Carleton University

COMP 4905 : Honours Project

Analysis of RF Remote Security Using Software Defined Radio

By: Spencer Whyte

Supervisor: Dr. Michel Barbeau, School of Computer Science

August 19, 2013

64

Abstract

The applications of RF remotes are numerous; they unlock our cars, open our garage
doors, and arm our home security systems. These are some very important items;
therefore the security on which the systems are built must be solid. This report
outlines a few different attacks against these systems and then delves into the
details about how a cost effective attack was implemented against a real world
system. The hybrid jam and replay attack is a sub $50 attack that was shown to
grant unauthorized access to a recent automobile under certain conditions. The key
to success was to use a jammer of slightly higher frequency than the authorized
remote. Then band-pass filtering was applied to the received signal to eliminate the
jamming signal and obtain the signal from the authorized remote. For this reason
and many others, bidirectional challenge-response systems are desirable and
unidirectional rolling code systems should be avoided.

64

Acknowledgments
Many thanks to Dr. Barbeau for providing a USRP2 and TVRX
daughterboard for experimentation.

64

Table of Contents

1. Introduction to Software Defined Radio (SDR)cccucririsminsssssnsssnsnsssssssssssnnens 10
1.1 Signal Representation.... .. 10
1.2 Amplitude Modulation (AM) ... s 10
1.2 Fast Fourier Transform (FFT) ... 12
1.3 Band-Pass Filtering ... s sssssssssssssssssssses 12
1.3 GNU RAAIO cccvrrrriismsmsmsssssissssssssssssssss st ssssss s ssssss s ssssssss sssssssssssssssssssssssssssssssassnanans 13

2. Introduction to RF REmMOteS ... 16
2.1 DefiNitioN s ————————————————— 16
27200 N 1) 1] D T2 100 01 16
2.3 Unidirectional SYSEEMS ... s sssssssssssssssssssssssssssssses 16
20 3 1T I o 17
2.5 Passive Keyless Entry Systems (PKES) ... 18

3. Attacks on RF ReMOtes.......cinmnmmsssssssssssssssssssssssssssssssssssssasas 19
12 TR0 1 -) 4 19
B I =3 1] b 19
3.3 Jam and RePIAYcccicinmniimsisissississsssssssssssssssssssss st s sssss s ssssasssssass s ssssssssnsess 20
B 3R 3 1= L 21
B TSI 1 (T 0 T o [22

4.Jam and Replay Attack Hybrid.......ssssnssnssssssssssssssssssssnnas 24
s B0 D g T 24
3720 o (T =Y 110 L) ¢ T 24
4.3 Pitfalls ..o ——————————— 24

4.3.1 Solution: Strategic POSILIONINGccuuuieureereeneereeseesseeseesseesesssessssssss s sssssssssss st sesssssssssans 24
4.3.2 Solution: Directional ANtENNAE ... erereeneenreeseeseeiseeeseesees s ssssse s sesssssssesssssssssans 25
4.3.3 Solution: Band-pass Filtering of Authorized Transmitter Signalccoccouecneereeneenn. 26
0 5 074 0 1 16 U122 100 (L 27

5. Reverse Engineering a RF Remote System ... 29
5.1 Initial ReCONNAISSANCEcovviimimiimsmni s —————— 29
5.2 Modulation Identification via GNU Radi0c.covvmimnmsmsmsmsmsmsmsmsmsmsmssssssssssssssssssssssssssssssss 29
5.3 RF Remote INternals ... 33

6. Jam and Replay Hybrid System DesSign........cccccnmmmnmnnmnmnsmssnsnsmsssssssssssssssssnns 35
L300 113 4 =) o 35
6.2 Transmission Interception and Interpretation ... ——————— 35

6.2.1 Duty Cycle 1dentification DIOCKoccieneneeneeseeneenseiecessessesesesssesssesssesssessse e ssssssssseees 35
6.2.2 Sync Header Identification BIOCK ... eemienneenneinstineeessesesssesssesssessse s ssssssssssssssssseses 36
6.2.3 Manchester Decoding BlOCK ...t ssesesssesssesssessse s ssssssssssssssseses 38
6.2.4 Interception FIOW GraPh.. et seeseessessesssessssesessssesssesssesssessse s st ssssseses 38
6.3 RePlay HATAWATEcocveieicnisninssiss s sssssssssssssssss st sss st sasssssssssssssssssssssssssssnssnses 39
L L 0] Y0 T 41
6.5 SYSTEIM OVETVIEW .couiirimsesscnsissssssssiss st sssss s s s st sss s st e s b s s e s s s s snsns s 42

7.Jam and Replay Hybrid System Implementationcounninnmmsnssssssssssssssnans 43
78 0 3 1411 4 L 43
7.2 Transmission Interception and Interpretation———————— 46

7.2.1 Duty Cycle 1dentification DIOCKocueneneereeseeseenseiesessesesssesssesssesssessssssse e ssssssssseses 46
7.2.2 Sync Header Identification BIOCK ...t sesssesssessse s sssssssssssssssseses 47

64

7.2.3 Manchester Decoding BlOCK ...t ssesesssesssesssessse s sssssssssssssssseses 48

7.2.4 Interception FIOW GIraph .t se st sesssess s s st sssseses 49

7.3 RePlay HArdWATE ...icciiniiciisssssssssssssssssssssssssssssssssssss s ss s sssssssssssssssssssssssssssassssess 50
A3 G 0 N A0 (0 N o 54

8. Results and TeSting ... sssssssses 56
3200 T) 110 44 (=) o 56
8.2 Close RAanGe AtLACKET ... sss s s sssssssssssssssssssssssnsssans 56
8.3 LoNg RANGE ALACKET ..cvuicircireicnin s sssssssssssssssss st s ss s s sssssssss s sssssssssssssnsssss 57
8.4 Directional Antenna Failure. ... 58
. IMPIrOVEMENTES....ciiiieiieiissssissmssissssssssss s s a s a s a e a s s a s e e R e R R 60
9.1 Improvements to the Hybrid Jam and Replay Attackc.ccunimnnscsnsnsnsnssnsssnsnsanans 60
9.1.1 Band-rejeCt FIlOIINE. .. riereeeeereetectreeseeeseisseessesssssssssessesssesssssssessss s bbbt st sesssssssssans 60
9.1.2 Adding BIOCKS 0 GRCcuuiereeeeereeeectreeseesseesseessesssssssssssssssseessssssessssssss bbbt sasssssssssans 60
9.1.3 F10ating POINT BitS ..ooiuierieseeeeeseesectseeseesseesseessessessssssssssssesssssssessss s sassssss st s st sasssssssssans 60
9.1.4 EXLEINAl OSCILATOTS couureurieeiereeeeeseetectseeseessesseesse st st sesss s ssss s e bbbt st 60

9.2 Improvements to RF Remote SECULItY ... ssssssssssssssssnans 60
10. CONCIUSION.....ciiiiriirisirs 62
Bibliography ... 63

64

List of Figures

Figure 1: A visual summary of the [/Q sampling process.commenreneerseessesseessesseennes 10

Figure 2: Visualization of a circle of radius A, placed on an I/Q axXiS......ccumereenrerseennes 11

Figure 3: Visualization of a thought experiment whereby a random point on the
circumference of a circle of radius A is chosen and the Pythagorean theorem is

21 0] 0 D =T URTO OO 12
Figure 4: [llustration of band pass filtering using a FFT.....c.conneesenecreeeessees 13
Figure 5: USRP2 designed and sold by Ettus Research.connrneenenscneennenees 13
Figure 6: GNU Radio file source block SUMMATy.......coneneenmeeneeseenseseeseeseesseeseessssssesseeanes 14
Figure 7: GNU Radio file sink bloCK SUMMATY......coornenenreereeneeseeseeeesseeseeseesseessessssssesssesnes 14
Figure 8: GNU Radio amplitude demodulation block summary........ccoueemeereereesrerseenes 14
Figure 9: Sample GRC flow graph that was constructed to listen to FM radio signals.

... 15
Figure 10: Summary of a rolling code system that includes a sliding window of six

(6706 (=N 17
Figure 11: High-level view of crypt key generation in a KeeLoq system.cc.ccocnuuunee 17
Figure 12: Summary of a keypress operation in a KeeLoq system.ccnereenrerseenne 18
Figure 13: A typical challenge response protocol used in passive keyless entry

7S] 1) 1 0P 18

Figure 14: Summary of the jam attack against an automobile RF remote system..... 19
Figure 15: Summary of the replay attack against a unidirectional fixed code

automobile RF remote SYSTEIM.....oeecreereeseeseeeesseesessesse e ssessssssessssssssesssssssessssanes 20
Figure 16: Summary of the jam and replay attack involving a victim Alice, and an

AAVETSATY MaAllOTY. .. ceieeeeereeeeeeeeeteesesees s ssses e s s nnaes 21
Figure 17: Summary of the relay attack on passive keyless entry systems.cc....... 22
Figure 18: Strategic positioning of the adversary to avoid jamming signal

RO) <) Lol PP 25

Figure 19: Configuration of directional antennas to aid the adversary in collecting
the authorized transmission. Theoretical radiation patterns have been overlaid

to show the advantage Provided. ... sesssessssssessees 26
Figure 20: FFT visualization of band-pass filtering to only receive the signal from the
AULNOTIZEA FEIMOTE. ..o 27
Figure 21: Picture of the back of the RF remote for the system being attacked 29
Figure 22: Flow graph constructed to gather more information on the system being
ALLACKEA. ovevercreriese s 30
Figure 23: Software Defined Radio hardware configuration..........oeoneseenneeseenes 30
Figure 24: Peak observed on the FFT during the press of the lock button on the
D 0T 31
Figure 25: Audacity visualization of the activity at 315MHz when the lock button
was pressed with the automobile out of range. ... 31
Figure 26: Audacity visualization of the activity at 315MHz when the lock button
was pressed with the automobile within range. ... 31
Figure 27: Magnified portion of the waveform produced by the remote as visualized
USING AUAACIEY. courvueureeseeereesresseesseeseessssssessesssessesssesssessesss s s sssss s s e s s sss s s s ssssasesnsanes 32
Figure 28: Modified version of the flow graph depicted in Figure 22 to include an
amplitude demodulation DBIOCK. ... sensesseas 32

64

Figure 29: Audacity visualized waveform of the AM demodulated signal from the

flow graph depicted in Figure 6 during a remote button press.........ennes 32
Figure 30: A portion of the amplitude demodulated signal shown in Figure 7........... 33
Figure 31: Internal circuitry (back and front) of the remote used in the system in

which the attack will be carried OUE ON. ... 34
Figure 32: 315MHz jammer schematic based off of a 315Mhz AM Transmitter

10010 T D) - PP 35
Figure 33: Summary of the duty cycle identification block and its parameters.......... 36
Figure 34: Finite state machine description of the duty cycle identification block... 36
Figure 35: Summary of the sync header identification block and its parameters...... 37
Figure 36: Finite state machine description of the sync header identification block.

... 38
Figure 37: Finite state machine representation of the Manchester decoding block. 38
Figure 38: High-level overview of the transmission recording flow-graph................. 38
Figure 39: Flow graph designed to allow decoding of the 67-bit code from the HCS

S 1 TSP 39
Figure 40: Schematic of the board that will be used to carry out the replay portion of

the attack at 315 MHZ. ..o s 40
Figure 41: High-level overview of the operation of the software executing on the

TEPIAY DOATA. oottt s et 42
Figure 42: High-level overview of the components of the hybrid jam, intercept, and

TEPIAY SYSTEIM.uccuieueurienreereesreeseesseeeesssesse s ssse s ees s ssses s s s b e b e R bR p b ntaes 42
Figure 43: Prototype jammer laid out on breadboard. ... 43
Figure 44: Final jammer design construction after soldering was completed. 44
Figure 45: Final jammer construction after encapsulation in hot glue and electrical

DA, e eueeureseesresees s s s s e s s s bR R AR R AR R AR E AR R AR AR 45
Figure 46: Visualization of the output of the jammer at 315MHz using the GNU Radio

EY010) o T30 0 (0 OSSPSR 46
Figure 47: Diagram depicting the signal processing blocks used in testing the duty

cycle identification DIOCK. ...t s s 47
Figure 48: Visualization of the flow graph used in testing the sync header

identification DIOCK. ... ssssasnes 48
Figure 49: Visualization of the flow graph used in testing the Manchester decoding

DLOCK ittt 49

Figure 50: Flow graph used in part one of the transmission interception process... 49
Figure 51: Initial prototype of the replay hardware used in the hybrid jam and

TEPIAY ALLACK. cu- ettt ee st es st 50
Figure 52: Second prototype of the replay hardware used in the hybrid jam and

TEPIAY ALLACK. cu- ettt ee st es st 51
Figure 53: Top side of the final board with all components connected.........ccoceruuneunnee 52
Figure 54: Underside of the final board with all components connected.c.cccccnueune. 52
Figure 55: Installation of the hardware into the enclosure........ooneneineenneseennes 53
Figure 56: Texas Instruments Launchpad.conencenneeneeseeeesseeseessesssesssssssssessesses 54
Figure 57: Duty cycle of the authorized transmission versus the duty cycle of the

replayed tranSImMISSION. .. ceeererseesseeseessessessesssesseessessses s ses s s s ssesssesssess s ssssssesssanes 55

64

Figure 58: Original transmission from authorized remote vs. Replay board

L0 =Y ES) 44V U7 T) o P 55
Figure 59: Authorized transmission versus transmission replayed with the custom

FEPIAY NATAWATE. ..ottt b bbbt 55
Figure 60: First attack scenario used for testing the system.coeeneeereeneeseenneeseenns 56
Figure 61: Second attack scenario used to test the system.coonereneerreenseseesnesseenes 57
Figure 62: Failed attempt to build an effective Yagi at 315 MHzZ.....coccoreneeerrnrcnienrencenne 58

64

List of Tables

Table 1: Summary of the information required to fully clone an authorized remote
under the KEeLOQ SYSTEIM. ...t seessseseessesssssssse s ssssssssssssesssssssssssssssssssssanes 22

Table 2: Summary of the information required to fully clone an authorized remote
under the KeeLoq system and methods by which the information can be

(0] 0] 7 1 4 =T PP 23
Table 3: Approximate costs associated with a pure SDR implementation of the jam
ANA TEPLAY ALLACK. cuieereereeereeeesreeeesseeses e sessees s ses e es s s s s s s e nnaes 27
Table 4: Approximate upper bound on the costs of carrying out a hybrid jam and
TEPIAY ALLACK. cu- ettt ee st es st 27
Table 5: Summary of the characteristics of the remote observed using the SDR and
visualized using Audacity in the order they were observed.cconeenreneeneenens 33
Table 6: Cost of the components seen in the jammer design of Figure 32. 35
Table 7: Bill of parts for constructing the replay hardware shown in the schematic of
FIGUIE 0. ettt b s s bbb 41
Table 8: Summary of the main features of the MSP430G2452.onereneerneeneenreennens 50
Table 9: Settings used to successfully record transmissions using the recording flow
graph in the short range attacker SCENATIO. ..o eureerreureemerseereesees e seesseeseessesseseeaes 57
Table 10: Settings used to successfully record transmission using the recording flow
graph in the scenario described in section 8.3.......oonneneenneneeeeeseesessesseees 58

64

1. Introduction to Software Defined Radio (SDR)

Typically, when designing a system that involves some sort of radio, the radio
hardware will be custom built and designed for one specific purpose. It will operate
on very specific frequencies, and implement a protocol that is often embedded right
in the hardware. The alternative to this is to use software defined radio hardware
which is general-purpose radio hardware that has the ability to operate on a
multitude of frequencies and the implementation of protocols can be done in
software.

1.1 Signal Representation

Signals can be described via what is called sampling, the idea behind sampling is to
look at a signal at a particular point in time and to record some characteristics as
discrete data. One such characteristic that can be recorded is the amplitude of the
signal. The way that a signal is sampled in SDR is I/Q data or in-phase and
quadrature data. The I portion of the data is the amplitude of the signal at the time
of sampling and the Q portion of the data is the amplitude of the signal 90 degrees
out of phase (Barbeau, 2013). An example of one sample of I/Q data can be seen in
Figure 1.

90°

-0. I

Figure 1: A visual summary of the I/Q sampling process.

1.2 Amplitude Modulation (AM)

Amplitude modulation is a method of encoding data by varying the amplitude of a
carrier wave. Sampling the signal as [/Q data makes the demodulation of an AM
signal easy. The amplitude of the signal can be recovered at any point in time by
taking the square root of the sum of squares of the I and Q data as per the following
equation.

A= A

This formula can be explained by imagining a circle of radius A, placed on an [/Q
axis as shown in Figure 2.

64

i

Figure 2: Visualization of a circle of radius A, placed on an I/Q axis.
The following equations can therefore be used to describe the points on that circle.

I =Asinf
Q=AcosH

We should recognize that these equations could also be used to describe a wave of
amplitude A because the cosine function is 90 degrees out of phase with the sin
function. If we take any given point on the circle in Figure 2, a right angle triangle is
formed between that point, the origin, and the I axis as seen in Figure 3.

64

> O

Figure 3: Visualization of a thought experiment whereby a random point on the circumference of a circle
of radius A is chosen and the Pythagorean theorem is applied.

By the Pythagorean theorem, it must be the case that the following equation holds.
A =,/I? + Q?

1.2 Fast Fourier Transform (FFT)

The Fourier transform is a mathematical operation that is able to transform a
function from the time domain to the frequency domain. Because computers work
with samples rather than functions, a discrete Fourier transform (DFT) can be used
to compute the component frequencies that exist within a signal that is being
sampled. The fast Fourier transform (FFT) is an algorithm that can compute the DFT
very quickly and is considered “the most important numerical algorithm of our
lifetime” (Kent, 2002).

1.3 Band-Pass Filtering

Filtering is a technique that is used in an attempt to remove some aspect of a signal.
Band-pass filtering is used to remove components of a signal above and below a
certain band of frequencies. The result is that only the components of the signal
corresponding to frequencies of fxa remain. A FFT view of band-pass filtering can be
seen in Figure 4.

64

FFT Plot FFT

-10
-20

-30

; (({\’A‘W‘m\'\'ﬂl

-60

Amplitude (dB)

-70

-80

-90

-100

-15 -10 s f-a f f+a s 10 15
Frequency (kHz)
Figure 4: Illustration of band pass filtering using a FFT.

1.3 GNU Radio

GNU Radio is an open source software development toolkit that provides the
resources to develop software defined radios. There is a multitude of hardware that
can be used with GNU Radio, one example of such hardware is the Universal
Software Radio Peripheral from Ettus Research LCC. One model is the USRP2 which
can be seen in Figure 5.

Figure 5: USRP2 designed and sold by Ettus Research.

This piece of hardware contains two 100 MS/s 14-bit analog to digital converters
which allow for sampling of a received signal, and two 400 MS/s 16-bit digital to
analog converters which allow for the realization of a signal from digital samples.
The hardware also comes with a Xillinx Spartan 3-2000 FPGA which can be used for
signal processing on board. The USRP2 also features a gigabit Ethernet port that
allows it to communicate with a computer and have the signal processing performed
in GNU Radio. The elementary element of a gnu radio application is the block. There

64

are three main types of blocks, sources, sinks, and signal processing blocks. A source
block generates samples to be consumed by signal processing blocks. One example
is the file source block and its purpose is to read samples from a file and produce
them. A summary of the file source block can be seen in Figure 6.

File Source
File: /tmp/capture.bin
Repeat: Yes

Figure 6: GNU Radio file source block summary.

A sink block consumes samples, one example of this is the file sink, which consumes
samples and writes them to a file. A summary of the file sink block can be seen in
Figure 7.

File Sink

—b@ File: ...er/Desktop/test.data

Unbuffered: Off

Figure 7: GNU Radio file sink block summary.

A signal processing block accepts samples as input, performs some operation on
those samples and then produces those samples. An example of a signal processing
block is the amplitude demodulation (AM) block. The AM demodulation block
accepts samples as input and computes the amplitude demodulated signal as output.
A summary of the AM demodulation block can be seen in Figure 8.

AM Demod
Channel Rate: 32k
—Jlil]| Audio Decimation: 1 @—
Audio Pass: 1k
Audio Stop: 2k

Figure 8: GNU Radio amplitude demodulation block summary.

These blocks are linked together to form a flow graph. The blocks themselves are
written in C++ and the flow graphs are written in python. A tool called GNU Radio
Companion (GRC) can be used to construct these blocks visually using a drag and
drop user interface. An example of a flow graph created in GRC can be seen in Figure
0.

64

Options
1D: top_block
Generate Options: WX GUI

Parameter
1D: baseband_decimation
Value: 5

Variable
1D: samp_rate
Value: 2M

UHD: USRP Source
Samp Rate (Sps): 2M

Cho: Center Freq (Hz): 97.1M
Cho: Gain (dB): 9

WX GUI Slider
1D: frequency
Default Value: 97.1M
Minimum: 85.5M
Maximum: 108M
Converter: Float

1D: volume

Minimum: 0
Maximum: 1
Converter: Float

WX GUI Slider

Default Value: 200m

WX GUI Slider
1D: rfgain
Default Value: 9
Minimum: -100
Maximum: 100
Converter: Float

Low Pass Filter
Decimation: 5
Gain: 1

» - Sample Rate: 400k
Cutoff Freq: 115k

Transition Width: 30k
Window: Hann
Beta: 6.76

WX GUI FFT Sink
Title: FFT Plot

Sample Rate: 2M
Baseband Freq: 97.1M
¥ per Div: 10 6B

L——{ifl] ¥ Divs: 10

Ref Level (dB): 0

Ref Scale (p2p): 1

FFT Size: 1.024k
Refresh Rate: 15

Freq Set Varname: None

'WBFM Receive
Quadrature Rate: 400k
Audio Decimation: 10

Rational Resampler
Decimation: 40
Interpolation: 48

Taps:
Fractional BW: 0

E—»E‘

Multiply Const
Constant: 200m

.

Audio Sink
Sample Rate: 48KHz

Figure 9: Sample GRC flow graph that was constructed to listen to FM radio signals.

64

2. Introduction to RF Remotes

2.1 Definition

RF remotes are typically small devices that have a few buttons on them. A press of a
button on the authorized remote will invoke a particular operation on the receiver.

Due to their small size, the battery must also be small, this gives rise to strict power
constraints on the device.

2.2 Applications

RF remotes have many different applications; one such example can be seen in
automobiles where remotes exist to lock, unlock, and sometimes even start the
automobile. Garage door remotes exist so that users can open and close their garage
door from inside their car. Home security systems sometimes have remotes that
allow the user to arm and disarm their security system at a distance. Each of these
remotes is designed to enable protection of things that are worth tens of thousands
of dollars. Therefore it is incredibly important that these systems be secure for
years to come.

2.3 Unidirectional Systems

One type of RF remote system is the unidirectional system. In this system, the
remote is strictly a transmitter and the component protecting the resource is strictly
areceiver. A system is known as a fixed code system if the transmission produced
from a given button press is identical each time. There is another type of system,
which is known as a “rolling code”, or sometimes “hopping code” system. In this
system, we have that when a button is pressed on the remote, a unique code is
transmitted. One key trait of these systems is that an observer cannot predict the
next code in the sequence from the previous codes. The transmitter and receiver
have previously agreed on what a valid sequence of transmissions is and is kept
secret. One problem is that sometimes a remote will experience an accidental button
press when out of range of the receiver, causing transmission of code number N in
the sequence. When the user is within range of the receiver, they will press the
remote button and code number N+1 will be transmitted while the receiver was
expecting code number N. The solution to this problem is to maintain a sliding
window in which the receiver will accept the next k transmissions as valid to allow
for accidental button presses when away from the receiver. An illustration of the
rolling code system can be seen in Figure 10.

64

e

= « >
\Cangm el

Figure 10: Summary of a rolling code system that includes a sliding window of six codes.

2.4 Keeloq

KeeLoq is a block cipher that was purchased by Microchip Inc. for use in its rolling
code RF remote systems. Due to the strict power requirements of RF remotes, this
cipher was very attractive because it can be implemented in hardware using
minimal power. Each remote in a Keyloq system has a unique serial number, and
each manufacturer(eg. Toyota, GMC.) has a unique 64 bit manufacturer key. The
unique serial number, the manufacturer key, and a seed value are used as input to a
key generation algorithm to produce what is called a 64 bit crypt key. A summary of
this process is shown in Figure 11.

Figure 11: High-level view of crypt key generation in a KeeLoq system.

Each remote maintains a synchronization counter, which counts up on each button
press. When a button is pressed, the crypt key is used to encrypt the
synchronization counter and the desired operation code (ex. 0 for unlock, 1 for
lock). This encrypted portion is sent along with the serial number of the remote to
the receiver where the encrypted portion is decrypted using the crypt key and the
synchronization counter is verified. If the synchronization counter falls within the
sliding window, the desired operation is performed. A summary of this process can
be seen in Figure 12.

64

Figure 12: Summary of a keypress operation in a KeeLoq system.

2.5 Passive Keyless Entry Systems (PKES)

Passive keyless entry systems initiate the unlock process automatically without the
need for a button press by the user. The remote and the entry mechanism usually
use challenge-response protocol as seen in Figure 13.

y &
G VDLV ELT) e

] L - st i

Figure 13: A typical challenge response protocol used in passive keyless entry systems.

Once the challenge is sent out by the automobile in this example, it is the job of the
user’s PKES transceiver to compute the proper response that corresponds to the
challenge. If the response is computed correctly, access to the automobile is granted.
It has previously been agreed upon secretly how to compute the response; therefore
it is impossible for an adversary to compute the correct response from any given
challenge.

64

3. Attacks on RF Remotes

3.1Jam

The jam attack can be used to gain access to a multitude of different resources; the
following example involving an automobile gives one such example. Alice parks her
automobile, and as she is walking away, she presses the lock button on her RF
remote. The car does not lock because a malicious attacker Mallory is jamming on
the same frequency at which the RF remote operates. If Alice does not notice that
her car remains unlocked, Mallory can gain unauthorized access to her vehicle. A
summary of the attack can be seen in Figure 14.

(Mallocy))
Figure 14: Summary of the jam attack against an automobile RF remote system.

The disadvantage of this attack is that it relies on error on the victim'’s part. The
main advantage is that it does not require any prior knowledge of the system being
attacked except for the frequency on which it operates. Another advantage of this
attack is that it can be implemented in hardware or using a SDR very easily (Xu,
2005) (DeBruhl, 2011).

3.2 Replay

The replay attack is typically only useful against unidirectional RF remotes with
fixed codes. The idea behind this attack to record a transmission from an authorized
remote and then replay it again later to obtain access to the same resources that the
authorized transmission allowed the authorized user access to. To give a concrete
example, lets say that Alice walks out to her automobile and presses the unlock
button on her RF remote, at the same time, Mallory is recording the transmission
from the RF remote. The automobile unlocks and Alice obtains what she needed
from inside. She then locks it, and leaves the area. Mallory then replays the unlock
transmission from the RF remote, unlocking the automobile and giving her
unauthorized access. A summary of this process can be seen in Figure 15.

64

. ;\

{ NSO SSIC

-t s i - A {

A Li

Figure 15: Summary of the replay attack against a unidirectional fixed code automobile RF remote
system.

The advantage to this attack is that it does not rely on the victim making an error as
the jam attack did. One disadvantage is that it requires that the system be using
fixed code remotes, for this reason, use of fixed code systems have been
discontinued in security sensitive applications for many years. That said, fixed code
systems still exist and an attack can be easily carried out against them using both
SDR or purpose built replay hardware (Broekhuis, 2011).

3.3 Jam and Replay

The jam and replay attack is a process whereby an adversary will jam the frequency
on which the RF Remote operates, record the transmission from an authorized
transmitter, and then replay the transmission at a later time when it is
advantageous for the adversary. To give a concrete example, lets say Alice presses
the unlock button on her RF remote to unlock her automobile. Nothing happens
because an adversary Mallory is jamming on the same frequency as the RF remote
operates. At the same time, Mallory has also recorded the transmission from the
authorized remote. Alice manually unlocks her car using the key, retrieves what she
needs, and manually locks it using the key. After Alice has left the area, Mallory
disables the jammer and replays the authorized transmission; this unlocks the
automobile, giving Mallory unauthorized access to the automobile. A summary of
the jam and replay attack can be seen in Figure 16.

64

e

Figure 16: Summary of the jam and replay attack involving a victim Alice, and an adversary Mallory.

The jam and replay attack leverages the advantages of both the jam attack and the
replay attack. One advantage of the attack is that Alice leaves her automobile feeling
safe because she has manually locked the doors, yet Mallory can still obtain access at
a later time. Rolling code security was built on the idea that it is computationally
infeasible to determine the next code in the sequence from the previous code. This
attack bypasses this idea entirely by intercepting the code from the authorized
remote and ensuring that the receiver does not receive the transmission through
jamming. Therefore this attack also works against unidirectional rolling code
systems. Just like the jam attack and replay attack, no prior knowledge about the
system is required except for the frequency on which it operates. This attack can be
carried out using either custom hardware, or a SDR. Unidirectional rolling code
remotes are still in widespread use; therefore this attack is still a threat.

3.4 Relay

Modern systems such as passive keyless entry systems can be circumvented via the
relay attack. The idea behind passive keyless entry is that a user carries around a
small transceiver and when they come within close proximity of the resource they
wish to access, an exchange of messages occurs, certifying that an authorized user is
within range. The relay attack works relaying messages between the two
transceivers over long distances with the goal of obtaining access to a particular
resource while the victim is out of range and often out of sight. A summary of this
attack can be seen in Figure 17.

64

19

Figure 17: Summary of the relay attack on passive keyless entry systems.

This attack can be carried out using physical hardware or using two SDRs. The
physical hardware attack is very simple and involves just a loop antenna that is long
enough to extend from the victim to the desired resource. This gives the
transceivers a good medium over which their RF signals can propagate. The end
result is that the victim'’s transceiver is perceived to be much closer than it actually
is and the attacker gains unauthorized access to the resource. This attack can also be
implemented using SDRs, however current implementations have shown that there
are still some latency issues to be overcome (Aurelien, Boris, & Srdjan, 2010). These
issues will soon be resolved as SDRs and general purpose computing become faster.

3.5 Keeloq

KeeLoq has been shown to be flawed in many different ways; there is however one
flaw that even the latest KeeLoq technology does not protect against. For an
adversary to clone an authorized remote, they must obtain a few different pieces of
information as shown in Table 1.

Table 1: Summary of the information required to fully clone an authorized remote under the KeeLoq
system.

Information

Remote Serial Number

Manufacturer Key

Key Generation Seed

Crypt Key

Ul W (N 3

Synchronization Counter Value

The remote serial number can be obtained from one KeeLoq transmission from an
authorized remote because it is sent in the clear and is fixed. The manufacturer key
can be obtained via trace power analysis of the Microchip processor used in
decrypting a KeeLoq transmission (Kasper, Timo, & Amir, 2009). The seed value
used in key generation can be computed from just two sniffed transmissions using a
brute force technique on an array of FPGA’s (Novotny & Kasper, 2010). The serial
number, manufacturer key, and seed can be used to compute the crypt key via the
key generation algorithm. The synchronization counter value can be decrypted from
just one KeeLoq transmission. A summary of these methods is summarized in Table
2.

64

Table 2: Summary of the information required to fully clone an authorized remote under the KeeLoq
system and methods by which the information can be obtained.

Information

Method of Determination

Remote Serial Number

Sniffed From One Transmission

Manufacturer Key

Trace Power Analysis Of Microchip Processor

Key Generation Seed

Brute Force On FPGA

Crypt Key

Key Generation Algorithm Using 1,2 and 3

Ul W (N 3

Synchronization Counter Value

Decrypted From One Sniffed Transmission

Some of these methods, such a trace power analysis, require special expertise and
expensive equipment. For this reason, an attack like this is not seen as a great threat.

64

4. Jam and Replay Attack Hybrid

4.1 Overview

The basic idea behind the jam and replay attack is that an adversary can jam the
frequency on which the authorized remote operates such that the receiver never
receives an intelligible transmission. At the same time, the adversary receives the
transmission and saves it for a later time. When it is advantageous for the adversary,
they replay the transmission, giving them access to whatever resources the original
transmission from the authorized remote was intended to. The advantage to this
attack is that it is possible to implement an attack using SDR that will work for
almost all unidirectional remote systems, regardless of the encoding, modulation
and structure of the transmission.

4.2 Prevention

The only defense against this type of attack that can be built into unidirectional
remote systems is to have the hopping code be a function of time. This way, when
the authorized remote sends out a transmission at time T, that transmission will
only be valid for a fixed amount of time, say T1 + €. By making ¢ sufficiently small, it
is possible to ensure that there will not be situations where it would be
advantageous for the adversary to replay the transmission at T + €. This type of
implementation is not used in industry because it relies on the timing of the clocks
within both the receiver and transmitter to be very accurate. This is often not a
problem on the receiving end, but on the transmitting end, there are often power
constraints that prevent a reliable clock from being maintained over time. The best
solution to this problem would be to not use a unidirectional system at all and to use
a bidirectional challenge-response system. This type of system is not susceptible to
jam and replay attacks because when each challenge is dispatched, there is a very
small window of time during which a response is valid.

4.3 Pitfalls

One problem at hand is that when the adversary jams the frequency on which the
authorized remote operates, they are also making it such that the signal received by
them is unintelligible. There are three ways that an adversary can overcome this
problem.

4.3.1 Solution: Strategic Positioning
One method would be for the adversaries to position themselves closer to the
victims remote than to the jammer and receiver as depicted in Figure 18.

64

[]
¢
-

Nt +

Figure 18: Strategic positioning of the adversary to avoid jamming signal interference.

The idea is that the jamming signal strength will be much lower for the adversary,
than for the authorized receiver. This way the adversary will be able to capture a

valid transmission, but the authorized receiver will not.

4.3.2 Solution: Directional Antennae

Another method would be to use a directional antenna such that only the desired
signal from the authorized remote will be received. This would involve using a Yagi-
Uda antenna on the jammer to direct the jamming signal towards the authorized

receiver (Yagi, 1928). An additional Yagi-Uda antenna would positioned

orthogonally to the jamming antenna so that the adversary can receive the

transmission from the authorized remote as displayed in Figure 19.

64

A CANY L A e
NC'{’&((H‘»‘V(N-I\
—~

‘K{‘\ v e
\oy } W
ACN VO

Figure 19: Configuration of directional antennas to aid the adversary in collecting the authorized
transmission. Theoretical radiation patterns have been overlaid to show the advantage provided.

4.3.3 Solution: Band-pass Filtering of Authorized Transmitter Signal

The RF remotes used in these types of systems often employ low quality oscillators
in order to keep costs down. This means that any given remote may not operate at
its theoretical frequency f; it is more likely that the remote actually operates at a
frequency that is reasonably close to f; which can be denoted by f, = fi *a. As a result
of these variances, the authorized receiver is usually designed to allow any signal
that falls within a certain range of possible frequencies f; 3. This fact can be used to
the adversary’s advantage by jamming on one frequency within the authorized
receivers range, say f:+ 3 and then applying a band-pass filter to only allow
reception of frequencies in the range f; +a. This way the adversary only obtains the
signal from the authorized transmitter and no noise from the jammer. A
visualization of this band-pass filtering can be seen in Figure 20.

64

FFT Plot FFT

hﬂl i W‘ t

Amplitude (dB)
(¥}
o

-60
-70
-80
-90
-100
-15 -10 -5 0 5 10 15
Frequency (kHz)

Figure 20: FFT visualization of band-pass filtering to only receive the signal from the authorized remote.

4.4 Hybridization

The jam and replay attack can be carried out completely with SDR however the cost
of a SDR is very high when compared to the resources that might be protected by a
unidirectional remote system. The frequencies used by these remotes are typically
either 315MHz or 433MHz. A SDR capable of transmit and receive operations at
these frequencies is the USRP2 with a WBX daughterboard. The total cost of this
system would be approximately $2045 as shown in Table 3.

Table 3: Approximate costs associated with a pure SDR implementation of the jam and replay attack.

\ Item Cost (CAD funds) \
USRP E100 SDR $1495
WBX Daughterboard $550
Total $2045

Alternatively a hybrid system could be constructed that utilizes an inexpensive SDR
for receiving, and additional inexpensive electronic components for jamming and
replaying the signal. An upper bound on the cost of such a system is given in Table 4.

Table 4: Approximate upper bound on the costs of carrying out a hybrid jam and replay attack.

\ Item Cost (Canadian Funds) \
RTL-SDR <$10
Microcontroller <$10
315Mhz Transmitter <$10
Supporting Components <$20
Total <$50

64

By the cost data found in Table 3 and Table 4, the pure SDR implantation would be
approximately 40 times more expensive than the hybrid implementation. There are
however disadvantages to the hybrid implementation such as the fact that it is
specific to the system being attacked.

64

5. Reverse Engineering a RF Remote System

5.1 Initial Reconnaissance

The RF system that the attack will be carried out on was initially a black box, the
exact details of how the system works had to be reverse engineered. The back of the
remote being used in the system can be seen in Figure 21.

Figure 21: Picture of the back of the RF remote for the system being attacked

The FCC ID of the remote can be seen in Figure 21, and then used to query the FCC
database for more information about the device (Commission, 2013). The query
revealed that the remote operates on 315.0 Mhz. This remote control belongs to an
automobile from 2004.

5.2 Modulation Identification via GNU Radio

The next step was to construct a GNU Radio flow graph that would allow
observation of the activity of the remote at 315MHz. A simple flow graph consisting
of a USRP source, a slider to adjust the frequency of reception initially configured to
315MHz, a FFT sink, and an audio file sink was constructed as shown in Figure 22.

64

Options
1D: top_block
Generate Options: WX GUI

Variable
ID: samp_rate
Value: 32k

UHD: USRP Source
Samp Rate (Sps): 32k
ChO: Center Freq (Hz): 315M
ChO: Gain (dB): 0

WX GUI Slider
1D: frequency
Default Value: 315M
Minimum: 314M
Maximum: 316M
Converter: Float

WX GUI FFT Sink
Title: FFT Plot
Sample Rate: 32k
Baseband Freq: 0
Y per Div: 10 dB
—{ii]| Y Divs: 10
Ref Level (dB): 0
Ref Scale (p2p): 2
FFT Size: 1.024k
Refresh Rate: 1
Freq Set Varname: None

WX GUI Scope Sink
Title: Scope Plot
—{ifl| Sample Rate: 32
Trigger Mode: Auto

Y Axis Label: Counts

Complex To Float

Wav File Sink
File: ...cer/Desktop/real.wav
Sample Rate: 32k
Bits per Sample: 8

Figure 22: Flow graph constructed to gather more information on the system being attacked.

The hardware configuration being used throughout this project is a USRP2 with a
TVRX daughterboard installed. The USRP2 communicates with a Macbook Pro
which is running Ubuntu 12.10 Linux using an Ethernet connection (Ubuntu, 2013).
GNU Radio 3.70 is being used in this case. The hardware configuration can be seen
in Figure 23.

Figure 23: Software Defined Radio hardware configuration.

The flow graph was executed and a few seconds later, the lock button on the remote
was pressed. No large peaks were observed on the FFT. The frequency was adjusted
to 314.89 MHz and the lock button was pressed again. This time, a large peak was
observed on the FFT indicating activity as seen in Figure 24.

FFT Plot Trace Options
0 . - & |Peak Hold

[] Average

-10

F

30 [] Persistence

o

Amplitude (dB)
o

I
© m;u& sl (’ M‘!u ‘. J}Ai[m Jr M [“M ”Wﬂ U lrfk(’r”“”"* 4L Blip! | racen (gtore

G T

-80 dB/Div: *)lz
90 Ref Level: *
-100 ‘ Autoscale |
-15 -10 -5 0 5 10 15
Frequency (kHz) | Stop |

Figure 24: Peak observed on the FFT during the press of the lock button on the remote.

This indicated that the frequency at which the remote is actually operating at was
314.89 MHz. At this point in time, it was unknown whether or not the RF system
was unidirectional, or bidirectional. The automobile was moved out of range of the
remote and the flow graph was executed. After a few seconds, the lock button on the
remote was pressed within a 1 m range of the USRP and then the flow graph was
terminated. The audio file produced via the audio sink was visualized with audio
editing software titled Audacity as shown in Figure 25 (Audacity, 2013).

as NI OO

Figure 25: Audacity visualization of the activity at 315MHz when the lock button was pressed with the
automobile out of range.

The same experiment was repeated again with the automobile within range to
obtain the Audacity visualization shown in Figure 26.
H

o
S

Figure 26: Audacity visualization of the activity at 315MHz when the lock button was pressed with the
automobile within range.

64

As can be seen in Figure 25 and Figure 26, the structure of the traffic at 315MHz was
similar whether or not the automobile was within range or not. This indicated that
the system being analyzed might be unidirectional. The waveform produced by the
remote can be analyzed further by zooming in as seen in Figure 27.

]| - N A
=Y vy I

Figure 27: Magnified portion of the waveform produced by the remote as visualized using audacity.

From this waveform, it is clear that the frequency is constant, and the amplitude of
the wave takes on only two discrete values (high and low for our purposes). This is
an indication that some form of amplitude modulation is being used. The flow graph
shown in Figure 22 can be modified by the addition of an amplitude demodulation
block as shown in Figure 28 to recover the original signal before amplitude
modulation.

WX GUI FFT Sink
Title: FFT Plot
Sample Rate: 32k
Options Baseband Freq: 0
1D: top_block Y per Div: 10 dB
Generate Options: WX GUI —»{ii] ¥ Divs: 10
Ref Level (dB): 0
Ref Scale (p2p): 2
UHD: USRP Source FFT Size: 1.024k
Variable Samp Rate (Sps): 32k Refresh Rate: 1
ID: samp_rate Cho: Center Freq (Hz): 315M Freq Set Varname: None
Value: 32k ChO: Gain (dB): 0
AM Demod
Channel Rate: 32k Wav File Sink
WX GUI Slider Audio Decimation: 1 |out| n File: ...cer/Desktop/real.wav
1D: frequency Audio Pass: 1k Sample Rate: 32k
Default Value: 315M Audio Stop: 2k Bits per Sample: 8

Minimum: 314M
Maximum: 316M
Converter: Float

WX GUI Scope Sink
Title: Scope Plot
Sample Rate: 32k
Trigger Mode: Auto

Y Axis Label: Counts

Figure 28: Modified version of the flow graph depicted in Figure 22 to include an amplitude
demodulation block.

The flow graph depicted in Figure 28 was executed again and the remote button
pressed to obtain the original waveform as depicted in Figure 29.

Figure 28 during a remote button press.

Zooming in on the waveform shows the possibility of sections of binary encoded
data as seen in Figure 30.

64

1.0

VZ';.PHUHUMUMUHUMUMUMUMUHUMUMUHUMUMUMU RIS RS

Figure 30: A portion of the amplitude demodulated signal shown in Figure 29.

This portion of the signal displayed in Figure 30 seems to indicate that the data is
being encoded by some form of Manchester encoding because there appears to be
only four symbols (high, low, high-high, low-low). Some additional information can
be derived from the Audacity visualizations if Manchester encoding is assumed and
are summarized in Table 5.

Table 5: Summary of the characteristics of the remote observed using the SDR and visualized using
Audacity in the order they were observed.

\ Observed Pattern Length \
33% Duty cycle 250 Time Periods
Silence 258 Time Periods
33% Duty Cycle 28 Time Periods
Silence 10 Time Periods
Variable Data 1 32 Manchester Encoded Bits
Fixed Data 1 33 Manchester Encoded Bits
Variable Data 2 2 Manchester Encoded Bits
Silence 258 Time Periods
Variable Data (Matches Variable Data 1) 32 Manchester Encoded Bits
Fixed Data (Matches Fixed Data 1) 33 Manchester Encoded Bits
Variable Data (Matches Variable Data 2) 2 Manchester Encoded Bits

5.3 RF Remote Internals
More information about the remote itself can be obtained by disassembling it and

identifying the components used in its construction. The internal design of the
remote can be seen in Figure 31.

64

Figufe 31: Internal circuitry back and front) of the remote used in the system in which the attack will be
carried out on.

There is one main chip on the front of the board labeled 1507176-026 0435 as seen
in Figure 31. Unfortunately, a query of the popular datasheet databases for the main
chip yielded no results (AllDataSheet, 2013) (Datasheets: Electronic parts info,
2013). This may have been an attempt by the manufacturer to obtain some security
through obscurity. A closer look at the main chip on the board reveals the Microchip
logo, indicating that Microchip Technology Inc. is the manufacturer of the chip.
Microchip owns the rights to the KeeLoq technology and produces a line of
unidirectional RF remotes with product codes starting with the letters HCS. A query
of the datasheet database for all HCS series chips manufactured by Microchip yields
one chip that matches the characteristics observed using the SDR as shown in Table
5 (HCS361 Datasheet, 2002). The HCS 361 from Microchip uses KeeLoq technology
with a 32 bit hopping code, 28 bit serial number, a 1 bit low battery warning, and a 2
bit CRC. The 32 bit hopping code varies from transmission to transmission, while
the 28 bit serial number remains fixed. Therefore, any transmission can be fully
described and reproduced with just 67 bits. According to the HCS 361 datasheet,
there are two methods in which data can be encoded, PWM and VPWM. Looking at
the definition of VPWM from the datasheet reveals that it is just really Manchester
encoding.

64

6. Jam and Replay Hybrid System Design

6.1 Jammer

A very simple and cost effective jammer can be designed with only a few
components. In this case one will be constructed from a lithium ion battery, a
315Mhz AM Transmitter module, and a switch. The layout of the components can be
seen in Figure 32.

o ¢

Switch

— ANT

vee 315Mhz Transmitter Module

—1__ Lithium lon Battery
T 3V

GND

Figure 32: 315MHz jammer schematic based off of a 315Mhz AM Transmitter module.

The actual cost of this design is very small, as can be seen from the bill of materials
listed in Table 6.

Table 6: Cost of the components seen in the jammer design of Figure 32.

Item Supplier Cost(Canadian Funds)
315 MHz AM Transmitter Module Canada Robotix $3.99
SPDT Slide Switch Canada Robotix $0.79
Lithium lon Battery (3.71V - 1600mah) Ebay $2.99
Total $7.77

6.2 Transmission Interception and Interpretation

The signal from the authorized transmitter can be intercepted with the use of an
USRP2 and GNU Radio. The signal will have to be decoded using custom signal
processing blocks so that it may be replayed later. The exact details of the
transmission protocol are well defined in the HCS 361 datasheet (HCS361
Datasheet, 2002). Each part of the transmission will be handled by parameterized
blocks whose descriptions will follow.

6.2.1 Duty Cycle Identification block

The 33% duty cycle that begins each transmission from the HCS 361 was originally
designed to aid in waking up receiving hardware. It will be used in this context to
mark the beginning of the transmission. A GNU Radio block will be developed that is
able to identify duty cycles of arbitrary length, percentage and trailing silence.

64

Before the block sees the duty cycle, it a does not allow samples to pass through.
After the duty cycle has been processed by the block, it allows samples to pass
through it until a parameterized amount of silence has been seen. This block
operates by keeping track of the amount of samples that are above a certain
threshold(high), and the number of samples that are below a certain threshold(low).
When a parameterized number of peaks have been seen, the block computes the
percentage of time the samples were high (the percentage of the duty cycle). If this
percentage is within an error value of the parameterized duty cycle percentage, the
duty cycle is accepted and samples pass through the block until a parameterized
length of silence has been seen. Since the signal being given as input to the block is
assumed to already have been AM demodulated, the block accepts floating point

samples as input. A summary of the block and its parameters can be seen in Figure
33.

; | e
Float | 3

PRS- .

FEal \ p P
[Numbe.t™ o%

Figure 33: Summary of the duty cycle identification block and its parameters.

The block itself is really a finite state machine which is visualized along with it’s
transitions in Figure 34.

i é.:\bu;m AR % oty Gicle.,
{ ; | \JALY eyt
| Duty

d

(VY

Figure 34: Finite state machine description of the duty cycle identification block.

6.2.2 Sync Header Identification Block
According to the HCS 361 datasheet, the sync header is an additional 33% duty cycle
and period of silence that occurs right before the 67 bits of data is transmitted. In

64

order for Manchester encoded data to be decoded later on, there must be some
definition of how long one time period is. The purpose of the sync header is to
provide this definition. The sync header is known to be 28 time periods long by
looking at the datasheet. Therefore, if the sync header block computes the length of
the header and divides by 28, it will obtain the length of a single time period. A
generalized version of the sync header block will be constructed that takes the
length of the sync header, silence and duty cycle as a parameter. The sync header
block does not actually decode any of the Manchester encoded data itself, the
responsibility is left to the next block in the chain. The advantage of this design is
that the sync header block can be reused if another remote uses say PWM encoded
data instead. Once the elementary time period has been found by the sync header
block, how does it notify the block that is actually performing the data decoding?
The answer is stream tagging. GNU Radio provides a channel running parallel to the
stream of samples that allow blocks to attach metadata to the samples. Therefore,
when the sync header identification block determines the elementary time period
length, it adds a tag to the stream of samples so that the next block in the chain will
receive the tag and be able to decode the data. A summary of the block and it’s
parameters can be seen in Figure 35.

Figure 35: Summary of the sync header identification block and its parameters.

This block can also be expressed as a finite state machine as seen in Figure 36.

64

AUt
Pulées,

Figure 36: Finite state machine description of the sync header identification block.

6.2.3 Manchester Decoding Block

There are 67 bit's of Manchester encoded data as per the HCS 361 datasheet
(HCS361 Datasheet, 2002). To decode these bits a signal processing block will be
required. The block will take as its input a stream of samples and output binary
data. One requirement is that it receives a stream tag notifying it of the length of one
time period. Once this has occurred it will begin to output a stream of binary data
until the input stream no longer contains Manchester encoded data. If the stream is
silent for more than two time periods, this is a good indication that there is no more
data because a Manchester signal is quiet for at most two time periods. The block
can also be represented as a finite state machine as seen in Figure 37.

S ey

Awaitiag e U
Llementaty) L priasttnt 2

oo AGLEIVE@A,

Oe(

{ S“"(’G—m "\ 16&3

“”" TN o

Figure 37: Finite state machine representation of the Manchester decoding block.

6.2.4 Interception Flow Graph
The interception process is broken up into two parts. During the first part, the signal
will be recorded to a file sink using a high level design as seen in Figure 38.

Figure 38: High-level overview of the transmission recording flow-graph.

64

In the second part, each of the signal processing blocks that are being designed must
be linked together to extract the 67-bit sequence that represents the transmission
as shown in Figure 39.

s o 7 ——
‘ Sync |

| YV I ! i | Nanchesre

\1 i \\/ 1 e~
) | Ve io\
I Tcotdle > s l L TP P = —)

VTR TY L S I N A e ol
NMELE

i

Figure 39: Flow graph designed to allow decoding of the 67-bit code from the HCS 361.

The output from this flow graph is the 67-bit code that was transmitted by the
authorized transmitter, this will then be transferred to the replay hardware via a
serial connection.

6.3 Replay Hardware

To do replay of the captured signal without the use of a SDR, a 315MHz AM
transmitter will be required, along with a microcontroller to instruct the transmitter
on how to reproduce the signal. Each transmission that is decoded by the signal
processing blocks of this project produces a 67-bit representation of that
transmission. In order to transfer this representation from the PC to the
microcontroller, a serial connection will be used. A schematic of the board that will
be constructed can be seen in Figure 40.

64

LED Resed

e |
gt;)\"("ﬁ‘/\

7KL 7]

:
|
Yellow LED

l ‘ M
Vv T ? :{
@qﬂ; (A y = 3
< 6
9 a

Figure 40: Schematic of the board that will be used to carry out the replay portion of the attack at
315MHz.

The MSP430 from Texas Instruments has been selected as the microcontroller for use in the replay

use in the replay attack due to its low cost and low power consumption. This microcontroller is
microcontroller is connected to the same 315MHz AM transmission module that was used in the jammer
was used in the jammer design. To transfer the 67 bit representation of the transmission to the MSP430,
transmission to the MSP430, a USB 2.0 to TLL UART module will be used. A detailed bill of parts for the
bill of parts for the replay hardware can be found in

64

Table 7.

41

Table 7: Bill of parts for constructing the replay hardware shown in the schematic of Figure 40.

Item Supplier Cost (Canadian
Funds)
315 MHz AM Transmitter Module Canada Robotix $3.99
LEDx2 Canada Robotix $0.60
Momentary Pushbutton x 2 Canada Robotix $0.98
Voltage Regulator (3.3V, 0.8A) Canada Robotix $0.99
47k Resistor Canada Robotix $0.10
MSP430 Launchpad Value Line Texas Instruments $4.30
Development Kit
Multi-purpose PC Board The Source $4.99
USB 2.0 To TTL UART Module Ebay $7.25
9V Battery Walmart $2.99
Plastic Enclosure Polycase $3.49
Total $29.68

There will be a red and yellow LED on the board. In the initial state, the red LED will
be lit, indicating that the board is still waiting for a serial transmission. When the
67-bits of transmission information has been received, the light changes its color to
yellow, indicating that it is waiting to replay. When the replay pushbutton is
pressed, the replay process will begin and the transmission will be made every five
seconds indefinitely. By pressing the reset button, the board returns to the initial
state of waiting to be programmed.

6.4 Replay Software

The replay hardware contains a MSP430 microcontroller which will be responsible
for accepting a 67-bit transmission information block serially, as well as replay the
transmission corresponding to that information. As previously stated, there are two
states in which the board can be. A high level overview of the replay software
operation can be seen in Figure 41.

42

R)

. Au)m%\i’\g ﬂ.&é\éﬁy g Replay Roton
| ’

Secial | Secial {(’aﬁg?g(\) To

e) - \ i
Tronsler Rep ey | i
¥] .] i 2
N : v
. w\% e @ <& e
t&S & mfw R ukun P &.

Feser Rotton Vi€s™

Reser Rutten
plessec

Figure 41: High-level overview of the operation of the software executing on the replay board.

6.5 System Overview

A high level overview of the components of the system can be seen in Figure 42.

R@QQ(‘;& DEECOGQ-@ R@Pia\«\/
- ‘ (gl
[CanSmission 1o n S 0
Flow Flow | Board.
Groph | G(m?\/\; ‘
fumme("

Figure 42: High-level overview of the components of the hybrid jam, intercept, and replay system

43

7. Jam and Replay Hybrid System Implementation

7.1 Jammer

Before the jammer shown in Figure 32 was finalized, it was prototyped on
breadboard using jumper wires as shown in Figure 43. This design included
additional components such as an antenna and a 9V battery.

Figure 43: Prototype jammer laid out on breadboard.

This design was found to be overkill as it not only stopped entry to the target
automobile, but also automobiles within a radius of approximately 10m. For this
reason, the antenna was removed from the design and the battery was switched
from 9V to 3.71V. The new lithium ion battery is rechargeable via the USB mini B
connector. The components of the final device were soldered together with minimal
connecting wires to create a low profile product.

44

Figure 44: Final jammer design construction after soldering was completed.

The battery provides significant rigidity such that a dedicated enclosure is
unnecessary. The jammer was finalized by the addition of hot glue and electrical
tape. The final jammer can be seen in Figure 45.

45

Figure 45: Final jammer construction after encapsulation in hot glue and electrical tape.

The jammer operates by constantly emitting a sinusoidal signal at 315MHz which
can be visualized using the GNU Radio scope plot as seen in Figure 46.

46

Scope Plot [eht cha

1.5

Counts
o

8 10 12 14 16 18 20 22 24
Time (ms)
Figure 46: Visualization of the output of the jammer at 315MHz using the GNU Radio scope plot.

7.2 Transmission Interception and Interpretation

Signal-processing blocks were implemented in C++ using GNU Radio. Test code for
each of the blocks was written in python. There exists a useful tool that
automatically sets up the build and test environments for developers of signal
processing blocks called ‘gr_modtool’ (Development Tools, 2013). The blocks
themselves need to be created within a module, a module is simply a collection of

related signal processing blocks. A new module entitled gr-keyfob was created using
gr_modtool via the following command.

spencer@spencer-MacBookPro:~/Desktop$ gr_modtool newmod keyfob
Creating out-of-tree module in ./gr-keyfob... Done.

Use 'gr_modtool add' to add a new block to this currently empty module.

The tool automatically creates an organized system of folders within your module.
Notable folders are the ‘lib’ folder, which contains all of the C++ code, the ‘include’

folder, which contains all header files, and the ‘python’ folder, which contains all of
the python code.

7.2.1 Duty Cycle Identification block

To create the duty cycle identification block, gr_modtool was invoked again as
follows.

47

spencer@spencer-MacBookPro:~/Desktop/gr-keyfob$ gr_modtool add wake_on_duty_cycle
GNU Radio module name identified: keyfob

Enter code type: general

Language: C++

Block/code identifier: wake_on_duty_cycle

Enter valid argument list, including default arguments: float duty, int pulseCount
Add Python QA code? [Y/n] Y

Add C++ QA code? [y/N] N

Adding file 'wake_on_duty_cycle_impl.h'...

Adding file 'wake_on_duty_cycle_impl.cc'...

Adding file 'wake_on_duty_cycle.h'...

Editing swig/keyfob_swig.1i...

Adding file 'qa_wake_on_duty cycle.py'...

Editing python/CMakelLists.txt...

Adding file 'keyfob_wake_on_duty_cycle.xml'...

Editing grc/CMakelLists.txt...

Executing this command gives a series of questions about the type of processing
block being created, as well as its parameters. After completing this block
questionnaire, skeleton code for both the C++ processing block and the python test
code was automatically created by the tool. The signal processing block was
implemented as a finite state machine as displayed in Figure 34. Implementing the
block was done according to the guidelines and instruction given in a tutorial on
out-of-tree modules (Martin Braun, 2013). Testing of the block was performed by
taking demodulated 1/Q data captured from an authorized remote transmission and
feeding it through the block as shown in Figure 47.

e

ag—
2 !
5

Figure 47: Diagram depicting the signal processing blocks used in testing the duty
cycle identification block.

Note the use of the throttle block, this is important because without it, the graph will
try and process samples as fast as it possibly can. When the graph is executing
without a throttle, it often leads to the system locking up until processing is
complete. Initially it was thought that avoiding system lockup was the only reason
to include a throttle, therefore it was often left out to speed up the rate at which unit
tests could be executed. This was however not the case, when a throttle is omitted, it
can lead to samples being dropped, causing the tests themselves to fail. Throttles are
not always necessary in flow graphs, for instance, when a USRP source is placed at
the head of the flow graph, it generates samples at a particular sample rate. This rate
is slow enough that most flow graphs can handle processing the data from it in real
time.

7.2.2 Sync Header Identification Block
To create the sync header identification block, gr_modtool was invoked again as
follows.

48

spencer@spencer-MacBookPro:~/Desktop/gr-keyfob$ gr_modtool add vpwm_sync
GNU Radio module name identified: keyfob
Enter code type: general
Language: C++
Block/code identifier: vpwm_sync
Enter valid argument list, including default arguments: int syncPulsesP, int quietPulsesP
Add Python QA code? [Y/n] Y
Add C++ QA code? [y/N] N
'vpwm_sync_impl.h'...
'vpwm_sync_impl.cc'...
'vpwm_sync.h'...
Editing swig/keyfob_swig.1i...
Adding file 'ga_vpwm_sync.py'...
Editing python/CMakeLists.txt...
Adding file 'keyfob_vpwm_sync.xml'...
Editing grc/CMakeLists.txt...

The block was implemented as a finite state machine as shown in Figure 36. One of
the newer features that was made use of in this block was stream tagging. This
allows the header block to take note of the time period length, and to pass it
downstream where it can be used at the Manchester decoding block. Information
about stream tagging and block coding style was obtained from the blocks coding
guide from GNU Radio (Tim Monahan-Mitchell, 2013). Testing of this signal-
processing block was performed by passing the block samples from an actual
authorized remote whose time period is known. The time period passed
downstream via stream tagging was then verified against the known time period. A
depiction of the flow graph used for testing this block can be seen in Figure 48.

N | i

S

é
S

= | - W 1)
e ——-—— = | i e L =S | F— e

Figure 48: Visualization of the flow graph used in testing the sync header identification block

7.2.3 Manchester Decoding Block
To create the Manchester decoding block, gr_ modtool was invoked one final time.

spencer@spencer-MacBookPro:~/Desktop/gr-keyfob$ gr_modtool add vpwm_demod
GNU Radio module name identified: keyfob

Enter code type: general

Language: C++

Block/code identifier: vpwm_demod

Enter valid argument list, including default arguments: int defaultTimePeriod
Add Python QA code? [Y/n] Y

Add C++ QA code? [y/N] N

Adding file 'vpwm_demod_impl.h'...

Adding file 'vpwm_demod_impl.cc'...

Adding file 'vpwm_demod.h'...

Editing swig/keyfob_swig.1i...

Adding file 'gqa_vpwm_demod.py'...

Editing python/CMakelLists.txt...

Adding file 'keyfob_vpwm_demod.xml'...

Editing grc/CMakelLists.txt...

49

The block was implemented as a finite state machine as per Figure 37. To construct
the unit test for this decoding block, an actual transmission was taken from an
authorized remote and fed through the flow graph shown in Figure 49.

e T

Cpyrtp m B> Theot+ie > : i =

Figure 49: Visualization of the flow graph used in testing the Manchester decoding block.

The actual transmission being fed into the flow graph was decoded by hand in
Audacity to obtain the 67 bits of data that represents the transmission. The product
of the flow graph is then checked against the known 67 bits determined by hand.

7.2.4 Interception Flow graph

The interception process was broken up into two steps. In the first step, the
transmission from the remote would be isolated from the jamming signal using pass
band filtering. AM demodulation was then applied and the final signal was recorded
to a file sink. This flow graph was constructed in GRC and can be seen in Figure 50.

WX GUI FFT Sink
Title: FFT Plot
Sample Rate: 32k
Baseband Freq: 0

Y per Div: 10 dB
=[] Ypivs: 10 File Sink
RefLevel (dB): 0 in | File: ...er/Desktopftest.data
AM Demod
: Unbuffered: Off
Channel Rate: 32k Ref Scale (p2p): 2

FFT Size: 1.024k

Audio 1 Refresh Rate: 1

Audio Pass: 1k

El

Variable Options Audio Stop: 2k Freq Set Varname: None
ID: samp_rate ID: top_block
Value: 32k Generate Options: WX GUI
Wav File Sink
i Multiply Const o File: ...cer/Desktop/real.wav
Band Pass Filter Constant: 3 Sample Rate: 32k
Decimation: 1 Bits per Sample: 8

UHD: USRP Source
Samp Rate (Sps): 32k
ChO: Center Freq (Hz): ...89M
ChO: Gain (dB): 0

ChO: Bandwidth (Hz): 1k

Gain: 12

Sample Rate: 32k
Low Cutoff Freq: 1 -
High Cutoff Freq: 2.5k
Transition Width: 10
Window: Hamming
Beta: 6.76

WX GUI Slider
1D: frequency
Default Value: 314.89M
Minimum: 314.2M
Maximum: 315.75M
Converter: Float

WX GUI Scope Sink
Title: Scope Plot
Sample Rate: 32k
Trigger Mode: Auto

Y Axis Label: Counts

Figure 50: Flow graph used in part one of the transmission interception process.

The second half of the interception process was implemented as a flow in python
rather than in GRC. When the flow graph completes its execution, the product is the
67-bits representing the received transmission. This transmission information is
then transferred serially over to the MSP430 serially using the pySerial library
(Liechti, 2010). The serial transfer was executed at 9600 baud with one stop bit.

50

7.3 Replay Hardware

The MSP430 describes a family of microcontrollers, many of which are capable of
the task at hand. The MSP430G2452 is one member of this family and was chosen
for its high availability and low cost. The features of the MSP430G2452 are outlined
in Table 8.

Table 8: Summary of the main features of the MSP430G2452.

\ Feature Specification \
CPU Architecture 16 bit RISC
CPU Speed 16 MHz
RAM 256 B
Flash Memory 8 KB
GPIO Pins 16
Supply Voltage 1.8-3.6V
Price ~$1

Initially the replay hardware was prototyped on breadboard without the use of a
serial connection as seen in Figure 51.

Figure 51: Initial prototype of the replay hardware used in the hybrid jam and replay attack.

51

The green LED used in this prototype was placed to indicate that power was being
delivered to the microcontroller, and the red LED is used to indicate that the replay
of a transmission was occurring. The 67 bits transmission information was manually
input into the source code of the software running on this prototype for testing
purposes. The second prototype was also developed on breadboard and included
the USB to TTL serial connection from a PC as shown in Figure 52.

Figure 52: Second prototype of the replay hardware used in the hybrid jam and replay attack.

The second prototype was successful the hardware was finalized by placing the

components on a PCB and soldering them in place as shown in Figure 53 and Figure
54.

52

Figure 53: Top side of the final board with all components connected.

Figure 54: Underside of the final board with all components connected. .

53

Figure 55: Installation of the hardware into the enclosure.

54

7.4 Replay Software

The MSP430 replay software was developed in C as per to the finite state machine
displayed in Figure 41. The software was compiled under Ubuntu Linux using a port
of the GCC compiler for the MSP430 (GCC toolchain for MSP430, 2013). The
software was then transferred to the MSP430 via the Texas Instruments Launchpad
as seen in Figure 56 in conjunction with the open source mspdebug (GCC toolchain
for MSP430, 2013).

Figure 56: Texas Instruments aunchpad.

Because the microprocessor only operates at 16MHz, CPU cycles must be used
sparingly if the desired signal is to be perfectly replicated. Originally, the software
was written using the watchdog timer peripheral, when the timer fired, an ISR
(Interrupt Service Routine) was called. The idea was to have the ISR called once at
the beginning of every elementary time period and then at that time, send the
appropriate data to the transmitter module. Unfortunately the clock source for this
timer was not accurate enough for the task and was heavily influenced by the value
of the data being sent to the transmitter module. The result was a transmission that
was very similar to that of the authorized remote, but not close enough to convince
the authorized receiver. The solution to this problem was to run the finite state
machine from the main application starting point instead of from the ISR. Timing
was provided by sleeping for a preconfigured number of clock cycles after each run

55

through of the finite state machine. This produced a transmission that was almost
identical to that of the authorized remote however the software was to slow, leading
to a replay that occupied too much time. A comparison of the duty cycles of the
authorized transmission versus the replay transmission can be seen in Figure 57.

Figure 57: Duty cycle of the authorized transmission versus the duty cycle of the replayed transmission.

Many things were optimized in an attempt to speed up its execution, however the
main optimization had to do with how inefficiently the modulus (%) operator was
being implemented. The removal of the modulus operator lead to a speed increase
that allowed the prototype to replay the transmission almost exactly as seen in
Figure 58.

Figure 58: Original transmission from authorized remote vs. Replay board transmission.

A closer look at a portion of the authorized transmission versus the replayed
transmission can be seen in Figure 59.

1.0
0.5

0.

-0.5
-1.0

Figure 59: Authorized transmission versus transmission replayed with the custom replay hardware.

8. Results and Testing

8.1 Jammer

The jammer was tested by activating it and placing it in different concealed
locations on the automobile. It was determined that the antenna on the roof of the
automobile used for FM radio reception was also being used to pick up
transmissions from the remote. The jammer was successful, no matter how close the
remote was brought to the antenna on the roof, as long as the jammer was
anywhere within a 3m radius of the automobile.

8.2 Close Range Attacker
One attack scenario that was tested involved the attacker being within a reasonably

close distance to the automobile being attacked, the first one can be seen in Figure
60.

2,5m

Figure 60: First attack scenario used for testing the system.

Because the jammer is small, it was adhered underneath a panel on the trunk lid
where it was out of sight and activated. The software defined radio hardware was
placed 3.5m from the front bumper of the automobile. The simulated victim
approached the car from the side and when they became within range of the
automobile, the recording flow graph was executed. When the simulated victim
reached the 3.5m mark, they were instructed to press the unlock button on the
remote. The automobile did not unlock due to the fact that the jammer was
activated. The button press could be observed on the FFT and the flow graph was
terminated soon after. The simulated victim could still use their physical key to
unlock the car and retrieve what they came for. The simulated victim leaves their
automobile thinking that their remote battery is dead and does not fear that their

57

automobile security has been compromised. The output of the recording flow graph
was then used as input to the transmission decoding software, the software
successfully decoded the 67-bits of information and transferred it to the replay
hardware via a serial connection.

spencer@spencer-MacBookPro:~/Desktop/Dropbox/FINALS sudo ./test.sh
Decoding Hopping Code From ./test.data

Sending data to replay hardware over /dev/ttyUSBO
Baud Rate: 9600
Code Sent: 100110001000011011111011101111111160111101110101101111110101110101001

The replay hardware was disconnected from the computer and the jammer was
deactivated. The replay button was pressed and within a couple of seconds, the
automobile unlocked, giving unauthorized access to it. This process was repeated
five times with success each time. The key settings that were used in the recording
flow graph for this scenario can be seen in Table 9.

Table 9: Settings used to successfully record transmissions using the recording flow graph in the short
range attacker scenario.

Property Value
Frequency 314.89 MHz
Band-pass Filter Gain 12 dB
Multiply Const 2

8.3 Long Range Attacker
The distance of the software defined radio from the automobile was increased from
3.5m to approximately 9m as shown in Figure 1.

0

m

Figure 61: Second attack scenario used to test the system.

The testing was conducted again as described above with different flow graph
settings as outlined in Figure 10.

58

Table 10: Settings used to successfully record transmission using the recording flow graph in the
scenario described in section 8.3.

Property Value
Frequency 314.89 MHz
Band-pass Filter Gain 12 dB
Multiply Const 3

Notice that in the longer-range attack, a larger value was required for the multiply
const field. This is because the strength of the signal gets weaker as the victim
moves further away.

8.4 Directional Antenna Failure

Originally the plan for implementing this attack was to use directional antenna for
jamming and intercepting the signal as shown in Figure 19. A three director Yagi
antenna was constructed for this purpose according to the specifications provided
in a document put out by the National Bureau of Standards on Yagi antenna design
(Viezbicke, 1976). The Yagi was designed specifically for 315MHz operation and the
attempt can be seen in Figure 62.

Figure 62: Failed attempt to build an effective Yagi at 315 MHz.

59

A senior hockey stick was used as the boom, each element was constructed of coat
hanger metal, and a right angle SMA coax cable was soldered on to provide a
connection from the driven element to the USRP. The driven element and the
reflector were capable of moving along the boom to allow for adjustment at the time
of testing. When testing the Yagi, the antenna was found to be marginally different
from the isotropic antenna. The Yagi did not provide a way to focus on the
transmitter’s signal and ignore the jammer’s signal, it failed horribly at this. This
failure was a huge step back for the project however it ended up being the best thing
to happen to this project because it led to the use of pass-band filtering which is
performed in software and requires no additional hardware.

60

9. Improvements
9.1 Improvements to the Hybrid Jam and Replay Attack

9.1.1 Band-reject Filtering

The project currently uses pass-band filtering to ensure that the transmission from
the authorized remote is picked up and not the jamming signal. The problem with
this is that the attacker must first determine the frequency at which the victim’s
remote operates, this can be done easily enough but is truly unnecessary. The
attacker creates the jamming hardware and knows the exact frequency at which it
operates, therefore it would be much more appropriate to use band-reject filtering
to block out just the jamming signal.

9.1.2 Adding Blocks to GRC

The three blocks developed for use in this project can only be used by writing
python flow graphs, it would make the blocks more easily reusable and easier to
experiment with if they were moved into GRC. Doing this is as simple as creating a
few XML files containing metadata that tells GRC about the blocks.

9.1.3 Floating Point Bits

Currently the Manchester decoding block produces the 67 bits as floating point
values, either 0.0f or 1.0f. This is both inefficient and confusing to other developers.
Ideally this block would either produce integers or it could be made into a sink block
and the bit stream could be sent to a message queue. Currently, when the decoding
flow graph executes, it must iterate over all samples and terminate before the bits
can be sent serially to the replay hardware. If message queues were used, the 67 bits
of transmission information could be sent to the replay hardware as soon as they
are decoded.

9.1.4 External Oscillators

The MSP430 is running code that wastes CPU cycles as a timing mechanism. This is
very power inefficient because the MSP430 could be put in a low power state and
told to return after a certain amount of time instead. The problem with this route
was that the accuracy of the clocks used on board the MSP430 was determined to be
insufficient. The solution to this problem would be to attach an external 16MHz
oscillator between the XIN and XOUT pins which ere designed for exactly this
purpose.

9.2 Improvements to RF Remote security

Due to the attacks presented in this report, it is recommended that unidirectional
remotes be discontinued from use in security sensitive areas. Most PKES systems
are still vulnerable to the latest replay attacks. A better solution would be to keep
the challenge response protocol and keep the button presses that are required in
PKES systems.

61

62

10. Conclusion

It was shown that implementing a hybrid jam and replay attack can be done for less

than 508. Filtering was determined to be the most effective method for extracting
the transmitted signal from the authorized remote when a jammer is in operation.
Implementing this hybrid attack in a budget friendly manor was a great learning
experience, however it is only a matter of time before software defined radio
hardware that can transmit at 315MHz becomes available. When this does happen,
it will allow ill willed people to carry out a purely SDR based jam and replay attack
without the need for much technical skills at all.

63

Bibliography

AllDataSheet. (2013). AllDataSheet.com - Datasheet search site for electronic
components and semiconductors. Retrieved June 27, 2013, from AllDataSheet:
http://www.alldatasheet.com

Audacity. (2013). Audacity: Free Audio Editor and Recorder. Retrieved June 26, 2013,
from SourceForge.

Aurelien, F., Boris, D., & Srdjan, C. (2010). Relay Attacks on Passive Keyless Entry
and Start Systems in Modern Cars.

Barbeau, M. (2013). Software Readio for Experimenters with GNU Radio, Octave and
Python. Ottawa, Ontario, Canada.

Broekhuis, D. (2011). Feasibility Study of Eavesdropping Using GNU Radio. 15th
Twente Student Conference on IT. Enschede.

Commission, F. C. (2013). OET - FCC ID Search. Retrieved May 15, 2013, from Federal
Communications Commission: http://transition.fcc.gov/oet/ea/fccid/

Datasheets: Electronic parts info. (2013). Retrieved June 27, 2013, from Datasheets:
http://www.datasheets.com

DeBruhl, B. a. (2011). Digital Filter Design for Jamming Mitigation in 802.15.4
Communication. Computer Communications and Networks (ICCCN), 2011 Proceedings
of 20th International Conference on Computer Communications and Networks (pp. 1-
6). Maui: Institute of Electrical and Electronics Engineers (IEEE).

Development Tools. (2013). Retrieved July 6, 2013, from The Comprehensive GNU
Radio Archive Network: https://www.cgran.org/wiki/devtools

GCC toolchain for MSP430. (2013). Retrieved July 12, 2013, from SourceForge:
http://sourceforge.net/projects/mspgcc/

HCS361 Datasheet. (2002). Retrieved June 27, 2013, from Microchip Inc.

Kasper, M., Timo, M., & Amir, P. (2009). Breaking KeeLoq in a Flash: On Extracting
Keys at Lightning Speed. Proceedings of the 2nd International Conference on
Cryptology in Africa: Progress in Cryptology (pp. 403-420). Berlin: Springer-Verlag.
Kent, R. D. (2002). Acoustic Analysis of Speech. American Scientist , 250-255.
Liechti, C. (2010). Welcome to pySerials Documentation. Retrieved August 18, 2013,
from SourceForge: http://pyserial.sourceforge.net

Martin Braun, G. W. (2013). Out of Tree Modules. Retrieved July 8, 2013, from GNU
Radio: http://gnuradio.org/redmine/projects/gnuradio/wiki/OutOfTreeModules
Novotny, M., & Kasper, T. (2010). Crypanalysis of KeeLoq with COPACOBANA.

Tim Monahan-Mitchell,]. B. (2013). Blocks Coding Guide. Retrieved July 8, 2013,
from GNU Radio:
http://gnuradio.org/redmine/projects/gnuradio/wiki/BlocksCodingGuide
Ubuntu. (2013, May 29). The world's most popular free OS. Retrieved 2013, from
Ubuntu: http://www.ubuntu.com

Viezbicke, P. P. (1976). Yagi Antenna Design. Boulder, Colorado, United States.

Xu, W. a. (2005). The feasibility of launching and detecting jamming attacks in
wireless networks. Proceedings of the 6th ACM international symposium on Mobile ad
hoc networking and computing (pp. 46-57). Urbana-Champaign: ACM.

Yagi, H. (1928). Beam Transmission Of Ultra Short Waves. Proceedings of the
Institute of Radio Engineers, 16 (6), 715-740.

64

65

