclosure was an acceptable workaround.

29

29

4 Tracking Device Software Development

4.1 Software Architecture

The software on the tracking device is written in python and runs on the python interpreter on the
GE865. Its purpose is to read and parse GPS data from the GPS receiver over the serial port, and
to send that information to a remote server. It also performs some basic computation like
calculating whether the tracking device is in motion, as to prevent unnecessary updates and to
filter out errant GPS fixes. It is also responsible for any sort of power saving, and is capable of
putting the tracking device to sleep. For the purpose of this project, the software is developed
only to the point where it is capable of pseudo-realtime tracking with updates approximately
every 5 seconds. Faster and slower update times will not be developed.

The programming paradigm used is procedural programming. There is minimal use of objects in
the application. There is no end state, thus the application loops continuously until powered off.
Aside from transmitting GPS co-ordinates, it is also responsible for initializing the GSM modem
and configuring the GPRS context. The application is capable of basic recovery, and can re-
initialize the connection if an error during data transmission is detected.

4.2 Development Environment

The development tools used for the tracking device software are:

• PythonWin for writing Python code for the module
• U-blox u-center for configuring GPS output format
• Round Solutions GSM terminal (serial terminal program with many predefined

macros, used for uploading scripts to the GE865 module and testing)
• Netcat, used for testing network communication received from tracking device
• PuTTY, used as a serial console for long-term monitoring and logging

These tools are all freely available for Windows (Netcat was used in Linux, though it likely
exists for Windows as well).

30

30

4.3 Software Functionality

The software begins by retrieving and storing the IMEI number with the command AT+CGSN.
This number is used to identify the device in communications to the server. It then waits for a
registration to a cellular network by waiting on valid output from AT+CREG. It then initializes
the GPRS context using T-Mobile’s APN. Once it has a valid IP address, it will establish a either
a UDP or TCP socket to the server, gpstrackeronline.com. The tracking device can either make
use of the Java UDP server or the PHP TCP (HTTP) server. For the purpose of this report, we
will be using the UDP server for all testing and evaluations.

Once there is a connection to the server, the software will go into a run loop where it sleeps for 4
seconds after every iteration. In each iteration, it will 1) Verify that it still has a connection to the
server and re-initialize itself it it doesn’t. 2) Parse the incoming data from the GPS into an array.
3) If the GPS string is valid (has a GPS fix), it will prepare an output string and send it to the
server.

There are also pieces of logic that handle deciding whether the GPS tracker is moving or not, and
various pieces of code dealing with changing at the rate which the LED flashes (as a status
indicator) and a watchdog timer for rebooting the device in case of a fatal glitch.

A valid GPS string from the receiver is a proprietary u-blox message of type UBX,00. The
message structure is $PUBX,
00,hhmmss.ss,Latitude,N,Longitude,E,AltRef,NavStat,Hacc,Vacc,SOG,COG,Vvel,ageC,HDOP,
VDOP,TDOP ,GU,RU,DR,*cs<CR><LF>. This is the data that we receive and parse from the
receiver, paying close attention to ‘NavStat’ which tells us if the receiver has a fix, or not.

31

31

32

32

The string sent from the tracking device to the server is formatted as follows:

IMEI,LAT,E/W,LON,N/
S,SATS,HACC,VACC,ALT,GROUNDSPEED,BEARING,VSPEED,MODE

Specifically, these correspond to the following:

IMEI = IMEI Number of tracking device
LAT = Latitude
E/W = East/West (latitude)
LON = Longitude
N/S = North/South (longitude)
SATS = Number of satellites used in GPS fix
HACC = Horizontal accuracy
VACC = Vertical accuracy
ALT = Altitude
GROUNDSPEED = Ground speed (km/h)
BEARING = Direction (degrees)
VSPEED = Vertical speed
MODE = Tracking device movement status: Stationary (ST), Moving (MV), No Change from
last update (NC), Update last status with a more accurate fix (UT)

33

33

4.4 Power-Saving Considerations

The primary power-saving consideration that has been made is to sleep the device every 4
seconds and to use UDP instead of TCP. A future enhancement could have been powering the
GPS receiver via a load switch and being able to toggle power to it via a GPIO pin. That way the
device would be able to efficiently support extended tracking operations, for example, by
powering itself down (including the GPS) for 20 minutes at a time instead of merely a few
seconds.

4.5 Platform Limitations

There are two primary limitations with this platform. Firstly, it does not support floating point
math. This is a significant limitation because GPS co-ordinates by nature contain floating
decimal points. As well, various values like speed, accuracy, etc contain floating-point decimals.
Workarounds were found to avoid floating-point math.

The second limitation is memory. There is a limit to string variable sizes which make it
prohibitively difficult to do significantly large I/O from the network. The APIs do not lend
themselves well to reading data into a buffer or an array, further complicating any large data
transfer. This made it prohibitively difficult to implement AGPS (augmented GPS, where the
position/map of the GPS satellites and basic timing information is read from a network server to
greatly decrease the amount of time it takes to get a GPS fix).

4.6 Atmel Microcontroller Software

The software for the Atmel microcontroller is very straight forward. Originally this device was
going to support more complex features like interrupts to detect if the GE865 module had
abnormally shut down to reboot it, etc. However, the purpose of this device is very simple in the
final implementation. On startup, it pulls the GE865 PWR_ON pin HIGH for 3 seconds to turn
on the device [3]. It then shuts itself off [7].

34

34

5 Tracking Device Software Testing

There are a variety of conditions which were tested. The following are various conditions which
were tested, including brief descriptions and log excerpts.

5.1 No GSM Signal at Initialization

Script starts...

AT#EXECSCR
OK
TEST5

One or more loops of ‘waiting for GSM CREG’

Waiting for GSM CREG

When successful:

+CREG: 0,5

OK

Usually followed by a few of these:

ERROR SETTING GPRS CONTEXT
CREG:
+CREG: 0,5

Finally:

OK
UDP_CONNECTED

35

35

5.2 No GPS Signal at Initialization

Infinite repetitions of similar strings to the following, until the status ‘NF’ which stands for
No Fix changes to something else:

['$PUBX', '00', '000154.00', '0000.00000', 'N', '00000.00000', 'E', '0.000', 'NF', '6495192',
'4592794', '0.000', '0.00', '0.000', '', '99.99', '99.99', '99.99', '0', '0', '0*28\015']
2
21
['$PUBX', '00', '000159.00', '0000.00000', 'N', '00000.00000', 'E', '0.000', 'NF', '6495192',
'4592794', '0.000', '0.00', '0.000', '', '99.99', '99.99', '99.99', '0', '0', '0*25\015']
2
21
['$PUBX', '00', '000204.00', '0000.00000', 'N', '00000.00000', 'E', '0.000', 'NF', '6495192',
'4592794', '0.000', '0.00', '0.000', '', '99.99', '99.99', '99.99', '0', '0', '0*2E\015']
2
21

5.3 Normal Initialization and Successful Run Loops

Script starts..

AT#EXECSCR
OK
TEST5

GSM connection

Waiting for GSM CREG

+CREG: 0,5

OK

OK
UDP_CONNECTED

Valid GPS Signal..

$PUBX,00,234218.00,4521.37123,N,07539.09890,W,
112.802,G3,51,15,1.890,0.00,0.000,,13.33,7.16,13.43,5,0,0*70

36

36

Parsed GPS String into array...
['$PUBX', '00', '234218.00', '4521.37123', 'N', '07539.09890', 'W', '112.802', 'G3', '51', '15',
'1.890', '0.00', '0.000', '', '13.33', '7.16', '13.43', '5', '0', '0*70\015']
0
Output string to server...
357938020050134,4521.37123,N,07539.09890,W,5,51,15,112.802,1.890,0.00,0.000,ST
Going to sleep...
LOOP PASS
$PUBX,00,234235.00,4521.39570,N,07539.08893,W,
121.230,G3,48,13,2.263,0.00,0.000,,13.54,7.27,13.65,5,0,0*76
['$PUBX', '00', '234235.00', '4521.39570', 'N', '07539.08893', 'W', '121.230', 'G3', '48', '13',
'2.263', '0.00', '0.000', '', '13.54', '7.27', '13.65', '5', '0', '0*76\015']
0
357938020050134,4521.39570,N,07539.08893,W,5,48,13,121.230,2.263,0.00,0.000,NC
LOOP PASS

5.4 Unexpected Loss of GPS Signal During Run Loop

Good signal.....
357938020050134,4521.37926,N,07539.06044,W,5,47,12,159.601,2.370,0.00,0.000,NC
LOOP PASS
$PUBX,00,234304.00,4521.37619,N,07539.06744,W,169.462,NF,
67,13,9.839,0.00,0.000,,72.92,19.82,73.15,5,0,0*32
['$PUBX', '00', '234304.00', '4521.37619', 'N', '07539.06744', 'W', '169.462', 'NF', '67', '13',
'9.839', '0.00', '0.000', '', '72.92', '19.82', '73.15', '5', '0', '0*32\015']
0
Signal lost....
['$PUBX', '00', '234310.00', '4521.37493', 'N', '07539.09644', 'W', '173.441', 'NF', '91', '13',
'16.294', '0.00', '0.001', '', '73.67', '20.05', '73.90', '5', '0', '0*0B\015']
2
21
Back to good signal....
$PUBX,00,234243.00,4521.38176,N,07539.07890,W,
133.087,G3,46,12,3.847,0.00,0.000,,13.64,7.32,13.76,5,0,0*72
['$PUBX', '00', '234243.00', '4521.38176', 'N', '07539.07890', 'W', '133.087', 'G3', '46', '12',
'3.847', '0.00', '0.000', '', '13.64', '7.32', '13.76', '5', '0', '0*72\015']
0
357938020050134,4521.38176,N,07539.07890,W,5,46,12,133.087,3.847,0.00,0.000,MV
LOOP PASS

37

37

5.5 Unexpected Loss of GSM Signal During Run Loop

21
['$PUBX', '00', '234213.00', '4521.37270', 'N', '07539.10840', 'W', '102.558', 'G3', '53', '15',
'5.737', '0.00', '0.000', '', '13.26', '7.13', '13.36', '5', '0', '0*7F\015']
2
21
357938020050134,4521.37270,N,07539.10840,W,5,53,15,102.558,5.737,0.00,0.000,MV
LOOP PASS
ERROR ESTABLISHING SSEND CONTEXT
CREG:
+CREG: 0,5

OK

ERROR WITH GPRS INIT
CREG:
+CREG: 0,5

OK

$PUBX,00,234218.00,4521.37123,N,07539.09890,W,
112.802,G3,51,15,1.890,0.00,0.000,,13.33,7.16,13.43,5,0,0*70
['$PUBX', '00', '234218.00', '4521.37123', 'N', '07539.09890', 'W', '112.802', 'G3', '51', '15',
'1.890', '0.00', '0.000', '', '13.33', '7.16', '13.43', '5', '0', '0*70\015']
0
357938020050134,4521.37123,N,07539.09890,W,5,51,15,112.802,1.890,0.00,0.000,ST
LOOP PASS

38

38

6 Application Server Development

There are two application servers. The primary server, used throughout this report and during
testing, is the Java UDP server. This server receives strings from tracking device(s) over a raw
UDP port and records them in a MySQL database with some manipulation. The PHP server
receives strings as POST data from the tracking device in an HTTP request and performs the
exact same manipulation and recording into a MySQL database as the Java version. The only
difference is the transport layer. If the project was to be expanded to allow two-way
communications, it would be easier to develop that in the PHP server. However, the UDP server
been found to be much more reliable, due to the inherent complexities in maintaining a reliable
TCP connection on 2G cellular networks. The application can be accessed via REDACTED at
the server: REDACTED. The username is REDACTED and the password is REDACTED.
Once connected, the command ‘screen -r’ will display the server console. The MySQL database
can be accessed via REDACTED at REDACTED . The username is REDACTED and the
password is REDACTED

The only logic per se in the servers is the math required to convert GPS co-ordinates into
standard decimal latitudes and longitudes.

For example, here is a set of GPS co-ordinates sent from the tracking device for a location in
Ottawa, Ontario. “4521.4014,N,07539.0934,W”. If one was to paste this string in to google maps
(or most other geolocation applications), it would be unrecognizable. These values are in Degree
Minute Seconds format, and we must convert it into a purely decimal degrees format [4].

For the latitude, we do:

4521.4014 / 100 = 45.214014. This gives us our degrees (45)

Now that we have our degree amount, we must convert the minutes and seconds to a fraction of a
degree.

(.214014 * 100) / 60 = 0.35669 (Decimal value of minute-seconds)

Add the decimal value of the minute-seconds to our degrees to get final co-ordinate value

0.35669 + 45 = 45.35669.

Finally, if the co-ordinate represented a South or West direction, multiply by -1.

For longitude, we have:

07539.0934 / 100 = 75 and .390934

39

39

(.390934 * 100) / 60 = 0.65155667
75 + 0.65155667 = 75.65155667
75.65155667 * -1 (West) = -75.65155667 giving us our final longitude

40

40

7 Google Maps Front-End Service

7.1 Login

The login page (index.php) is a very simple PHP script that generates a HTTP GET request to
tracker.php for valid IMEI numbers. It takes an IMEI number of your device as input and sends
you to tracker.php?imei=yourIMEInumber.

There is also a link to register (register.php) a new IMEI with the server. Once an IMEI is
registered, the server will store any data from that IMEI into the database, otherwise it discards
data from any unknown IMEI numbers.

From a security perspective, there is nothing inherently secure about this. However, this project
is at a proof-of-concept stage only, and a final product would obviously require user management
and enhanced security.

7.2 View

The view is generated by tracker.php. Tracker.php consists of some javascript: Google Maps V2
AJAX APIs in oldUtil.js, Google Maps V3 API from maps.google.com/maps/api/js, and the
javascript code written for this project directly in tracker.php [5]. The rest of the file is PHP.

The code starts off by initializing the various icons (red, blue, orange, yellow) and a shadow.
From there, it initializes a database connection and centers the map on the most recent co-
ordinate in the database.

From there, the code is very simple. A GET Request string is generated every time you hit
refresh (or every X seconds where X is the autorefresh interval). This string passes all of the
client settings to the XML generator which generates XML data by querying the database for the
desired co-ordinates. When this XML data is received, the map overlay is cleared and
regenerated based on this data.

An info view is also configured for each co-ordinate so that details can be seen by clicking on a
point. This is the HTML: "Latitude: " + lat + "
Longitude: " + lon + "<br/
>Altitude: " + alt +"m MSL" + "
Time Start:
" + timestamp + "
Time End: "+ timestamp2+"
Horizontal Accuracy:
" + hacc + "
Vertical Accuracy: " + vacc + "
 Sats: "+sats+"<br/
>Ground speed: " + speed + " km/h
Bearing: "+ bearing + " degrees<br/
>Vertical speed: " + vspeed + " m/s
";

There is also a PHP class from Anthony Hand included (http://www.mobileesp.com) to detect
whether the device is a mobile device or a full-featured PC [6].

41

41

http://www.mobileesp.com
http://www.mobileesp.com

The XML generator used from sending data to the view from the database via AJAX is called
ajaxXmlGen.php.

It consists of a very simple distance algorithm and some SELECT queries which will not be
explained in any further details because they are very straightforward.

42

42

7.3 Database Schema

Server: REDACTED
Username: REDACTED
Password: REDACTED

The database can be viewed from REDACTED with that username and password.

There is a table for each IMEI with the following schema:

CREATE TABLE IF NOT EXISTS `IMEINUMBER` (
 `id` int(10) unsigned NOT NULL AUTO_INCREMENT,
 `lat` double NOT NULL,
 `lon` double NOT NULL,
 `timestamp` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
 `sats` tinyint(4) NOT NULL,
 `hacc` double NOT NULL DEFAULT '0',
 `vacc` double NOT NULL DEFAULT '0',
 `msl` double NOT NULL,
 `speed` double NOT NULL DEFAULT '0',
 `bearing` double NOT NULL DEFAULT '0',
 `vspeed` double NOT NULL DEFAULT '0',
 `mode` varchar(2) NOT NULL DEFAULT 'MV',
 `timestamp2` timestamp NOT NULL DEFAULT '0000-00-00 00:00:00',
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=32949 ;

Most of these columns are self-explanatory from earlier sections in the report, with the exception
of timestamp and timestamp2. Timestamp is the original timestamp when the data was record,
timestamp2 was the last time that the co-ordinates were updated (if a more accurate fix for a
position without the device moving was detected).

43

43

8 Usage Overview and Procedures

There is some basic information which must be discussed first before showing screenshots and
guides.

1) The website is www.gpstrackeronline.com, as mentioned in the previous section.
2) The IMEI number of the demo device is REDACTED. You can also use the short-name

mntest2 which has been specially linked inside the code to map to the IMEI number. It is case
sensitive, so Mntest2 or other variants will not work.

3) There are 4 different GPS fixes supported by the view. A red icon indicates the latest position
IF the device is moving. An orange icon indicates the latest position IF the device is
stationary. A yellow icon indicates a previous stationary fix (meaning, at this point, the device
was non-moving). A blue icon indicates a previous moving fix (meaning, at this point, the
device was moving).

3) GPS receivers are bad at tracking stationary objects. There will be lots of errant GPS fixes if
the device is left stationary over a long period of time. These can be filtered out by increasing
the minimum number of GPS satellites required for a fix, as to only allow the most accurate
data. You can also enable stationary fixes only, and this will greatly reduce (but not
completely get rid of) errant GPS fixes.

4) Clicking on a point on most mobile devices will not allow you to see the entire info window,
some data will be truncated without scrolling being offered. This is a known bug with the
Google Maps API. On mobile devices, the latitude and longitude are not at the top, instead the
ground speed and the bearing are displayed.

5) This project, especially when displaying more than a few hundred points, makes use of
intensive javascript. This project is best viewed in Google Chrome, or any other high-
performance javascript browser. This does NOT include Mozilla Firefox or Internet Explorer.

6) The LED on the device is VERY important. It is the only status indicator available without
being connected to the device via a USB cable.

 Half-second ON, Half-second OFF (medium speed blinking): Device starting up, python
 code NOT running.
 Two seconds ON, One second OFF (very slow blinking): Initializing GSM/GPRS
 connection (associating with cell tower, establishing a socket with server)
 0.3 seconds ON, 1.2 seconds OFF (slow blinking): Device started up, GSM/GPRS
 connection active. No GPS fix. Will begin transmitting as soon as there is a GPS fix.
 0.1 seconds ON, 0.1 seconds OFF (very fast blinking): Device transmitting valid GPS
 co-ordinates to server. This is the ideal state. The LED remains in this state even if the
 device sleeps momentarily between transmitting co-ordinates. It only leaves this state if
 an error is encountered or the GPS fix is lost.

The following guide will not discuss the use of the “Positions for the last...” feature, as this is
time-sensitive and the test data collected is older than the available ranges. Please see the System
Testing section for use of this feature.

44

44

http://www.gpstrackeronline.com
http://www.gpstrackeronline.com

The following guide shows test data collected on a road trip to Kingston, Ontario, from Ottawa.

The interface has been set to display the last 3000 positions view the “Show last X data points”
dropdown menu.

Here we can see a zoomed out view of the entire trip:

45

45

If we zoom in, we can see approximately when the tracking device was turned on. Notice the two
sets of lines and how the points are on alternating sides of the road, we can see our data points
from returning to Ottawa alongside when heading to Kingston.

46

46

If we zoom in on Kingston, we can inspect the various types of GPS fixes. Note that there are
yellow points near some of the intersections. These are stationary fixes while walking in
Kingston. It is plausible that a person would be stationary momentarily near an intersection.

47

47

If we zoom in on a position while driving, we can see that the speed and direction are very
accurate. Keep in mind that this is a residential street (40km/h speed limit) and that Google Maps
is aligned north at the top of the screen.

Our bearing of 352.37 degrees (N=0/360, E = 90, S = 180, W = 270) is very accurate judging
from the map. Our speed of 35.92km/h seems plausible.

48

48

A good example of errant GPS data and how to filter it is by zooming in on a period of time
(lunch break) while the tracker was stationary:

49

49

In order to clean up our data to get a better impression of the event timeline, we will display only
stationary fixes, and turn up the tolerance to 12, and set the minimum number of satellites for a
fix to 5. We can see that the data is much cleaner, though still not flawless. However, it is much
more readable now.

50

50

9 System Testing and Performance Results

9.1 Battery Life and Time to Transmit

Time to start up and begin transmitting co-ordinates while outdoors (cold start): 47 seconds.
Time to start up and begin transmitting co-ordinates while outdoors (warm start, some GPS data
still cached in RAM): 25 seconds
Battery life while transmitting non-stop at 5 second intervals: ~30-36 hours (~1.2-1.5 days)

9.2 Accuracy Testing

An on-foot accuracy test of the tracker was performed with the assistance of a digital camera, an
Apple iPad, and Google Maps. The iPad has a built-in GPS receiver that was used for real-time
comparison.

Device sitting outdoors on a bus bench:

51

51

SSH Console on the iPad when the device was turned on (note the timestamps at the end of every
line, July 23, 2010)

52

52

Web Tracking Interface settings:

53

53

Google Maps view of stationary location fix at bus stop bus bench:

54

54

Outdoor pictures of location. It is evident that the GPS fix is EXTREMELY accurate, showing
the position within at most 2 meters of error, if not much less.

55

55

In the screenshot on the left from the Google Maps
tracking interface (at maximum zoom), we can see
that the device is near an OC Transpo bus stop (blue
icon resembling a Bus). From the outdoor image
above, we can see that this is indeed the case, as the
distance from the bus stop looks reasonably accurate.

56

56

Standing at the corner of a nearby intersection, we can again see that the GPS tracker is
extremely precise:

57

57

58

58

Here is a screenshot of the Maps application on the iPad, which makes use of the internal GPS in
the iPad, and Google Maps. We can see that the position as reported by the iPad is similar if not
identical to the position reported by the GPS tracker on the previous image.

59

59

In the next image, a building as well as a grassy area with an adjacent concrete sidewalk is
visible:

60

60

This location can be seen on the iPad in the previous picture, or more clearly, this screenshot
taken at the same time:

61

61

More specifically, the exact information at this position is available by tapping the point itself:

62

62

The device can be seen here being tracked by the iPad right before entering a building:

63

63

And after emerging from the building, with waypoint history turned on for the last 30 minutes:

64

64

It is clear from the previous picture that the device did indeed enter the building. However, the
poor GPS coverage from inside the building led to some errant GPS fixes. By clicking through
the points and comparing the timestamps, an analysis of the target’s whereabouts can be
performed accurately. While it is unreasonable to expect the device to reveal the target’s
whereabouts while inside the building, our signal is restored immediately after the target emerges
from the store, giving us no gaps in knowledge of the target’s location.

65

65

In summary, it is clear that the tracking device performed exactly as expected during this phase
of testing, demonstrating accuracy that rivals if not surpasses commercial grade geo-location
hardware and software such as that found in the iPad. It is also evident that the software front-
end tracking solution accurately renders the location of the device, and provides a reasonably
friendly and powerful interface for analyzing the location of a target and developing a profile of
its whereabouts over a period of time. The time to establish a GPS fix after startup and begin
transmitting outdoors is very fast, coming in at well under a minute. The battery life is also quite
impressive, and would most certainly be improved if the device was configured to transmit less
often and sleep in-between. Minor hardware modifications would allow the python script to
physically power down the GPS receiver and GSM radio during such a sleep period, further
improving the battery life. These changes have been discussed in depth elsewhere in this report.

While this device was not intended to be used indoors, it is impressive that the device was
capable of reporting a somewhat accurate location intermittently while inside a large commercial
building (the Loblaws at the South Keys shopping centre).

66

66

10 Lessons Learned

1) Measure twice, cut once. The most obvious mistake made in this project was incorrectly
reading the data-sheet for the plastic box housing the project and the height of all of the
components stacked on top of each-other. This resulted in the case not being able to close
entirely.

2) Lack of expertise cannot be remedied overnight. This project involved many areas which
required knowledge of electrical engineering principles. Lacking this expertise and trying to
learn it quickly resulted in a numerous amount of oversights ranging from the lack of ability
to control power to the GPS receiver to various shorts and poor design decisions in the circuit
board. Nonetheless, this was a very valuable learning experience in the principles of
electrical engineering.

3) 2G cellular networks are unreliable for data communications. Throughout testing, there were
numerous times when messages simply did not reach the server, whether using TCP or UDP.
It was very important to learn how to deal with corrupted or missing communications and to
make sure that everything was stateless. Having a stateful communication protocol in an
unreliable environment would result in additional complexities and an unreliable product.
While UDP provides no guarantee of transmission, the overhead and complexity in TCP
communication resulted in failed communication quite often, so this was no better in practice
than UDP. In fact, UDP was found to be much more reliable since the opportunity for error
was much lower. TCP communication could fail during establishing the connection and
transmitting data, where UDP could not fail per se, but the message simply would not arrive.
While errors in both cases would be undesirable, UDP communication removed the necessity
of handling unexpected states, like failed connection attempts, making UDP far less likely to
put the device into an error state requiring reinitialization.

4) T-Mobile does not bill data going across UDP port 53 or HTTP requests without a Host
header on port 80. This project made use of a T-Mobile SIM card since T-Mobile’s
international data roaming rates were cheaper than the local pay-as-you-go data rates of any
Canadian provider. Throughout testing, it was noted that simple HTTP/1.0 requests without a
host header or DNS requests (data on UDP port 53) were not being billed. Thus the decision
was made to run the application servers on these ports to save costs.

5) This project can be used for covert surveillance. It is obvious that the low cost and
complexity associated with this project vs. commercial solutions allow this technology to be
developed in-house by individuals or organizations. With a minimal amount of work to
enable power-saving features like sleeping for 20 minutes and shutting down the GPS
receiver with a GPIO controlled load switch, and a case lined with neodymium magnets on
one side, this project could be turned into a covert long-term (estimated 2 weeks battery life)
vehicle or asset tracker with minimal effort.

67

67

11 Potential Improvements

1) Implement two-way communication to allow changes to update interval. A useful feature in
the web interface would be one that allows you to change update speeds and thus enable
power management features. For example, the device could be instructed to update in real-
time, or update every 20 minutes and put itself and the GPS to sleep in the mean time.

2) Add a load switch to the GPS receiver. A load switch is a device that can control the flow of
power to another device based on the voltage on one of its pins (LOW or HIGH). This pin
could be tied to a GE865 GPIO pin allowing the python software to turn on and off the GPS
receiver. This would significantly lengthen the battery life of the device in a long-term
tracking situation (updates every 20-30 minutes as opposed to real-time).

3) Connect the PWRMON (power monitor) pin of the GE865 to the atmel microcontroller and
set an interrupt on it being LOW. If the GE865 were to abnormally turn off (encountered
nearing the end of the life of the battery), the microcontroller could reboot it. This would
allow the device to make use of the remaining 10-20% of the battery, with some minor
service interruptions.

4) Put everything on a single circuit board. This would allow the device to fit in a much smaller
case. A design for this is included in this report and the submitted files. This would also
require experience in surface-mount soldering and additional tools, though it is a feasible and
significant improvement to the existing design.

5) AGPS. U-Blox (company which makes the GPS chipset) has a web-based AGPS API which
allows using data networks to download GPS constellation (satellite position and timing) data
as opposed to receiving the info from the GPS constellation. This allows a significantly
quicker TTF (time-to-fix) meaning that the device could be ready to report its position within
seconds instead of minutes (or not at all) after being turned on in an area with poor GPS
coverage, such as indoors, surrounded by buildings, or in bad weather. An attempt was made
to support this feature but transmitting data to the GPS UART was unsuccessful for an
unknown reason. An attempt to resolve this issue was not made because it is not a
requirement for this project, but it would certainly be a significant and welcome
improvement.

68

68

12 Conclusion

This project was successful in terms of meeting all of the original requirements in the project
proposal. The end result of this project is a functional GPS tracking device, capable of
transmitting its location via GSM cellular data networks to a remote server where the data is
stored and visualized using the Google Maps API. While there were some shortcomings, mainly
due to budget, expertise, and time constraints, there were no fatal flaws in the project architecture
or designs which would have resulted in unmet requirements.

This project was a beneficial learning experience in computer science, touching both hardware
and software technologies and focusing on integration and delivering a functional product from
the ground up. Undoubtably, this project was a suitable, if not an ideal choice for the honours
project course.

Experience in developing a functional end-to-end solution for meeting a set of requirements from
start to finish is arguably one of the most important experiences that an individual can have,
because there is no limit to the scope of failure. Unfortunately, this experience is rarely, if ever
gained during a typical undergraduate class. Thus it has been immensely valuable to set such an
ambitious goal for an honours project, and without a doubt, this project was an overwhelming
success.

69

69

13 Relation and Contribution to Computer Science

This project relates to computer science because it consists of requirements from many different
areas in computer science. This project involves hardware design and development, software
design and development, client/server communication, software testing, software integration,
geo-location, and cellular data networks. The successful outcome of this project has
demonstrated the value in developing an understanding of these topics and represents a
comprehensive education in computer science.

In terms of contributions to computer science, this project is an end-to-end guide or template to
designing, developing, and operating a tracking device remotely using technologies like cellular
data networks and the Google Maps API. Interested parties looking to develop similar geo-
location technologies can use this project to complement existing research or as a framework for
developing something new. Since these areas are undergoing continuous innovation, this project
represents a valuable contribution to computer science.

70

70

14 References

[1] CadSoft EAGLE http://www.cadsoft.de/freeware.htm
[2] BatchPCB http://batchpcb.com/index.php/AboutUs
[3] Interfacing Arduino with a Telit GM862 http://tinkerlog.com/2009/05/15/interfacing-arduino-
with-a-telit-gm862/
[4] GPS Latitude and Longitude Converter http://www.csgnetwork.com/gpscoordconv.html
[5] Google Maps API v3 http://code.google.com/apis/maps/documentation/javascript/
[6] Detecting Mobile Devices Using PHP http://www.hand-interactive.com/resources/detect-
mobile-php.htm
[7] Nightingale: Arduino Watchdog and Sleep functions
 http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/

71

71

http://www.cadsoft.de/freeware.htm
http://www.cadsoft.de/freeware.htm
http://batchpcb.com/index.php/AboutUs
http://batchpcb.com/index.php/AboutUs
http://tinkerlog.com/2009/05/15/interfacing-arduino-with-a-telit-gm862/
http://tinkerlog.com/2009/05/15/interfacing-arduino-with-a-telit-gm862/
http://tinkerlog.com/2009/05/15/interfacing-arduino-with-a-telit-gm862/
http://tinkerlog.com/2009/05/15/interfacing-arduino-with-a-telit-gm862/
http://www.csgnetwork.com/gpscoordconv.html
http://www.csgnetwork.com/gpscoordconv.html
http://code.google.com/apis/maps/documentation/javascript/
http://code.google.com/apis/maps/documentation/javascript/
http://www.hand-interactive.com/resources/detect-mobile-php.htm
http://www.hand-interactive.com/resources/detect-mobile-php.htm
http://www.hand-interactive.com/resources/detect-mobile-php.htm
http://www.hand-interactive.com/resources/detect-mobile-php.htm
http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/
http://interface.khm.de/index.php/lab/experiments/sleep_watchdog_battery/

Appendix A - Submitted Files

Application Server Source Code and Binaries/Java Application Server Netbeans Project/
GPSTrackerServer/src; This folder contains the source code for the application server.
Application Server Source Code and Binaries/Java Application Server Netbeans Project/
GPSTrackerServer/dist; This folder contains the JAR for the application server which can be
executed via java -jar GPSTrackerServer.jar
Application Server Source Code and Binaries/Experimental HTTP PHP Application
Server/mysql.php; This file contains the authentication info for accessing mysql
Application Server Source Code and Binaries/Experimental HTTP PHP Application
Server/server.php; This file is the HTTP/TCP Application server written in PHP. It is identical
to the Java version, except the network layer (TCP instead of UDP). It is not used and has
underwent limited testing.
Development Tools and Useful Utilities/Round Solutions RSTerm Telit Module Console;
This folder contains a serial console application with many predefined macros and functions
specific to Telit GSM/GPRS modules. It is also the preferred method of uploading python code
to the tracking device. This is Windows-only.
Development Tools and Useful Utilities/FT232 USB to Serial Chip Drivers for Interfacing
with the Tracking Device; This folder contains drivers to connect the tracking device to a PC
for the purpose of accessing the serial console. Mac OS X and Windows versions are included.
Development Tools and Useful Utilities/Telit Python IDE PythonWin; This is the Python IDE
from Telit to write code for the Telit GE865 module inside the tracking device. This is Windows
only.
Development Tools and Useful Utilities/NetBeans Java and PHP IDE; The NetBeans IDE can
be used to develop Java and PHP applications. Mac OS X and Windows versions are included.
Development Tools and Useful Utilities/EAGLE Lite Electrical Schematic CAD Program;
This folder contains the installer for the EAGLE Electrical CAD program used to create the
schematics discussed in this report. Mac OS X and Windows versions are included.
Development Tools and Useful Utilities/EAGLE Lite Electrical Schematic CAD Program/
Sparkfun Electronics Library; This folder contains EAGLE device footprints for many items
sold at www.sparkfun.com. It is used extensively in the schematics and must be imported into
EAGLE before opening the schematics.
Development Tools and Useful Utilities/U-Blox u-center GPS Configuration Tool; U-Center
is the tool from U-Blox (manufacturer of the GPS chipset in the tracking device) and can be used
to customize the output strings (and many other settings) of the GPS receiver. This application is
Windows-only.
Development Tools and Useful Utilities/Google Chrome (Web Browser with High-
Performance JavaScript Engine); Google Chrome is a web browser with a high-performance
JavaScript engine and is the ideal browser for accessing the tracking device web interface. Mac
OS X and Windows versions are available.
Development Tools and Useful Utilities/PuTTY Serial and SSH Console; PuTTY is a
console/terminal program used in this project for SSHing to the application server and accessing

72

72

http://www.sparkfun.com
http://www.sparkfun.com

the serial console of the device in Windows. This application is Windows-only. OpenSSH
(commandline) can be used in Mac OS X and UNIX variants for SSH, and screen or minicom
can be used for serial console access.
Google Maps Front-End Source Code; This folder contains the PHP and JavaScript source
code for the front-end tracking interface.
Google Maps Front-End Source Code/oldUtil.js; This file contains the old AJAX libraries
from the Google Maps API which fit better into this application than the new ones. This code is
owned by Google.
Google Maps Front-End Source Code/index.php; This is the login page which generates the
GET request for tracker.php.
Google Maps Front-End Source Code/tracker.php; This is the tracking page. It renders a
Google Maps view of co-ordinates in the database given a correct IMEI number.
Google Maps Front-End Source Code/mdetect.php; This is the PHP application which
inspects user agent headers to decide if a device is a mobile device or a full featured browser. It
is used in tracker.php. This code is owned by Anthony Hand, www.hand-
interactive.com.
Google Maps Front-End Source Code/ajaxXmlGen.php; This is the XML generator called by
tracker.php which converts database co-ordinates into an XML file parsed by the tracking
interface via an AJAX call.
Google Maps Front-End Source Code/mysql_info.php; This file contains the authentication
info for MySQL.
Google Maps Front-End Source Code/register.php; This file creates the table structure for an
IMEI number and must be called via index.php before a tracking device can make use of the
application server.
Report; This folder contains both the PDF and the source Apple iWork .pages file for the report.
Source Images from Report/Hardware Development; This folder contains the images taken
during development of the GPS tracking device.
Source Images from Report/Field Test Pictures; This folder contains pictures taken with a
digital camera during a field test of the device.
Source Images from Report/Hi-Res TIFFs from Diagrams Used in Report; This folder
contains the high resolution TIFF files exported from EAGLE and other applications to design
the schematics used in this report.
Source Images from Report/iPad Testing Screenshots; This folder contains screenshots taken
on the Apple iPad used during testing of the device.
Source Images from Report/Thickness Comparison with iPhone and Final Device Pictures;
This folder contains some high-resolutions images of the completed tracking device as well as
some size comparison shots comparing the device to an iPhone 3G.
Tracking Device Component Documentation; This folder contains documentation from
manufacturers of components used in this project.
Tracking Device Component Documentation/GS407-090812.pdf; This file is the datasheet of
the GPS receiver used in the project.

73

73

http://www.hand-interactive.com
http://www.hand-interactive.com
http://www.hand-interactive.com
http://www.hand-interactive.com

Tracking Device Component Documentation/
Telit_AT_Commands_Reference_Guide_r6-1.pdf; This file is the AT command reference
guide from Telit for the Telit GE865 GSM/GPRS module used in this project.
Tracking Device Component Documentation/Telit_GE865-
QUAD_Hardware_User_Guide_r10.pdf; This file is the hardware datasheet from Telit for the
Telit GE865 GSM/GPRS module used in this project.
Tracking Device Component Documentation/FT232RL-Breakout-Schematic.pdf; This file is
the schematic of the FT232R USB to Serial breakout board from Sparkfun electronics.
Tracking Device Component Documentation/Telit_Easy_Script_Python_r10.pdf; This file is
documentation for the python scripting engine from Telit for the Telit GE865 GSM/GPRS
module used in this project.
Tracking Device Component Documentation/Telit_Easy_GPRS_User__Guide_r7.pdf; This
file is the documentation for the GPRS functions from Telit for the Telit GE865 GSM/GPRS
module used in this project.
Tracking Device Component Documentation/MCP73871EV-Microchip.pdf; This file is the
datasheet for the MCP73871EV power management and charging boards from Microchip used in
this project.
Tracking Device Schematics/Project Board (Used in Demo and Report); This folder contains
the EAGLE schematics (electrical and board layout) for the custom circuit board used in this
project.
Tracking Device Schematics/Revised All-In-One Board (Future Development, Untested);
This folder contains the EAGLE schematics (electrical and board layout) for an all-in-one
surface-mount revision of this project. This was never produced due to time and cost constraints,
but is useful for seeing what a “commercial” version of this project would look like.
Tracking Device Source Code; This folder contains the python code which runs on the Telit
GE865 module inside the tracking device.

74

74

