
Service Recommendation using SLP

Evan Hughes, David McCormack,
Michel Barbeau, and Francis Bordeleau

Carleton University, School of Computer Science
1125 Colonel By Drive

Ottawa, ON Canada
K1S 5B6

Email: fehughes,dmccormackg@texar.com, fbarbeau,francisg@scs.carleton.ca

April 10, 2001

Abstract

As more services become available on networks, and as ad
hoc network grows in popularity, the problem of service loca-
tion will grow. Service location is the detection of a service
through automated means, and the subsequent configuration
of the service user to use that service.

A number of service discovery protocols currently exist,
but there is no known framework for the evaluation and com-
parison of these protocols based solely on their service discov-
ery characteristics. This paper presents the Service Discovery
Model, a generic meta-model describing all common tasks of
service discovery.

We then use the SDM illustrate the Service Location Pro-
tocol and extend it to support comparisons between services.

1 Introduction

Service discovery is a growing field within networking.
There are currently a number of protocols that perform
service discovery, such as Bluetooth’s Service Discovery
Protocol [blu, ], Jini [Jin, 1998], Salutation [sal, ], Univer-
sal Plug and Play [upn, ], and the Service Location Proto-
col [Guttman et al., 1999]. However, there are few metric-
s or frameworks for evaluating and comparing each proto-
col. Some work has been done comparing specific proto-
cols [Govea and Barbeau, 2000], however there are no known
models of theoretical service discovery.

This paper presents a model for comparison of service dis-
covery protocols called the Service Discovery Model (SDM),
and then uses the SDM to illustrate the Service Location Pro-
tocol (SLP). The model is used as a tool for discussing an open
issue within that protocol termed service selection facilition.
Two strategies for service selection facilitation are discussed:
the SLP Service Browser (SSB) and service recommendation.

In Section 2 we present the Service Discovery Model. In
Section 3, we present the Service Location Protocol in terms

of the Service Discovery Model. Section 4 explains service
selection facilitation, the SSB and service recommendation.
The final section concludes and outlines our further work.

2 Service Discovery Model

The Service Discovery Model (SDM) is a generalized model
of service discovery. In any successful service discovery sce-
nario, there are at least two actors; the service user, called the
User Agent (UA); and the service provider, called the Service
Agent (SA). There may be an additional third party called a
DA; it acts as a lookup service, locating one or more SAs for
the UA (called the Directory Agent, or DA). Any kind of a-
gent is referred to generically as a node.

The SDM abstracts the activities of service discovery into
three discreet phases, starting when the user decides it wants
a service, and ending when the user is able to use that ser-
vice, or when the it learns that there are no services available.
Although the three phases are chronological, they are not syn-
chronous: different parts of the same network involved in the
same service discovery interaction may be at different phases
of the SDM at the same time.

The SDM is divided into three discreet phases: the Query
Phase, the Selection Phase, and the Configuration Phase.

2.1 The Query Phase

The goal of the Query Phase is for the UA to inform all inter-
ested nodes that it is looking for a service. Interested nodes
are SAs that may be offering a candidate service, or DAs that
know of SAs offering a candidate service. The UA begins
the Query Phase by spontaneously sending a query message,
which indicates that it is looking for a service of a particular
type. The query may contain extra qualifiers about the re-
quested service, such as a minimum quality of service, or a
desired location.

1

Michel Barbeau
IEEE International Conference on Telecommunications (ICT), Bucharest, June 2001



The Query Phase continues until it is terminated by the UA.
The UA may use any strategy to decide when to terminate
the Query Phase; including timeouts, confirmations from the
intended recipients, or it may simply rely on the best effort of
the network to deliver the message.

2.2 The Selection Phase

The goal of the Selection Phase is to provide the UA with an
SA that it may use. The SAs are selected by processing of the
query. The Selection Phase is divided into two subphases: the
Paring Subphase and the Decision Subphase.

Paring Subphase The purpose of the Paring Subphase is to
determine which subset of the available SAs satisfies the
UA’s query. We call this set the satisfier set. Before the
contents of the query are known, the satisfier set contains
all known services. Each of these services are somehow
tested, and those that do not satisfy the query are tested
and removed from the satisfier set.

Although the Paring and Decision Subphases do not need
to be synchronous, the Paring Subphase may not outlast
the Decision Subphase.

Decision Subphase The objective of Decision Subphase is
to locate which service in the satisfier set the UA should
use. The complexity of this decision depends on the UAs
requirements and the facilities of the protocol. There are
two trivial cases: either the satisfier set is empty, mean-
ing that there are no services available to the UA; or
there is exactly one service in the satisfier set, in which
case that one service is selected.1 In other cases, where
the satisfier set contains many available services, other
means may be employed to decide which service the UA
is to use. The decision process may be as simple as ran-
domly picking one service; or as complex as finding the
service most suited to the UA’s task.

The Decision Subphase ends when the UA knows which
service it is to use.

2.3 Configuration Phase

The goal of the Configuration Phase is to modify the UA’s
configuration such that it can use the SA selected in in the
Selection Phase. Configuration may be as simple as opening a
socket to the service, or it may be as complex as downloading
and installing drivers.

The Configuration Phase ends when the UA is capable of
interacting with the SA.

3 Service Discovery and SLP

The Service Location Protocol is a lightweight service discov-
ery protocol designed to work on an enterprise IP network. It
has been formalized in [Guttman et al., 1999].

1We assume that the UA needs only one service. If n instances of services
are necessary, the trivial set size is n.

3.1 The Service Location Protocol

An SLP network consists of three types of entities: user agents
(UAs), service agents (SAs), and directory agents (DAs).
There are two SLP service discovery scenarios: standard ser-
vice discovery, in which service discovery is brokered by the
DA; and DAless service discovery, where the UA communi-
cates directly with all SAs on the network. Each scenario is
discussed below.

3.1.1 Service Discovery in SLP

SLP’s standard service discovery scenario is illustrated in Fig-
ure 1. In this scenario, both UAs and SAs know of DAs – this
information is discovered via DAless service discovery, dis-
cussed in Section 3.1.2. It is assumed that before this scenario
begins, all SAs on the network have registered their services
with the DAs on the network.

Query Phase The scenario begins with the UA composes
and sends a service request message (SrvRqst) via TCP
unicast to one of the DAs on the network. The SrvRqst
contains a service type (stating the service required) and
a predicate (describing the characteristics of the required
service).

Paring Subphase The DA compares the service type of the
SrvRqst with that of all registered services. The DA e-
valuates the predicate on each service of the requested
type. The satisfier set consists of all services of the given
type that conform to the predicate. The DA sends the sat-
isfier set to the UA using a unicast service reply message
(SrvRply).

Decision Subphase The UA decides which service to use.
SLP does not dictate how the decision is made. Often
the UA will simply use the first service returned. If the S-
rvRply is empty, the service discovery process ends here.

Configuration Phase SLP does not specifically state how a
UA is to configure itself. However, it does allow UAs
to download the characteristics of services in the form of
attributes. The attributes can contain any data, including
configuration information (e.g. the URIs of drivers) and
parameters (e.g. public keys for security).

The final interaction of Figure 1 is an association, or some
logical connection between the UA an the SA. Note however,
that the UA may choose to ignore the SA, or simply not con-
nect to it. SLP does not dictate that a service must be used
after it is found.

3.1.2 DAless Service Discovery in SLP

SLP also provides a simpler form of service discovery that
does not require a DA. Instead of the UA communicating with
the DA via unicast, it communicates with all SAs using UDP
multicast. Each SA performs the Paring Subphase locally. If
the SA’s service is the same as that requested in the SrvRqst,

2



UA DA SA

register
SrvRqst

pare

SrvRply

decide

config
associate?

msc UA/DA/SA Interaction

Figure 1: SLP interactions in context of the SDM.

and its attributes satisfy the predicate (in other words, the SA
finds itself in the satisfier set), it sends a unicast response to
the UA. The UA treats the results in the same manner as those
received from a DA.

4 Service Selection Facilitation in SLP

SLP does not have a defined behavior during the Decision
Subphase: there is no standard strategy for deciding which
member of the satisfier set the UA should use. We term this
problem service selection facilitation [Barbeau, 2000].

We present two very different solutions to this problem.
The first is the SLP Service Browser, a graphical front-end
to the SLP-aware services on a network. The second is an ex-
tension to the SLP protocol called service recommendation.

4.1 The SLP Service Browser

The SLP Service Browser (SSB) is an application that allows
a user to browse all SLP-aware services on the network. The
user may search for all services, compose queries (including
both service type and predicate), and launch service-specific
commands on selected services. The SSB is designed in such
a manner that it is useful to users who know nothing about
SLP, as well as those who are well versed in SLP’s function-
ality.

Figure 2 shows the attribute pane of the SSB. The top pan-
el shows the list of known services. When the user selects
a service, the attributes of that service are shown in the low-
er panel. The user can click on any displayed service and
launch commands on that service. Commands are implement-
ed as shell scripts, which may use the attributes of the service
as variables. This means that SLP-unaware applications can
be started by the SSB, effectively making the SSB a bridg-
ing technology between SLP-unaware clients, and SLP-aware

Figure 2: SLP Service Browser.

services.2

The SSB answers the problem of service selection facili-
tation by allowing the user to manually compose queries and
inspect the results. This allows the user to choose a service on
any criteria. Although this solution is only valid when users
are knowledgeable both about the SSB and the service they
intend to use, it does simplify the users task, in that the SSB
performs automatic service discovery and configuration.

4.2 Service Recommendation

SLP provides a means for comparing the attributes of services
to constants. SLP does not provide a mechanism for compar-
ing services to one another. If a UA receives a large satisfier
set at the start of the Decision Subphase, it has no predefined
mechanism for finding the service most suited to its task. Ser-
vice recommendation is an extension to SLP to allow UAs to
find SAs that offer the “best” level of service.

Currently, it is possible for UAs to perform makeshift ser-
vice recommendation: the UA finds the satisfier set using a
SrvRqst, but instead of immediately selecting a service, the
UA queries each SA in the satisfier set for its attributes. As
the attributes are received, the UA compares them, discarding
those that are less than the “best” service the UA has thus far
seen. After all of the attributes have been received, the UA is
left with the service it is to use.

This makeshift solution faces two problems: the hardware
resources available to the UA, and the nonstandard implemen-
tation of the comparison. In the discussion surrounding SLP, it
is often assumed that UAs are resource poor (comparatively s-
low processor, little memory, and a slow network connection),

2Since [Kempf and Guttman, 1999] defines a means for representing
SLP-unaware services with SAs, the combination of the SSB and the tech-
nology described in [Kempf and Guttman, 1999] can be used to launch and
use any client on any service.

3



DAs are resource rich (fast processor, large memory, fast pro-
cessor), and SAs are somewhere in between [srv, 2000]. Un-
der these constraints, it is unreasonable to assume that the UA
will have sufficient resources to complete the Decision Phase
in a timely and correct manner. Meanwhile, the nonstandard
comparative mechanism means that every UA implementor
must implement their own version of the comparison: which
is error prone and discourages code reuse.

Both of these issues can be dealt with by a two-fold solu-
tion. First, to lessen the burden of service discovery on the
UA, move the responsibility of the Decision Subphase from
the UA to the DA. Second, to ease the lot of the programmer,
extend the predicate syntax to allow a comparison between
services.

We present this solution by discussing first the current syn-
tax of SLP predicates, and what must be done to extend them.
Then, we discuss the capabilities of the new syntax. Finally,
we conclude this section with an example of service recom-
mendation at work.

4.2.1 Current SLP Predicate Support

SLP uses the LDAPv3 syntax for predicates [Howes, 1997].
LDAPv3 predicates include type-sensitive comparisons on at-
tributes; and boolean operations on the results of comparison-
s. Supported comparisons include normal relational opera-
tors on string and integer attribute values, as well as wild-card
comparisons on strings. Comparisons are represented as in-
fix operations (named attributes are always the first operand,
constants are the second), while boolean operations are prefix.

4.2.2 Service Recommendation and SLP Predicates

To allow the UA to generate arbitrary metrics expressing ser-
vice quality, we introduce the concept of functions into the
predicate syntax. A function optionally takes the place of an
attribute in the predicate. Each function takes a mathemati-
cal expression as an argument. The argument consists of con-
stants, mathematical operators, functions, and named attribute
values.

In all cases, the predicate is evaluated for all services reg-
istered with the DA. When a function is reached, the DA syn-
chronizes the predicate evaluation with that of all other ser-
vices in the satisfier set; meaning that the DA evaluates the
expression on each service in a logically simultaneous man-
ner. The services are then sorted by the value that the expres-
sion evaluated to. The rank of the service is the return value
of the function.

We propose a number of functions, including:

rankHigh(x) Evaluates x to a value, and returns the ser-
vice’s rank relative to the service with the greatest value.
Sorts in ascending order.

rankLow(x) The same as rankHigh(), but returns the
rank of the service in descending order (i.e., rank from
the bottom).

Printer1 Printer2 Printer3
speed 3 10 6
queueSize 80 4 10

Figure 3: Printer Attributes

4.2.3 Example

Three printers exist on a network. The corresponding SAs
maintain the following attributes: speed, and queueSize.
speed is the number of seconds the printer takes to print a
page. queueSize is the number of pages left in the printer’s
print queue.

A UA wishes to complete a print job as quickly as possible.
We will consider the scenario where service recommendation
is available before considering the scenario using unmodified
SLP.

The UA initiates the service discovery scenario by send-
ing a SrvRqst with the predicate (@rankLow(speed *
queueSize)=1). The argument to the rankLow() func-
tion determines how many seconds remain before the print-
er’s current tasks are completed. rankLow() then orders the
services by that value, returning the list rank of each service.
When the DA receives the SrvRqst, it evaluates the predicate
in the context of each printer. The expression evaluates to
240, 40, and 60 for Printer1, Printer2, and Printer3 respective-
ly. The value 3 is returned by rankLow() when the predi-
cate is evaluated for Printer1, 1 is returned when the predicate
is evaluated for Printer2, and 2 is returned when the predicate
is evaluated for Printer3. Since the predicate evaluates to true
only when 1 is returned, the DA only informs the UA of the
existence of Printer2.

In terms of metrics, two messages are sent (the SrvRqst and
SrvRply), and no comparisons take place in the UA. In gen-
eral, the service recommendation scenario involves a constant
number of messages (2) and comparisons (0).

Now consider a UA trying to make the same decision on a
network where service recommendation is not available. As
discussed in Section 4.2, the UA must send a SrvRqst to the
DA requesting all known printer SAs. The DA responds with
a SrvRply containing all three printers. The UA must then
query each associated SA for attributes, and then receive each
set of attributes and compare them locally.

In this case, two messages are sent to obtain the satisfier
set, and an additional six messages (three requests and three
responses) are sent to deliver the attributes. Two comparisons
must take place in the UA. In general, the number of messages
sent in this scenario is 2 + 2n (where n is the number of
available services) and n � 1 comparisons.

5 Conclusion

We have presented a generic model for service discovery: the
Service Discovery Model. It provides a framework for the
discussion of service discovery protocols and services.

4



The SDM lead us to a description of service selection facili-
tion in the context of SLP. Service selection facilitation is the
problem of selecting a service from the satisfier set. Two so-
lutions to service selection facilition were presented: the SSB
and service recommendation.

The SSB is a user-oriented solution to service selection
facilition. The user queries for services, evaluates the re-
sponse, and selects a service. Service recommendation is an
application-oriented solution to the same problem. It creates
a framework that allows the DA (at the request of the UA)
to compare services to each other and use that comparison to
decide on inclusion in the satisfier set.

The SDM has not been rigorously tested on other protocols
such as Bluetooth’s Service Discovery Protocol, Jini, Saluta-
tion , and Universal Plug and Play. If the SDM is to stand as
a general model for service discovery, it must be shown to be
applicable to these other protocols.

In simulations, the service recommendation mechanism of
Section 4.2 has been shown to improve the performance of
simple applications. Further simulations and empirical tests
are necessary to prove its applicability to service discovery.

References

[sal, ] Salutation architecture specification.

[blu, ] Specification of the bluetooth system.

[upn, ] Universal Plug and Play Specification v1.0.

[Jin, 1998] (1998). Jini technology core platform specifica-
tion. Technical report, Sun Microsystems, Palo Alto, Unit-
ed States of America.

[srv, 2000] (2000). Service Location Working Group Mail
Archive. http://srvloc.org/hypermail/index.html.

[Barbeau, 2000] Barbeau, M. (2000). Service discovery pro-
tocols for ad hoc networking. Toronto, Canada. CASCON
2000 Workshop on ad hoc communications.

[Govea and Barbeau, 2000] Govea, J. and Barbeau, M.
(2000). Comparison of bandwidth usage: Service loca-
tion protocol and Jini. Technical Report Technical Re-
port TR-00-06, School of Computer Science, Carleton U-
niversity, Ottawa, Canada. http://www.scs.carleton.ca/ bar-
beau/Publications/2000/TR 00 06.pdf.

[Guttman et al., 1999] Guttman, E., Perkins, C., Veizades, J.,
and Day, M. (1999). RFC 2608: Service location protocol.
Status: Proposed Standard.

[Howes, 1997] Howes, T. (1997). RFC 2254: The string rep-
resentation of LDAP search filters. Status: Proposed Stan-
dard.

[Kempf and Guttman, 1999] Kempf, J. and Guttman, E.
(1999). RFC 2614: An API for Service Location. Status:
Proposed IETF Standard.

5




