
1 Mobile, Distributed, and Pervasive
Computing

Michel Barbeau

Abstract

Pervasive computing can be defined as access to information and software appli-
cations anytime and anywhere. This form of computing is highly dynamic and
disaggregated. Users are mobile and services are provided by collections of dis-
tributed components collaborating together. Recent advances in mobile computing,
service discovery, and distributed computing are key technologies to support perva-
sive computing.

This chapter is about software technologies designed to address problems in
mobile, distributed, and pervasive computing. Characteristics of pervasive computing
applications are reviewed. Architecture of pervasive computing software is discussed.
Key open communication technologies to support pervasive computing are presented
in detail, namely, service discovery and distributed computing.

1.1 INTRODUCTION

Pervasive computing aims at availability and invisibility. On the one hand, pervasive
computing can be defined as availability of software applications and information
anywhere and anytime. On the other hand, pervasive computing also means that
computers are hidden in numerous so-called information appliances which we use in
our day-to-day life [Bir97], [Wei91], [Wei93]. Personal Digital Assistants (PDAs)
and cell phones are the first widely available and used pervasive computing devices.
Next generation devices are being designed. Several of them will be portable and
even wearable, such as glass embedded displays, watch PDAs, and ring mouses.

Several pervasive computing devices and users are wireless and mobile. Devices
and applications are continuously running and always available. From an architectural
point of view, applications are non-monolithic, but rather made of collaborating
parts spread over the network nodes. These parts are hereafter called distributed
components. As devices and users move from one location to another, applications
must adapt themselves to new environments. Applications must be able to discover
services offered by distributed components in new environments and dynamically

i

ii

reconfigure themselves to use these new service providers. From a more general
point of view, pervasive computing applications are often interaction transparent,
context aware, and experience capture and reuse capable. Interaction transparency
means that the human user is not aware that there is a computer embedded in the
tool or device that he or she is using. Context awareness means that the application
knows, for instance, the current geographical location. An experience capture and
reuse capable application can remember when, where, and why something was done
and can use that information as input to solve new tasks.

Pervasive computing is characterized by a high degree of heterogeneity: devices
and distributed components are from different vendors and sources. Support of
mobility and distribution in such a context requires open distributed computing ar-
chitectures and open protocols. Openness means that specifications of architectures
and protocols are public documents developed by neutral organizations. Key specifi-
cations are required to handle mobility, service discovery, and distributed computing.

In this chapter, we review the main characteristics of applications of pervasive
computing in Section 1.2, discuss the architecture of pervasive computing software
in Section 1.3, and review key open protocols in Section 1.4.

1.2 PERVASIVE COMPUTING APPLICATIONS

Characteristics of pervasive computing applications have been identified as, namely,
interaction transparency, context-awareness, and automated capture of experiences
Abowd [Abo99].

Pervasive computing aims at non-intrusiveness. It contrasts with the actual non-
transparency of current interactions with computers. Neither input-output devices
nor user manipulations are natural. Input-output devices such as mouses, keyboards,
and monitors are pure artifacts of computing. So are manipulations such as launching
a browser, selecting elements in a Web page, setting up an audio or video encoding
mechanism, and entering authentication information (e.g., a login and a password).

Biometrics security is a field aiming at making authentication of users natural.
It removes the login and password intermediate between the user and the com-
puter. To identify an individual, it exploits the difference between human bodies.
Authentication is based on physical measurements. To be usable, however, the mea-
surements must be non-invasive and fast. DNA analysis does not meet that criteria,
but fingerprint identification does. Other alternatives include facial characteristics,
voice printing, retinal, and typing rhythm recognition. Input biometric information
hardware and software are being marketed. It is interesting to note that practical
evaluations have reported that biometric input is often not recognized and needs
to be accompanied by a bypass conventional authentication procedure (login and
password) in case the biometric authentication fails [(Ed00].

Another example of interaction transparency is the electronic white-board project
called Classroom 2000 [Abo99]. An electronic white-board has been designed that
looks and feels like a white-board rather than a computer. With ideal transparency of

ARCHITECTURE OF PERVASIVE COMPUTING SOFTWARE iii

interaction, the writer would just pick up a marker and start writing with no plug in,
no login, and no configuration.

To achieve transparency of interaction, advanced hardware and software tools are
needed such as handwriting recognition, gesture recognition, speech recognition,
free-form pen interaction, and tangible user interfaces (i.e. electronic information is
manipulated using day to day physical objects).

Context awareness translates to adaptation of the behavior of an application as
a function of its current environment. This environment can be characterized as a
physical location, an orientation or a user profile. A context-aware application can
sense the environment and interpret the events that occur within it. In a mobile and
wireless computing environment, changes of location and orientation are frequent.
With pervasive computing, a physical device can be a personal belonging, identified
and long-term personalized to its user (such as a cell phone or a PDA) or shared
among several users and personalized solely for the duration of a session (such as an
electronic white-board).

The project Cyberguide [Abo99] is a pervasive computing application that exploits
awareness of the current physical location. It mimics on a PDA the services provided
by a human tour guide when visiting a new location.

Context-aware components can sense who you are, where you are, and what you
are doing and use that information to adapt their services to your needs. Mobility
and services on demand are greatly impacted by the location of the devices and the
requested services. Examples range from relatively rudimentary device following
services such as phone call forwarding to the location of the device, to more complex
issues of detecting locations of available services and selecting the optimal location
for obtaining the services, such as printing services.

The complexity of the problem increases when both the service users and the
service devices are mobile. These problems require dynamic and on-the-fly system
configuration. The dynamics of such system are complex because it requires not only
system reconfiguration and low level configuration, e.g., multiple communication and
security protocols, but also service detection and monitoring in order to provide the
best available services.

Capture and storage of past experiences can be used to solve new problems in the
future. Experiences are made of events and computers have the ability to record them
automatically. Human users only have to recall that information from the computer
when it is needed. For example, a context-aware electronic wallet could capture and
store locations, times, and descriptions of payments made by a traveler. Back home,
the traveler could use the recorded events to generate an expense report.

1.3 ARCHITECTURE OF PERVASIVE COMPUTING SOFTWARE

The engineering of pervasive computing software is discussed in Refs. [Abo99], [Abo96].
The software of pervasive computing applications is subject to the support of every
day use and continuous execution. Robustness, reliability, and availability are there-

iv

fore required. In the sequel, we focus on issues of software engineering for pervasive
computing that have to do with mobility and distribution.

An important issue that has been addressed is the architecture of mobile user-
interfaces [DRRD00]. Mobility, which most of the time implies wireless communi-
cation, brings additional issues, namely, narrow-bandwidth communications, limited
processing power, and restricted input/output devices (e.g. stylus based input, small
screens).

With pervasive computing, information pursues the user rather than the user
pursuing the information as with traditional desktop computing. This has been
addressed by a research system called Personal Information Everywhere (PIE) that
has been developed by Carmeli, Cohen, and Wecker [CCW00] to provide information
to mobile people within an organization. The architecture of this system consists of
consumers of information, PDAs running a PIE specific small kernel, and a supplier
of information, a central database server (written in XML). The consumer-to-supplier
communication is wireless.

An interesting aspect of this project is the partitioning of the processing between
a server and a PDA in order to cope with the light processing capabilities of the
latter. The model is called Mobile Application Partitioning. The kernel on the PDA
handles interaction with the user. A proxy runs on the server and handles the graphic
rendering and user event handling. There is one proxy per PDA. The main logic loop
is as follows. The proxy gets data from the database and prepares the layout of the
screen. The proxy sends messages to the PDA to render the layout of the screen.
Whenever a user-generated event occurs, a signal is sent from the PDA to the proxy.
The signal contains the identity of the event and the identity of the object on which
the event occurred. The handler of the event is the proxy. The result translates to
updates of the screen layout prepared in the proxy and rendered on the PDA.

1.4 OPEN PROTOCOLS

Open protocols are required by pervasive computing for establishing communication
and collaboration between distributed components in a global infrastructure-based
manner as well as in an ad hoc manner. Mobility, service discovery, and distributed
computing are issues that need to be addressed.

The problem of mobility of devices, from network to network, is not solved by
plain IP. It is, however, addressed by the mobile Internet Protocols (IPs). Mobile
IPs are discussed in more detail in Chapter 25 of this book. In the context of the
current chapter, it is worth mentioning that IPv6 is a better candidate than IPv4 for
pervasive computing [Pau01]. Indeed, pervasive computing puts enormous pressure
on the demand of IP addresses. The number of devices will be high and they will
be continuously running, hence there is little possibility of temporal sharing of IP
addresses as does DHCP. The 128-bit addresses of IPv6 can support considerably
more devices than IPv4 32-bit addresses of IPv4. There is a movement in the
wireless industry towards IPv6. For instance, the Third-Generation Partnership

OPEN PROTOCOLS v

Project (3GPP) [Pro01] has adopted IPv6 for their next generation of wireless network
specification.

In the subsequent subsection, we focus on application support protocols. Service
discovery and distributed computing are discussed in more detail.

1.4.1 Service discovery

Service discovery protocols are a key technology of pervasive computing. They
give to distributed components the capability to advertise and discover each other’s
services on a network. For instance, a PDA equipped with a service discovery
protocol, once attached to a network, can automatically discover a laptop advertising
an agenda synchronization service.

There are leading service discovery technologies: Service Discovery Protocol
(SDP) of Bluetooth [Blu99], Jini [Mic99b], Salutation [Con99], Service Location
Protocol (SLP) [GPVD99], and UpnP [Cor99].

In this subsection, we review access to services on an IP network and the highlights
of SLP and Jini. We also explore two related issues, namely, service selection
facilitation and security.

1.4.1.1 Access to services on an IP network To establish an association with
a server process from machine to machine on the Internet, the client requires the
IP address of the machine on which the server is running and the port number of
the socket on which the server is listening. In addition, the client needs to learn
and to run a protocol understood by the server. Services are often registered under
human readable names. Service names need to be mapped to machine names and
port numbers on which the services are offered. Often the name of the protocol
understood by the server is implicit in the name of the server (e.g. WWW implies
http).

A practice in IP networks for mapping service names to machine names on which
services are offered consists of naming conventions for machines offering services
(e.g. mailhost.scs.carleton.ca, ftp.scs.carleton.ca, www.scs.carleton.ca) and regis-
tered associations with a DNS of standard machine name and real machine address
or name (e.g. www.scs.carleton.ca is mapped to fusion.scs.carleton.ca). A drawback
of this approach is that only one machine per DNS can offer a service under a stan-
dardized name. A solution to this problem has been proposed [GV96]. It is called
DNS SRV Resource Records. It allows the mapping of a service name (as defined in
file /etc/services, e.g. FTP) to names of machines offering the service.

Machine names then have to be mapped to IP addresses. This translation relies
both on a local name server (DNS) and a local file listing associations of machine
name and IP address (file /etc/hosts on Unix).

For mapping service names to port numbers on which services are offered, port
numbers are standardized. Associations of service name to port number and transport
protocol name are stored in a local file (e.g. /etc/services on Unix).

This practice has an advantage. There are no requirements for special infrastruc-
ture for service location. That is, in-place naming services support service location.

vi

This approach has, however, several disadvantages. It is not possible to advertise
several service providers of the same service name (unless DNS SRV Resource
Records are used). Clients must be aware of naming conventions. Search by val-
ues of attributes is not supported. Machine names and port numbers are discovered
using different mechanisms. Updates need to be performed at two different places.
The introduction of new types of services requires standardization of new names.
Information may not be up-to-date. In other words, this solution lacks the generality
and dynamism required by the heterogeneous hardware and distributed components
of a pervasive computing environment. Service discovery protocols have been de-
vised to facilitate association of clients to servers in a heterogeneous and dynamic
environment.

1.4.1.2 Service Location Protocol A service may either be of hardware nature
(e.g. a network access point) or of software nature (e.g. a CORBA server). SLP is a
general protocol for the advertisement and discovery of network services at the scale
of an enterprise network. The service discovery process is of type yellow pages, that
is, services can be discovered by type name and by characteristics.

Characteristics of services are described by values given to named attributes. For
instance, a network access point would be described by the name of the protocol it
supports (e.g. IEEE 802.11), its speed (e.g. 11 Mbps), and encryption algorithm
(e.g. WEP). A service typeis a collection of services having a common nature (e.g.
all the access points) and sharing the same kinds of attributes (e.g. protocol, speed,
and encryption algorithm). In SLP, the information required by a client to establish
an association with a server is called a Service Access Point(SAP). A SAP typically
contains at least a protocol name and a machine name. It could also contain a port
number and the path to an executable file. A service advertisementis a structure
of information describing a service. It contains the service type name, values of
attributes, and SAP.

SLP is a mechanism for facilitating the association of entities that have services
to offer or that have needs for services. In the SLP model, there are three kinds of
entities: User Agent (UA), Service Agent (SA), and Directory Agent (DA). A UA
represents a consumer of services, an SA represents a provider of services, and a DA
represents a database of service advertisements.

SLP proposes two alternative architectures. The first involves only SAs and UAs
communicating directly with each other. With the aim of reducing network traffic, a
second architecture involves SAs, UAs, and DAs acting as central sources of service
advertisements in which SAs register services and UAs enquire about services.

A SAP is represented by a special type of URLs, called URLs of scheme ser-
vice: [GPK99], or a generic URL [BLFIM98]. The scheme service: is discussed in
more detail hereafter.

An URL of scheme service: is made of a service type (a name) and access
information:

"service:" service-type ":" service-access-info

OPEN PROTOCOLS vii

SLP has a notion of type of service with a two-level hierarchy and a notion of
instance of service. SLP concepts of type of service, hierarchy, and instance are
analogous to object-oriented concepts of class, inheritance, and object.

A two-level hierarchy consists of an abstract-type service at the top and one or
several concrete-type services at the bottom. An abstract-type service groups several
concrete-type services that provide the same function but through different protocols.
For instance, a banking service provided by distributed components is a function that
can be achieved by several different concrete remote method invocation protocols
such as IIOP and RMI. In this case, the abstract-type service is banking and the
associated concrete-type services are IIOP and RMI. A concrete-type name provides
the name of a protocol to use by a client to call a method on a distributed component.

Names of services are subject to standardization in order to achieve uniformity
from one system to another. An organization that standardizes service types and
names is called a naming authority. The authority from which a service name is drawn
can be explicitly specified. When it is unspecified, the default naming authority is
Internet Assigned Numbers Authority (IANA). It that case, the specified service type
must have been standardized by IANA, e.g http, ftp, and telnet. A naming authority,
can have the scope of an enterprise. The naming authority is identified by the name
of a company. Other conventions also apply. For example, authority name testis for
non-standardized services under test.

The formal syntax of the naming part (service-type) of an URL of scheme ser-
vice: encompassing the notions of abstract-type, concrete-type, and naming authority
is as follows:

abstract-type ["." naming-authority] ":" concrete-type

Here is an example of two concrete types of service grouped under the same abstract
type of service:

service:banking.demo:iiop

service:banking.demo:rmi

bankingis the abstract-type name and banking.demo:iiopand banking.demo:rmiare
concrete-type names. demo(stands for demonstration) is the naming authority. A
UA could issue a request for the abstract-type of service bankingand would receive
replies with the aforementioned two names. Both services do the same function
but through different protocols, i.e. either Internet Inter-ORB Protocol (IIOP) or
Remote Method Invocation (RMI). It is also possible to request by full name, both
abstract-type and concrete-type.

Organization of services in a two-level hierarchy is interesting because it makes
possible the grouping of services that are of the same kind, but accessible through
different protocols. If this flexibility is not required, a flat organization is possible as
well. In that case, types of services are said to be simple. The name (service-type)
of a simple-type of service is structured as follows:

simple-type ["." naming-authority]

Often, the part simple-type corresponds to the name of a protocol, e.g. http. Here
is another example where simple-type is not a protocol name:

viii

service:banking.demo

In that case, the name of the protocol that should be used to communicate with the
service must by inferred by some means, e.g. using preset conventions.

A URL of scheme service: also contains information required by the UA to
communicate with the SA, in addition to the protocol name. Access information
essentially consists of an address of a machine where the service is offered, an
optional path to a file (e.g. an executable program), and an optional list of attributes
representing additional information required to be able to contact the SA. The formal
syntax of a URL of scheme service: with access information is as follows:

"/" address-family "/" address-spec

["/" [url-path] [";" attribute-list]]

The part address-familyindicates the network protocol to be used. A double slash
"//", i.e. the field is empty, is for IP, at for Appletalk, and ipx for IPX.

The part address-speccontains a host name or an IP address and, optionally, a
port number.

The part url-path is specific to the protocol. For example, if the protocol is http,
the url-path is the name of a file containing an HTML page. Here is an example:

service:http://fusion.scs.carleton.ca/index.html

It is the SAP for a simple-type service named http. The address family is IP and
the address is fusion.scs.carleton.ca. The url path is index.html. The attribute list is
empty. It is important to stress that with this naming scheme it is possible to advertise
a second Web server in the domain scs.carleton.caprovided by a different SA, for
instance:

service:www.test:http://apex.scs.carleton.ca/index.html

UAs request access to Web servers by the service-type name http. Two SAPs will
be returned. It contrasts with a conventional Internet naming scheme where, by
convention, the Web server in domain scs.carleton.cais advertised under the name
www.scs.carleton.caand is mapped to a unique machine address.

The attribute-list provides additional information required to access a service.
The attribute-list is made of pairs of attribute id and value according to the following
syntax:

attribute-id "=" value

attribute-id is common to all SAs offering the same kind of service. Value is
specific to every SA. For example, access to a secure banking service may require
the client to have a knowledge of a Security Parameter Index (SPI) that determines
an authentication key and algorithm to be used by the UA to contact the SA. This can
be represented as follows:

service:banking.demo:iiop://some.where.net;SPI=19

OPEN PROTOCOLS ix

The attribute SPI tells the UA to use an authentication key and algorithm associated
with the number 19 (which is arbitrary for this example).

The information represented in service advertisements needs to be described pre-
cisely. SLP defines a structure of service location information [GPK99]. It is a model
of data for the precise specification of elements of service advertisements (i.e. a type
of service, attributes, and a SAP). Besides, it is extensible. That is, the introduction
of new types of services is possible.

A service type is described by a structure called a service type template. The
concept of template is analogous to the concept of structure in the C programming
language. Each service type is described by a template written according to formal
syntax rules. Each instance of the service is specified by assigning effective values
to each attribute defined in the template and defining the SAP, which may have a
service type specific syntax defined in the template.

The model of a service type template is pictured in Figure 1.1 using UML notation.
A service type template has a name, a version, and a description. It contains zero or
more attributes and, optionally, a URL syntax definition.

The purpose of the version field is to capture the evolution of a template. A template
that is under development should have a number below 1.0 whereas standardized
templates should be numbered from 1.0 and above. The description field is free
format text for the purpose of documentation.

Each attribute has a name, a data type, default value(s), a descriptive text, and
allowed values. Valid data types are boolean, integer, string, opaque, and keyword.
A value of type opaque is an array of bytes. An attribute of type keyword has no
value and is like a constant.

Valid flags are O, M, L, and X. Flag O means that the attribute is optional. Flag
M means that the attribute is multi-valued. Flag L means that the attribute is a literal
and its name cannot be translated into another language. Flag X means that a value
for this attribute must be provided by a UA when a service request is formulated for
that type of service.

An SA can omit providing values for attributes when registering a service with a
DA. In that case default values apply. The range of values that can be assigned to an
attribute can be restricted by specifying allowed values. The syntax of the URL is of
scheme service: and is described using Augmented BNF. Here is a sample template:

template-type = printing

template-version = 0.1

template-description =

An template example for a printing service.

template-url-syntax =

color = BOOLEAN

FALSE

speed = INTEGER O

page-queue = INTEGER O

It is the template of a printing service called printing. It has no specific URL
syntax, i.e. scheme service: applies. The template has three attributes. Attribute

x

Fig. 1.1 Structure of SLP information.

color, modeling support of color printing, is mandatory and has default value false.
Attribute speedspecifies the speed of the printer, in pages per minute, and is optional.
Attribute page-queueis also optional and indicates the current number of pages in
the queue of the printer.

Interactions between DAs, SAs, and UAs are based on the following basic
messages: Acknowledgment (SrvAck), Service Reply (SrvRply), Service Request
(SrvRqst), and Service Registration (SrvReg).

There are two models of interaction: a model involving DAs and a model not
involving DAs. Without DAs, UAs send using UDP multicast or broadcast message
SrvRqst to SAs. SAs are listening and, when they find a match between a requested
service and a service they offer, they reply to the UAs using unicast.

The model involving DAs is pictured in Figure 1.2. Message SrvReg is sent by an
SA to a DA, using TCP or UDP unicast. The purpose of this message is registration
of a new service. It contains a URL, a type of service name, and descriptive attributes.
Message SrvAck is sent by a DA to an SA, using TCP or UDP unicast. Message
SrvRqst is sent by a UA to a DA using UDP unicast or TCP unicast. TCP is selected
when the reply can’t stand in one UDP datagram. The purpose of this message is
to look up for services. It contains a type of service name and a predicate which is
a query evaluated over the attributes of registrations in a DA. Message SrvRply is
sent by a DA to a UA using UDP unicast or TCP unicast to respond to SrvRqst. It
contains URLs of SAs matching the query.

There are four different ways SAs and UAs can obtain the SAP of their DA:
through a configuration file, a DHCP server, active discovery (multicast of requests
by SAs and UAs), and passive discovery (multicast of advertisements by DAs).

OPEN PROTOCOLS xi

Directory
Agent (DA)

Service
Agent (SA)

User
Agent (UA)

SrvRqst(Type,
Predicate)

SrvReg(URL,
Type, Attributes)

SrvRply(
URL)

SrvAck(
Status)

Fig. 1.2 Interaction between a DA, an SA, and a UA.

UA SA

SrvRqst(Name, Predicate)

SrvRply(SAP)

Fig. 1.3 UA and SA interaction.

Figure 1.3 pictures the operation of SLP in a DA-less architecture. A UA sends,
using UDP above IP multicast or broadcast, a SrvRqst to SAs. The characteristics
of the required service are specified in the SrvRqst as a service type name and a
predicate over service descriptive attributes. When a listening SA finds a match
between a requested service and a service it offers, it replies to the UA by sending a
SrvRply using unicast. The SrvRply contains a SAP.

For ad hoc networks, the DA-less model may be more desirable. By definition,
an ad hoc network doesn’t rely on infrastructure.

During the process of discovery of SAs by UAs, when should the transmission of
the SrvRqst, using multicast or broadcast, stop? How can the system provide with
reasonable probability a complete set of available services while not waiting too long
for SAs to respond?

To address this issue, SLP defines a multicast convergence algorithm. A SrvRqst
is transmitted by a UA up to four times over a period of 15 seconds. Message SrvRqst
contains a field called previous responder list. The list contains the IP addresses of the
SAs that have returned SrvRplys so far in the execution of the multicast convergence
algorithm. An SA listening and receiving a SrvRqst with its own IP address within
the previous responder list of the message ignores the request and remains silent.

An important issue that must be addressed by a service discovery system is
scalability. For instance, if the number of SAs matching a given request is high, the
number of replies and amount of traffic will be high as well. To address scalability,
SLP has a notion of scope. A scope is a group of UAs and SAs. DAs support scopes.
UAs send SrvRqsts only to SAs and DAs supporting their scope. SAs send SrvRegs
only to all the DAs supporting their scope. The concept of scope provides scalability

xii

Lookup
Service

Service
ProviderClient

Lookup(Service
Template)

Register(Service
Object)

Service
Object

Service
Registration

Fig. 1.4 Interaction between a Client, a Lookup Service, and a Service Provider.

limiting the network coverage of a request and the number of replies. Each scope is
named. UAs and SAs can be members of several scopes. They can learn their scope
name(s) by, for example, reading a configuration file.

1.4.1.3 Jini The architecture of a Jini system consists of Clients, Lookup Services,
and Service Providers which are analogous to the concepts of UAs, DAs, and SAs of
SLP. As SLP, Jini proposes two alternative architectures. The first architecture, with
a mode of operation called peer lookup, consists of Service Providers and Clients
with direct communication. The second architecture consists of Service Providers,
Clients, and Lookup Services acting as central sources of information.

In Jini, a discovery protocol is used by a Service Provider or a Client to discover a
Lookup Service. Thereafter, a Service Provider may register with the Lookup Service
with a protocol called Join. A service may be located on the Lookup Service by a
Client using a protocol called Lookup.

The discovery protocol goes as follows. A Service Provider or a Client sends a
discovery request on the local network using multicast. Listening Lookup Services
reply to the Service Provider or Client using unicast. Each Lookup Service returns
a proxy object whose methods are used by the Service Provider or Client to contact
the Lookup Service.

Following the discovery, protocol Join is used. The Service Provider calls method
register()to load a service object (also called a proxy) into the Lookup Service (see
Fig. 1.4). The service object consists of a Java interface to the service (i.e. signature of
methods and descriptive attributes). The Lookup Service returns a service registration
object that will be used by the Service Provider to maintain its offer of service.

Protocol Lookup is used by a Client to enquire for Service Providers with a Lookup
Service. Location is by type of Java interface or by values of attributes of the service.
The requirements of the Client are specified with a service template.

When a Service Provider is located, the corresponding service object is taken from
the Lookup Service and loaded into the Client. Afterwards, the Client communicates
through the service object (which acts as a proxy) with the Service Provider. The
communication protocol used between the service object and service provider is not
in the scope of Jini and is said to be private. RMI can be used for that purpose.

As SLP, presence of a Lookup Service is not mandatory. For location of a service
when there are no Lookup Services, a Client can apply a technique called peer lookup.

OPEN PROTOCOLS xiii

Fig. 1.5 Peer lookup.

The Client sends a message called identification to request registration messages
from Service Providers (the identification message is normally sent by a Lookup
Service). The Client then receives registration messages from Service Providers
among which one can be selected.

In addition to components Client, Lookup Service, and Service Provider, Jini
requires some elements of infrastructure. When a proxy or a service object is
downloaded, only the data members are obtained. The implementation class must be
down loaded separately. A Web server is required for downloading the code.

Jini is based on Remote Method Invocation (RMI) [Mic99a]. A RMI activation
daemon is required to start a Java server object on demand such as the Jini Lookup
Service.

In contrast to SLP, Jini needs a Java virtual machine at the Client as well as the
Service Provider nodes. The Java virtual machine, for Jini as well as the technologies
such as RMI and object serialization on which it depends, may not fit in a small
footprint memory pervasive computing device such as a PDA or cell phone. It has
also been demonstrated that Jini is substantially more chatty than SLP (for equivalent
functions) [Bar00] which is something undesirable for wirelessly connected devices.
Jini is better in terms of facilitation of communication because service discovery and
service usage can take place in the same environment, the Java RMI environment. To
reconcile the physical constraints of small devices with communication capabilities,
a lightweight version of Jini called JiniLite has been created by Chen [Che00].

With JiniLite, the client is made lighter. First, the Remote Method Invocation
(RMI) API is simplified. Simplification is obtained at the expense of limitations
on methods parameters (e.g. only parameters of simple pre-defined types) and
communication model (clients can’t be called back). Second, service objects are not
loaded dynamically in the client. Clients are pre-loaded with service object stubs to
provide services for which usage is foreseen. Third, service objects themselves are
run on a gateway (a proxy server). Service object stubs in light clients communicate

xiv

Service Object

Gateway ServiceJiniLite Client

Service Object
Stub

RMILite

Fig. 1.6 The JiniLite model.

with service objects in gateways through RMILite. Clients are configured with the
address of their gateway. In the gateway, service objects are stored in a service
registry on which clients can invoke a lookup method. When a service is provided
to a client, a copy of the service object is taken from the registry and run within the
gateway.

1.4.1.4 Service Selection Facilitation When a UA requests instances of a type of
resource, the selection of any instance of that resource type will often not satisfy the
needs. For example, given the need to fax a document, several fax machines can be
discovered. There is, however, most probably one of them that is more appropriate
than all the others because of physical proximity. For instance, two faxes may be
discovered but, for a user located on the first floor, the one situated on the first floor
is more attractive then the one situated on the twentieth floor. An issue is how can
the selection of the most appropriate service to fulfill a certain need be facilitated?
Service selection can be facilitated with the help of tools. Some approaches are
discussed hereafter.

Selection of a service can be facilitated by using a service browser. Such a browser
is presented in Ref. [HMBB00]. It provides to the user a view of the available services
on the network. Figure 1.7 illustrates a view in which SAPs are listed (upper area)
and descriptive attributes of a service are posted (lower area). Using the browser,
a user queries the network for a service and selects one of the found services by
visual inspection of the listed SAPs and attributes. The user then selects manually
the service to be used.

Service selection transparency can be achieved. McCormack has developed a
mechanism, called service recommendation, that ranks services with respect to one
another [McC00], [HMBB01]. An SLP SrvRqst includes a predicate expressing a
condition on the values of the attributes of a sought service. Predicates are limited
to attribute comparative expressions. Service recommendation extends the predicate
syntax with ranking functions. A ranking function takes an expression over the at-
tributes as argument. When the ranking function is evaluated by a DA, a numerical
value is returned, thus ranking a service advertisement relative to the other service
advertisements registered in the DA that satisfy the predicate in the SrvRqst. The
ranking function is formulated by the user or predefined in the application. It is a
model of the desirability of a service. Evaluations of the ranking function on all the
service advertisements matching a predicate in a SrvRqst are performed simultane-

OPEN PROTOCOLS xv

Fig. 1.7 SAP and attribute view of the SLP Service Browser.

ously. The service with the highest/lowest rank is recommended, according to the
ranking function. It is called service recommendation because the DA recommends
to the UAs a service advertisement that has the highest/lowest rank according to a
user-specific ranking scheme. With such a mechanism it is therefore possible to
delegate to a DA the selection, for instance, of a printer with the highest printing
speed and shortest queue.

Contextual information about the UAs and SAs can be used to take a service
selection decision. Physical location, because of its relevance, is a type of contextual
information that can be used to facilitate service selection. Physical location often
amounts to physical proximity of the user and service, such as in the same office, same
floor or same building. Location tracking solutions based on networks of sensors
or triangulation may not suitable in an ad hoc network environment because of the
infrastructure required.

Close proximity can be detected as follows. User and service devices may be
equipped with infrared ports and use successful establishment of communication
through the infrared ports as a confirmation of proximity.

Figure 1.8 pictures integration of a service discovery protocol with a close
proximity-based selection protocol. There are a UA, a near SA, and a far SA.
They are all within RF reach of each other. The UA sends using broadcast a SrvRqst.
It is received by both SAs and they both send using unicast a SrvRply. This com-
pletes the service discovery phase. To achieve close proximity selection, the UA
sends using multicast a message called SetIrdLink through the infrared port. This

xvi

Fig. 1.8 Service discovery and close proximity based selection.

message is, however, received only by the near SA which replies with a message
called SetIrdLinkConf. This completes the service selection phase.

1.4.1.5 Security Theft of service is the actual number one security problem in
cellular networks [Rie00]. A similar problem exists with computer network services.
Solutions devised for cellular telephony can be applied.

Control of access to services relies on a form of identification. Either a user or a
device may be identified. The most desirable form, in the context of service access
control, is user identification because it is independent of the device utilized by the
user to access the network.

Identification of a user may be done with an identification number entered by the
user before a service is accessed. Further automation can be achieved by using instead
a fingerprint captured by a biometrics sensor integrated to the device. However, a
number or a fingerprint should not be transmitted unprotected because these identifiers
can be copied by malicious listeners. Encryption can be used for that purpose and it
is supported by most of the service discovery protocols.

Device identification may be considered equivalent to user identification in cases
where the device is a personal belonging of the user. Indeed, in contrast to a desktop
which can be shared by several members of a family, a PDA is a personal assistant.
Identification of the palmtop means as well identification of its user. Each Bluetooth
device has a 48-bit identifier that can be used for that purpose.

OPEN PROTOCOLS xvii

Secret key authentication can also be used to identify users or devices. Authenti-
cation is supported by most of the service discovery protocols.

RF fingerprinting can be used as well to identify a device (more exactly its air
interface). It has been observed that radio transmitters that are built according to the
same specifications all exhibit unique signal characteristics. The characteristics are
obtained by measuring characteristics of the signal, e.g. the time-frequency relation
of the signal at the start of the transmission. Most of the RF fingerprinting technology
is proprietary or subject to patents.

1.4.2 Distributed computing

A distributed system includes resources, resource managers, and clients. A resource
may correspond for instance to a printer, a window on a software application or a
data element. Telecommunications networks are the infrastructure on which rely
distributed systems. Concretely, each resource is located on a network node and can
be used remotely from other nodes using telecommunications. A resource manager
is a piece of software responsible for the administration of a type of resource. It has a
telecommunications interface through which users access and update the resources.
A manager also enforces access policies associated with each type of resource.

The concept of component is based on the concept of object. As an object,
a component is a logical entity containing information and capable of executing
operations on it. A subset of the operations is accessible to the environment of
a component and constitutes its interface. A call to an operation by a client of a
component, a process or another component, is achieved through the transmission
of a message intercepted by the interface that dispatches the request to a method
associated with the operation. The method eventually returns a response to the caller.

A component deserves a new term because it is more than a normal object. An
object is a unit of software reusable, without pain, as long as the hosting software
is written in the same language, is on the same platform, and is co-located with the
object. A distributed component infrastructure facilitates the reuse of software units,
called components, across programming languages, operating systems, and network
nodes.

According to the distributed component model, resources, local or remote, are
abstracted as components. A uniform syntax is used to call the components, whether
or not they are in the same program, process or network node. This is called access
transparency.

In contrast to a client-server model, in which the client talks to a server process,
in the distributed component model the client talks to a remote object that exists
within a container process. That container process can embed several objects (see
Figure 1.9).

Every component has a unique identity. A component can be mobile, i.e. its host
can change, to improve the performance of fault tolerance. When the location of a
component changes, its identity is invariant. This is called transparency of migration.
Moreover, in contrast to a client-server model, the naming scheme is uniform and
doesn’t change from of type of resource to another.

xviii

container

process

object

object

client

process

server

process

client

process

distributed component modelcleint−server model

Fig. 1.9 The client-server model versus the distributed component model.

The entity responsible for the management of a component is called a component
manager. The manager of the component is normally co-located with the component.

Fault transparency can be provided through the notion of service. A collection of
components distributed over different nodes can supply the same services. Clients of
the services select any supplier.

The Common Object Request Broker Architecture (CORBA) [Gro99] is a real-
ization of the distributed component model. For communication between clients and
distributed components, CORBA has a notion of Object Request Broker (ORB). It
transmits client requests, i.e. operations calls, to components. Clients and com-
ponents can be on different nodes, run on different operating systems, and be pro-
grammed in different languages. An ORB has the capability to forward requests
over the network, from one operating system to another, and from one programming
language to another.

When a caller and a callee are not co-located, there are two acting ORBs: an ORB
co-located with the caller that encodes and sends the request on the network and an
ORB co-located with the callee that receives the request from the network, decodes
it, and dispatches it to the component. Inter-ORB communication is done through
the Internet Inter-ORB Protocol (IIOP). A request, sent from one location to another,
is encapsulated within a packet containing the identity of the target component, an
operation name and parameters. CORBA is a middleware. i.e. a software that goes
between parts of distributed applications.

CORBA clearly separates the notion of interface from the notion of implementation
of the interface. The implementation is changeable and, behind an interface, can
hide several different implementations. This provides flexibility. The interface is
specified with a CORBA-specific language called the Interface Definition Language
(IDL). Implementations can be programmed, however, is several different languages
such as C, C++, and Java.

The development of an implementation is done as follows. The interface is
written in the IDL. The IDL specification is processed by a translator that generates
a representation in a target implementation language. The programmer writes in
that target language methods associated to the operations of the interface. The
component is compiled. The code of the component contains the elements required
for its registration with an ORB when it is launched.

SUMMARY xix

client−side proxy

IIOP

CORBA

component

IIOP

Jini client

Fig. 1.10 The coexistence of CORBA and Jini.

There is a CORBA implementation for a popular PDA operating system called
Palm OS. It is a port of an open source implementation for CORBA called Mico [PR00].
Mico for CORBA [Pud99] provides an API for creating CORBA clients on Palm OS.
Servers cannot run on Palm OS. The capability to run servers on a PDA is a promising
development. Indeed, a PDA could abstract its databases, such as address book and
agenda, as CORBA objects and make them available to other applications on their
PDAs. There are no IDL compilers for Palm OS hence the client stubs have to be
written by the programmer. Recently, commercial versions of CORBA for PDAs
have been announced [Ver00].

CORBA can coexist with a service discovery protocol such as Jini and this issue
has been addressed before by Jai et al. [JOR00]. A client-side proxy, associated
with a CORBA component, is registered with the lookup service, by some entity (see
Figure 1.10). Having the same interface as the CORBA component, the proxy, after it
has been discovered, is downloaded and co-located with the client. The proxy hides
the protocol, i.e. IIOP, for the communication with the the CORBA component.

1.5 SUMMARY

Characteristics of pervasive computing applications have been discussed in Sec-
tion 1.2. Interaction transparency means that human-to-computer interaction is nat-
ural and based on ordinary life objects and operations. Context awareness means
that applications can sense and exploit information about the physical environment in
which they are running. Automated capture of experiences exploits knowledge about
actions performed in the past bound to contextual information to assist and make the
resolution of new problems easier and faster.

Issues of architectures of pervasive computing that have to do with mobility and
distribution were reviewed in Section 1.3. Pervasive computing platforms may be
characterized by relatively narrow-bandwidth channels, slow processing power, and
limited input/output capabilities. To cope with these issues, some tasks can be
delegated by a pervasive computing device to a server. This approach is called
application partitioning. The component-based distributed computing model is well
suited to the design of such applications.

xx

We raised the need of open protocols to enable inter-operability between the
elements of pervasive computing. Service discovery protocols and distributed com-
ponents architectures were addressed in more detail. Service discovery protocols,
such as SLP and Jini, provide mechanisms with which distributed components can
discover what each has to offer to other in terms of services. With an open distributed
computing architecture, components can collaborate together using a common com-
munication language. CORBA is an open distributed components architecture that
achieves location transparency, programming language independence, and platform
independence of service providers. Other open protocols not discussed in this chapter,
such as mobile Internet protocols and ad hoc networking protocols, are also required
to support mobile and distributed pervasive computing.

Acknowledgments

The author would like to thank the following persons for many fruitful discussions about the
issues discussed in the chapter: Victor Azondekon, Francis Bordeleau, Bogdan Gheorghe,
Javier Govea, Evan Hughes, David McCormack, and Ramiro Liscano.

References

Abo96. Gregory Abowd. Software engineering and programming language con-
siderations for ubiquitous computing. ACM Comput. Surv., 28(4es),
December 1996. Article 190.

Abo99. Gregory D. Abowd. Software engineering issues for ubiquitous comput-
ing. In Proceedings of the 1999 International Conference on Software
Engineering, pages 5 – 84, 1999.

Bar00. Michel Barbeau. Bandwidth usage analysis of Service Location Protocol.
In Proceedings of Workshop on Pervasive Computing, InternationalCon-
ference on Parallel Processing, pages 51–56, Toronto, August 2000. The
International Association for Computers and Communications (IACC).

Bir97. Joel Birnbaum. Pervasive information systems. Communications of the
ACM, 40(2):40–41, February 1997.

BLFIM98. T. Berners-Lee, R. Fielding, U.C. Irvine, and L. Masinter. Uniform Re-
source Identifiers (URI): Generic syntax. IETF Request for Comments:
2396, August 1998.

Blu99. Bluetooth. Specification of the Bluetooth system. www.bluetooth.com,
December 1999.

CCW00. Boaz Carmeli, Benjamin Cohen, and Alan J. Wecker. Personal informa-
tion everywhere (PIE). In Proceedings of the eleventh ACM on Hypertext
and Hypermedia, pages 252–253, 2000.

Che00. Mike Chen. JiniLite white paper.
www.cs.berkeley.edu/s̃ilkworm/jinilite/whitepaper.html, October
2000.

Con99. Salutation Consortium. Salutation architecture specification.
www.salutation.org/specordr.htm, 1999.

Cor99. Microsoft Corporation. Universal plug and play: Background.
www.upnp.org/resources/UPnPbkgnd.htm, 1999.

xxi

xxii REFERENCES

DRRD00. Alan Dix, Devina Ramduny, Tom Rodden, and Nigel Davies. Places
to stay on the move - software architectures for mobile user interfaces.
Personal Technologies, 4(2), 2000.

(Ed00. David A. Finck (Ed.). Biometrics security - body language. Laptop
Buyer’s Guide and Handbook, pages 94, 96, April 2000.

GPK99. E. Guttman, C. Perkins, and J. Kempf. Service templates and service:
schemes. IETF Request for Comments: 2609, June 1999.

GPVD99. E. Guttman, C. Perkins, J. Veizades, and M. Day. Service location
protocol, version 2. IETF Request for Comments: 2608, June 1999.

Gro99. Object Management Group. The Common Object Request Broker: Ar-
chitecture and specification. ftp.omg.org, 1999.

GV96. A. Gulbrandsen and P. Vixie. A DNS RR for specifying the location of
services (dns srv). IETF Request for Comments: 2052, October 1996.

HMBB00. Evan Hughes, David McCormack, Michel Barbeau, and Francis Borde-
leau. An application for discovery, configuration, and installation of SLP
services. MICON 2000. Available at : www.scs.carleton.ca/b̃arbeau,
2000.

HMBB01. Evan Hughes, David McCormack, Michel Barbeau, and Francis Borde-
leau. Service recommendation using SLP. In Submitted to International
Conference on Telecommunications 2001, 2001.

JOR00. Benchiao Jai, Michael Ogg, and Aleta Ricciardi. Effortless software in-
teroperability with Jini Connection Technology. Bell Technical Journal,
pages 88–101, April-June 2000.

McC00. David McCormack. Service recommendation in SLP.Report for Honours
Project, School of Computer Science, Carleton University, (Available at:
www.scs.carleton.ca/b̃arbeau), 2000.

Mic99a. Sun Microsystems. Java remote method invocation specification, De-
cember 1999.

Mic99b. Sun Microsystems. Jini architecture specification, November 1999.

Pau01. Linda Dailey Paulson. Will wireless be IPv6’s killer app? Communica-
tions of the ACM, 34(1):28–29, January 2001.

PR00. Arno Puder and Kay Romer. Mico: An Open Source CORBA Implemen-
tation. Morgan Kaufmann Publishers, 2000.

Pro01. Third-Generation Partneship Project. 3GPP - a global initiative.
http://www.3gpp.org, 2001.

REFERENCES xxiii

Pud99. Arno Puder. Mico for the Palm Pilot. http://diamant-atm.vsb.cs.uni-
frankfurt.de/ mico/pilot/, 1999.

Rie00. M. J. Riezenma. Cellular security: Better, but foes still lurk. IEEE
Spectrum, 37(6):39–42, June 2000.

Ver00. Vertel. Vertel launches next-generation CORBA for Palm OS-first ever-
wireless CORBA. http://www.vertel.com, April 2000.

Wei91. M. Weiser. The computer of the 21st century. Scientific American,
265(3):66–75, September 1991.

Wei93. Mark Weiser. Some computer science issues in ubiquitous computing.
Commun. ACM, 36(7):75 – 84, Jully 1993.

