
An Experimental Implementation of Mobile IPv6 on a Personal
Digital Assistant

Zhao-shu Zeng and Michel Barbeau

School of Computer Science

Carleton University
1125 Colonel By Drive

Ottawa, ON K1S 5B6 Canada

{barbeau, zszeng}@scs.carleton.ca

ABSTRACT

IPv6 is a new version of the Internet Protocol that was
standardised by the Internet Engineering Task Force
(IETF). Mobility support in IPv6 is presently being
standardised by the IETF Mobile IP Working Group.
IPv6 has been designed to overcome all the problems
within IPv4 and to provide solutions for the next
generation networks. Devices such as Personal Digital
Assistants (PDAs) with IP support are widely used in
mobile computing. In this paper, we describe our
experimental implementation of Mobile IPv6 on an
PDA. The basic functions of a Mobile Node (MN)
such as movement detection and registration have been
implemented in this experiment.

I. INTRODUCTION

Today, mobile computing is becoming much popular
with the increasing use of variety wireless devices
offering IP connectivity, such as PDAs. When a node
moves to another subnet, it expects to receive the same
set of services regardless of the current location. As the
IP protocol currently used (IPv4) can’t make mobility
transparent to the users, Mobile IPv4 was designed to
solve this problem by using two IP addresses: home
address and care-of address, for an MN. However,
IPv6 is the trend for the future. It has the advantage of
built -in mobility support. There is a movement in the
wireless industry towards IPv6. For instance, the
Third-Generation Partnership Project (3GPP) [16] has
adopted IPv6 for their next generation of wireless
network specification.

Palm OS is the operating system of a widely
spread PDA architecture [11]. A problem of Palm OS
is the lack of mobility support in its Net Library [11].
As the source code of Palm OS is closed, it is
impossible to install or embed a new Mobile IP
protocol in it. So we decided to develop our own
protocol stack on Palm OS. Though the mobility
support is possible for both Mobile IPv4 and Mobile
IPv6, the mobility support has been integrated more
efficiently in Mobile IPv6 than to Mobile IPv4. So we
selected Mobile IPv6.

We implement a subset of Mobile IP operations in
an IPv6 network, using a protocol development
framework called p-kernel [13].

In Section 2, we present an overview of the
mobility support aspects of Mobile IPv6. In Section 3,
we give an overview of the p-kernel framework. In
Section 4, we describe our Mobile IPv6
implementation on Palm OS. We present conclusions
in Section 5.

II. OVERVIEW of MOBILE IPv6

The problem addressed by the Mobile IP Protocol is
mobility of nodes, from network to network. The
problem is not solved by plain IP because the IP
address of a computer is bound to the network to
which it is attached. Migration and attachment to a
different network lead to the non -reception of packets,
unless the MN’s address is changed.

The Mobile IP approach relies on two-level
addressing [12]. The MN has a long term IP address
(called the home address) and a short term IP address
for locating it when it is away from home (called the
care-of address). Location Directories (LDs) store
tables of associations of home address and care-of
address. Tables are indexed by home addresses and
updated according to the movements of MNs.

The point of attachment and care-of address of an
MN may change while the home address remains fixed
and connectivity is maintained.

A strength of Mobile IP is compatibility with
normal IP. Mobile IP uses neither a specific IP address
format nor an address range. Authentication protects
MNs from remote redirection attacks. Low overhead
was a design target so it can run over low bandwidth
and high error rate wireless links and minimises use of
battery power of mobile devices.

The main design concepts of Mobile IP are as
follows. An MN is a computer that changes its point of
attachment from one (sub) network to another.

A home network is a network identified in a home
IP address.

A foreign network is a network to which an MN is
momentarily attached and is given its short-term care-

Michel Barbeau
IEEE International Conference on Telecommunications (ICT), Bucharest, June 2001

Michel Barbeau

of address.
Every MN is configured with its home address.

Mobile IP provides a mechanism for dynamically
obtaining a care-of address. The MN appears to the
other computers of the Internet as if it is located in its
home network. When the MN is in its home network,
packets are delivered to the MN as usual. When the
MN is in a foreign network, packets are readdressed
and forwarded to the care-of address. Tunnelling is
used for the readdressing and forwarding process.

A Home Agent (HA) is a router in the home
network of an MN that is intercepting and tunnelling
packets to the MN when it is not attached to its home
network. It normally has an interface on the home
network of the MN, for interception of packets.

IPv4 does not provide support for mobile
communications. The next generation Internet protocol
(IPv6) has built-in mobility support [7].

IPv6 addresses autoconfiguration of the care-of
address of an MN when it attaches to a new link. Using
the Neighbour Discovery protocol [8], [7], an MN is
able to find the network prefix at any point of
attachment it might select and then forms a globally
routable IPv6 address for that point of attachment.
When an MN moves, it informs its HA and
Correspondent Nodes (CNs) about its new address,
using the IPv6 Destination Option Header to carry the
location information. Such option can be used with any
data packet the MN sends. Therefore, it is relatively
low traffic overhead.

When an MN sends a packet while away from
home, it keeps mobility transparent to its application
software and transport protocols. It moves the home
address to a Home Address option. It sets the IPv6
header’s Source Address to its care-of address. The
destination node restores the MN’s home address to be
the IPv6 header’s Source Address before delivering the
packet to the upper layer. This way, the MN not only
keeps mobility transparent to its upper software, but
also passes the packet through any router
implementing ingress filtering [4].

When an CN sends out a packet to an MN, it uses
a Type 0 Routing header [2] to set an IPv6 Routing
Header, specifying the care-of address as the
destination address in the IPv6 header and the MN’s
home address as the final destination of the packet in
the routing header. When the MN receives the packet
at its care-of address, the MN processes this Routing
Header and delivers the packet to the upper layer using
the MN’s home address as if the MN was at home.

III. OVERVIEW of the P-KERNEL

Most network software are structured into layers. Each
layer contains a certain number of protocols. Network
software is normally implemented as a part of the
kernel of an OS (e.g. the Linux kernel [14]) but not
alway s and may be embedded within a user level
application (e.g. x-kernel [5]).

Palm OS is the operating system of a widely
spread PDA architecture [11]. There is a need for an
environment for doing research on mobile and wireless
network protocols on the Palm OS, i.e.
experimentation of new protocols at the physical, link,
and network layers. The Net Library available for the
Palm OS only supports a fixed set of protocols and
does not allow integration of new protocols because it
is not an open source. It is not usable as a vehicle for
experimenting with the new mobile and wireless
protocols such as Mobile IP.

Hereafter, we discuss a framework, the p-kernel,
that we have been developing for implementing mobile
and wireless network protocols [13] on PDAs. The
framework is configurable and allows integration of a
protocol graph which executable version runs as a
component of a communication application on the
Palm OS.

The p-kernel is a framework. It means that it
provides a set of data structures, subroutines, a control
loop, and slots in which a developer can hook its own
data structures and subroutines in order to actualise the
framework according to its needs. The needs
correspond to a graph in which specific protocols such
as Mobile IP, UDP, and SLP appear.

The p-kernel is inspired of the x-kernel [5] of
which is adopted the object based model. There are
three types of abstract objects: protocol, session, and
message.

A protocol is a static entity, created when a
protocol graph is instantiated, modelling a given
protocol such as Mobile IP.

Protocols are composed of sessions that are
created dynamically and modelling end-points of
communication channels. A session maintains the state
of the channel end-point, e.g. values of sequence
numbers.

Messages are created dynamically and flow from
one protocol/session to another. A message is normally
made of a header part and a user data part.

An important concept within the model of x-
kernel is the Uniform Protocol Interface (UPI). The
communication primitives supported by protocols and
sessions are uniformed and generic across all the
layers. They are actualised by the protocol developer,
using a function pointer mechanism. The UPI
contributes to achieve a uniform structure from one
layer to another that helps considerably to the clarity of
a protocol stack.

An interesting feature in the implementation of
this model is the message-per -process model. Indeed,
each message, starting from its reception at the
hardware level or its creation at the application level, is
taken in charge by a thread. A protocol is implemented
by a set of procedures. The procedures implement
tasks of the protocols and sessions the associated
message has to go through. A thread calls successively
the procedures.

Concurrent threads may have to synchronise
together. For instance it may be necessary to
synchronise a thread handling an acknowledgement
message with threads handling data messages and
waiting for empty slots in a transmission window. Inter
threads synchronisation is achieved using semaphores.

The x-kernel supports the aforementioned model
on full scale computers. The challenge of p-kernel is to
support that model on PDAs that have low memory,
are slow, and have few communication resources. In
addition, the Palm OS does not provide all the system
programming concepts that we found on a full scale
OS. For instance, there are no notion of thread and
semaphore. It makes support of the x-kernel model on
the Palm OS a little harder to achieve.

The p-kernel is implemented as a library that is
embedded into an application that needs
communication. A protocol graph is defined
programmatically. When the application is entered, the
protocol graph is instantiated, the p-kernel OS is
created, and every protocol of the graph is initialised.

A typical applicat ion on the Palm OS is driven by
a event processing loop. Execution of the application is
triggered by events, e.g. a user interaction, arrival of a
message. The association between the application and
a p-kernel instance is made within the event loop of the
application, as illustrated by the following pseudo
code:

App_Event_Loop()

do {

EvtGetEvent(event);

<Give control to p-kernel>

<Usual event processing of

an application>

} while (event!=StopEvent);

When an event occurs, function EvtGetEvent()
returns wit h an element of data representing the event.
The control is first given to the p-kernel OS which
either handles the event, if it has to do with
telecommunications, or returns, otherwise. In the latter
case, the event is handled according to a usual event
handling model of a Palm OS application.

IV. OVERVIEW of the IMPLEMENTATION

We built an Mobile IPv6 stack using the p-kernel on
Palm OS. The PDA works as an MN.

A. Test Application

For the purpose of this experiment, we built a
communication application over Palm OS using the p-
kernel. This application has a simple message
transmission and reception user interface.

Figure 1. Logical model on an application

The application embeds a stack of protocols
constructed using p-kernel. The stack contains two
layers: KISS and MIPv6. KISS stands for Keep It
Simple, Stupid [1]. It is a protocol implementing the
AX.25 protocol [15]. It is used for passing and
receiving frames over an RS-232 interface to a data
radio.

Figure 1 pictures the logical model of the
application built using the p-kernel. P-kernel is written
in C++ and runs above the Palm OS. Protocols, such as
the KISS and MIPv6 protocols, are implemented in
C++ within the p-kernel framework. Applications,
such as KISS Tester, are implemented using the p-
kernel framework and any protocol implemented
within it. The application is written in C.

The application is called KISS Tester and is
pictured in Figure 2. The screen is divided into two
areas. The upper area, in which data contained in
incoming packets are posted. The lower area, in which
data entered by the user is sent in packets.

Figure 2. User interface of the application KISS Tester.

B. Design of the MN

Movement detection and care-of address registration
are the MN’s basic functions we implemented in our
experiment.

An MN uses Router Solicitation messages and
Router Advertisement messages to detect its
movements [10]. An MN discovers new routers and
on-link subnet prefixes from Router Advertisement
messages. An MN may send Router Solicitation
messages or may wait for unsolicited (periodic) Router
Advertisement messages to detect its movement. We
choose to send Router Solicitation messages actively.

When an MN receives a Router Advertisement
message, it modifies its default router list that records
the current on-link routers’ address, prefix information,
and the lifetime of routers’ entries. If it is a new router,
it adds a new router entry in the router list.
Furthermore, if it includes a new prefix, that means
that MN enters a new link. The MN will form a new
care-of address according to the new prefix
information, register it with its HA, and notify its CNs.

Router entries have lifetimes. Timers are used to
check lifetimes. If the router entry’s lifetime expires,
the router’s entry is deleted. If there are no other
routers with the same prefix, in the default router list,
which the care-of-address is based on, it means that the
MN moves out the network. The node deregisters the
care-of-address with its HA and notifies its CNs.

An MN maint ains a binding list of the nodes
which it is currently communicating with, such as an
HA and CNs. An MN registers or deregisters its care-
of-address with the HA in its binding list using a
packet containing Binding Update option. The MN
will continue to send the packet with Binding Update
option to its HA until it receives a packet with
matching Binding Acknowledgement option or moves
to a new link. A packet with Binding Update option is
also used to inform the care-of address to CNs in the
binding list. When an MN receives a packet including
Binding Request option, it replies to the sender a
packet including Binding Update option. This
mechanism makes an HA capable of intercepting the
packets addressed to an MN’s home address and tunnel
them to the MN. Moreover, the CNs that tend to send
packets to the MN will use the MN’s care-of address
as the Destination Address in IPv6 header.

When an MN boots or detects that it has moved to
a new link, it forms a new IPv6 address using IPv6
stateless address autoconfiguration [9]. The address is
formed by combining a 64-bit address prefix with a 64-
bit interface identifier [10], [3]. In this case, we use the
data radio’s call sign to create an interface identifier
with IEEE EUI-64 format [6].

As a testing environment we use Linux
workstations as Access Points (APs), routers, and an
HA. They are set up for IPv6 support. In addition APs
are set up for KISS and AX.25 support. As the AX.25
layer, under Linux, only supports IPv4 at the moment,

we use Simple IPv6 Transition (SIT) to encapsulate
IPv6 packet in IPv4.

At the moment, the MN on Palm OS can send out
Router Solicitation messages and receive Router
Advertisement messages from routers and an HA.

V. CONCLUSION

To cope with the complexity of implementing Mobile
IPv6 on a small PDA, we adopted an incremental
approach. We currently have a partial implementation
of Mobile IPv6 on Palm OS. So far, we concentrated
our efforts on control aspects of Mobile IPv6. We have
implemented the following basic functions: router
solicitation, router advertisement, binding update,
binding request, and binding acknowledgement. Our
testing application, including our protocol stack, has a
footprint of around 30K bytes and runs on a Palm
handheld.

We encountered difficulties during the
implementation and testing phases. For the
implementation, we use CodeWarrior for the Palm
Computing Platform R6. This compiler is not
completely ANSI C compliant. For example, Console-
based I/O (the most commonly mentioned standard lib
functionality) is not s upported on this platform because
the Palm OS itself does not support console I/O [17].

Memory usage is a main issue in Palm OS
programming. Re-locatable memory allocated to a
variable must be locked to avoid writing or reading
errors. As Palm OS has limited memory space, we
have observed that applications with large segments do
not perform well when large contiguous blocks of
memory are not available.

For the fixed network part of our testing set up
(i.e. router, HA), we used Linux with experimental
IPv6 support and AX.25 support. The Linux kernel
with the experimental IPv6 module is not totally stable
at this time and there are conflicts between different
versions of the kernel and AX.25 tools. We tried
several combinations before getting a stable and
working environment. Besides, numerous tests were
required to obtain successful transmission over our
data radios. Of course, considerable debugging efforts
had to be invested, not only for our program on Palm
OS, but on Linux as well. Indeed, we had to trace the
flow of packets in the IP stack of the Linux kernel,
from the data link layer (AX.25) up to the IP layer, to
determine for instance why some packets were
dropped.

Data transfer is not supported in our
implementation. Palm OS has its own Net Library
whi ch can be used to implement data transfer. This
library, however, only supports IPv4 and is not open. It
is not possible to add Mobile IPv6 in it. Therefore, it
can be used to support data transfer as long as we use
IPv4-compatible IPv6 addresses and IPv6 in IPv4
encapsulation. This approach is not an ideal solution
because it increases the overhead. A better solution is

to not rely on the Net Library and to develop an entire
IPv6 routine.

In a near future, we will enrich the Mobile IPv6
protocol elements supported by our implementation.
Control mechanisms, such as dynamic HA address
discovery, will be considered. We also need to focus
on data transfer and implement new features such as
reception of packets using IPv6 de -capsulation and
transmission of packets with the Home Address option.

REFERENCES

[1] Chepponis, M. and Karn, P., The KISS TNC: A

Simple Host-to-TNC Communications Protocol,
in: Proceedings of 6th Computer Networking
Conference, Redondo Beach, California, August,
1987, pp. 38-43.

[2] Deering, S. and Hinden, R., Internet Protocol

Version 6 (IPv6) Specification, The Internet
Engineering Task Force, Network Working
Group, Request for Comments 2460, December
1998.

[3] Deering, S. and Hinden, R., IP Version 6

Addressing Architecture, The Internet Engineering
Task Force, Network Working Group, Internet
Draft, October 2000

[4] Ferguson, P. and Senie, D., Network ingress

filtering: Defeating denial of service attacks which
employ IP source address spoofing, The Internet
Engineering Task Force, Network Working
Group, Request For Comments 2267, January
1998.

[5] Hutchinson, N.C. and Peterson, L.L., The x-Kernel:

An Architecture for Implementing Network
Protocols, IEEE Transaction on Software
Engineering, Vol. 17, No. 1, January 1991, pp.64-
76.

[6] IEEE Guidelines for 64-bit Global Identifier (EUI-

64)Registration Authority, January 2001,
http://standards.ieee.org/regauth/oui/tutorials/EUI
64.html

[7] Johnson, D.B. and Perkins, C., IETF Mobile IP

Working Group, Mobility Support in IPv6, IETF
Mobile IP Working Group, Internet-Draft,
November 2000.

[8] Narten, T., Nordmark, E., and Simpson, W.,

Neighbor Discovery for IP Version 6 (IPv6), The
Internet Engineering Task Force, Net work
Working Group, Request for Comments 2461,
December 1998.

[9] Narten, T. and Thomson, S., IPv6 Stateless Address

Autoconfiguration, The Internet Engineering Task

Force, Network Working Group, Request for
Comments 2462, December 1998

[10] Narten, T., Neighbor Discovery and Stateless

Autoconfiguration in IPv6, IEEE Internet
Computing, Vol. 3, Issue 4, July -August 1999, pp.
54-63.

[11] Palm Inc., Palm OS Platform,

http://www.palmos.com , 2001

[12] Perkins, Charles E., Mobile IP Design Principles

and Practices, Addison-Wesley, 1998.

[13] Robinson, S. and Barbeau, M., The p-kernel: A

framework for mobile and wireless network
protocol implementation on personal digital
assistants, 2000. (available at:
www.scs.carleton.ca/~barbeau)

[14] Satchell, S.T. and Clifford, H.B.J., Linux IP

Stacks Commentary, CoriolisOpen Press, 2000.

[15] TAPR, AX.25 Amateur Packet -Radio Link-Layer

Protocol, Version 2.2, November 1997 (available
at: http://www.tapr.org.)

[16] Third-Generation Partnership Project. 3GPP – a

global initiative. http://www.3gpp.org, 2001.

[17] Metrowerks CodeWarrior MSL C Reference,

Metrowerks Inc. (available at CodeWarrior for
Palm OS R6 CD).

