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Abstract 
TCP is robust and flexible when operated on wired terrestrial 
networks. There are problems, however, when TCP is used 
on long delay satellite links. In this paper, we first study the 
effects that these long delays have on TCP, and then we 
present a transport layer solution that is implemented in 
OPNET 7.0. This solution enables TCP to share congestion 
control information among connections between the same 
host-pair. The shared information is used to speed up new 
connections to the same destination, and to coordinate 
concurrent connections in order to reduce the possibility of 
congestion losses. Simulation results show that, with the 
presence of information about the same channel discovered 
by previous connections, this solution performs better than 
standard TCP. As the delay increases, the degree of 
performance improvement also increases, making this 
approach particularly well-suited for long delay satellite 
links. 
 
1. Introduction 
There is increasing need to use communications satellites to 
carry Internet traffic. Satellite communications offer many 
benefits, such as wide coverage areas, natural broadcast 
capabilities, and the ability to reach remote and 
geographically adverse locations at relatively low cost. 
However, many studies show that satellite links can cause 
some problems to the reliable end-to-end data transmission 
on the Internet, which is realized by the Transmission 
Control Protocol (TCP) [1][2].  
 
Long propagation delay is one of the main causes of negative 
effects on TCP’s performance [3]. Latency in a satellite 
environment is higher than the one in a terrestrial 
environment. The one-way propagation delays are 110 ~ 150 
ms for medium earth orbit systems (MEO) and 250 ~ 280 ms 
for geostationary satellites (GEO). Intersatellite links, on-
board processing and other network factors can increase one-
way propagation delay by more than one second. 
 
Sharing TCP state information is one of the solutions 
suggested in RFC 2760 [2] to better utilize the bandwidth in 
long-delay satellite environments. Sharing TCP state 
information was first used in TCP Extensions for 
Transactions (T/TCP) to accelerate data delivery prior to the 
completion of the three-way handshake [4]. Touch [5] 
extended this idea and provided a general guidance for 
sharing TCP state information in RFC 2140. Some 

researchers implemented this idea to provide efficient support 
for numerous, short concurrent transfers existing in Web 
applications [6][7]. Sharing TCP state information is 
particularly suitable for use in a satellite environment where 
many transmissions are short compared to the delay-
bandwidth product.  
 
We have implemented sharing TCP state information for the 
purpose of improving TCP performance over long delay 
satellite links. Sender side modification has been made to the 
TCP protocol. The resulting TCP is called Sharing TCP 
(STCP). In STCP, information about the channel between a 
host-pair is shared among sequential and concurrent 
connections. New connections to the same destination can 
start up more efficiently. Concurrent connections are under 
better control so that the possibility of congestion losses is 
reduced. In addition, STCP provides a new mechanism to 
allocate the network capacity among concurrent connections 
in a relatively fair manner. This allocation mechanism works 
in a distributed manner to ensure that minimal overhead is 
added to the TCP operation. 
 
The rest of the paper is organized as follows. Section 2 
reviews TCP and its problems over long delay satellite links. 
Section 3 presents the design and implementation of STCP. 
Section 4 discusses the simulation results. Section 5 
concludes the paper.  
 
2. TCP Review 
TCP is a connection-oriented, end-to-end reliable protocol. It 
provides a set of congestion control mechanisms to ensure 
the reliable delivery of data, and to adjust the data 
transmission according to network conditions. The 
fundamental congestion control mechanisms are slow start, 
congestion avoidance, fast retransmit and fast recovery [8].  
 
TCP uses a state variable, congestion window (cwnd) to 
represent the largest amount of data a TCP connection can 
transmit into the network without waiting for the 
acknowledgments. Another state variable, slow start 
threshold (ssthresh), is used to determine whether the slow 
start or congestion avoidance algorithm is used to control 
data transmission. 
 
Slow start defines a mechanism when starting traffic on a 
new connection, or after repairing loss detected by the 
retransmission timer. A connection starts out by setting the 
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congestion window to one Maximum Segment Size (MSS) 
and sending out one segment. For each segment that is 
acknowledged successfully, the congestion window is 
increased by one MSS. That is, the congestion window is 
doubled for every Round Trip Time (RTT). Once the size of 
the congestion window reaches the slow start threshold, 
congestion avoidance is used to probe the network for 
additional capacity. During congestion avoidance, the 
congestion window is increased by approximately one MSS 
per RTT.  
 
TCP retransmits a segment if an acknowledgment (ACK) is 
not received for the segment before a specific TCP clock 
times out. This timeout is called the Retransmit Timeout 
(RTO). Whenever a loss happens, the TCP sender always 
reduces its transmission rate because TCP assumes that all 
the losses are caused by network congestion. If a timeout 
occurs, the congestion window is reduced to one MSS, and 
slow start is used to control the data transmission.  
 
Fast retransmit provides a more efficient way to detect a loss 
before the timer expires. It is based on duplicate ACKs that 
are sent from the data receiver to indicate receipt of out-of-
order segments. When fast retransmit detects a loss, fast 
recovery is used to control data transmission during loss 
recovery. When loss recovery is finished, the sender cuts the 
congestion window to half and resumes with congestion 
avoidance, rather than going into slow start.  
 
Long delays cause problems to TCP’s congestion control 
mechanisms. The direct effect of long delays on TCP is that 
it takes longer for a TCP segment to reach the destination and 
for an acknowledgment to come back. Since TCP always 
starts with a congestion window size of one MSS and 
gradually increase its transmission rate upon receiving the 
acknowledgments, it takes much longer for TCP to fill the 
pipe on a long delay satellite network than on a terrestrial 
network [1]. If multiple TCP connections are sharing a 
satellite link, the group of concurrent connections increases 
the overall congestion window faster than a single TCP 
connection and is more likely to cause congestion losses [5]. 
The loss recovery over long delay satellite links is very costly 
because a large amount of time is required for retransmission 
and for reaching the optimum transmission rate after rate 
reduction. Furthermore, if one or more of the concurrent 
connections close, some bandwidth is released. The amount 
of time it takes for the remaining connections to make use of 
the released bandwidth can be significant [9].  
 
3. Design and Implementation of STCP  
STCP is an extension to TCP that aims to mitigate the 
problems described in Section 2. STCP is based on the idea 
of sharing TCP state information proposed in RFC 2140 [5]. 
The design goal of STCP is to speed up similar connections 
and to coordinate concurrent connections by sharing the 
information about the network condition. Current 

implementation of STCP focuses on the information sharing 
of the slow start threshold and the congestion window among 
sequential and concurrent connections between the same 
host-pair.  
 
In this section, we present the design and implementation of 
STCP in OPNET 7.0. First we introduce a new structure 
added to the TCP layer to store the shared information. Then 
we discuss how the information of the slow start threshold 
and the congestion window is shared among similar 
connections.  
 
3.1 Data Structure 
The new structure used to store the shared information is 
called Ensemble Control Block (ECB), a name borrowed 
from Eggert et al. [6]. An ECB contains the information 
about the channel between a pair of hosts. This channel is 
shared by multiple connections on the same host with the 
same destination IP address. We call such a group of 
concurrent connections an ensemble. The ECB structure 
definition is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 

 

Typedef struct 
{ 

IP_Addr           rem_addr;        
TcpT_Size       n_ssthresh;       
TcpT_Size       n_cwnd;            
TcpT_Size       used_cwnd;      
int                    num_connections;  
Boolean           add_new_flag;  
TcpT_Size       quota;  
TcpT_Size       contribution;  

} ECB;  
 

Figure 1: ECB Structure Definition 
 
In an ECB, field rem_addr is the destination IP address. Field 
n_ssthresh represents the slow start threshold for that 
channel. Field n_cwnd represents the aggregate congestion 
window, which specifies the largest amount of data the group 
of connections can put on that channel without waiting for 
the acknowledgments. Each connection obtains a share of 
n_cwnd and stores the share in its congestion window cwnd, 
which is defined in standard TCP to limit the largest amount 
of outstanding data a connection can put on that channel. 
Field used_cwnd is defined as the sum of the congestion 
windows of the connections sharing the ECB.  

 
Field num_connections is the number of member connections 
currently associated with this ECB. Fields add_new_flag, 
quota and contribution are used for congestion window 
reallocation when opening a new connection. The use of the 
three fields will be discussed in Section 3.3. 
 
OPNET comprises two models related to the TCP 
implementation: TCP manager and TCP connection. They 
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provide the most widely used functionalities of TCP [10]. 
TCP manager represents the root process of the TCP 
protocol. It creates and invokes the appropriate connection 
processes upon the requests from other layers. A TCP 
connection process is spawned by the TCP manager to handle 
the activities related to an individual connection. 
 
In STCP, TCP manager maintains a list of ECBs. When 
opening a new connection, TCP manager searches the list for 
an existing ECB associated with the destination IP address. If 
no ECB is found, a new ECB is created for that destination IP 
address. The new connection is then associated with the 
ECB. n_ssthresh and n_cwnd in the new ECB are initialized 
to the values that the slow start threshold and congestion 
window would have for a new connection in standard TCP, 
as specified in RFC 2581 [8]. For example, n_ssthresh can be 
initialized to the advertised receive window and n_cwnd can 
be initialized to one MSS. If an ECB is found and no 
connection is currently associated with the ECB, the new 
connection is associated with the ECB and starts with a 
congestion window size equal to n_cwnd. If an ECB is found 
and there is at least one connection associated with the ECB, 
the new connection is associated with the ECB and obtains a 
share of the aggregate congestion window. Allocation of the 
aggregate congestion window to the connections sharing the 
same ECB will be discussed in more detail in section 3.3. 
 
3.2 Sharing Slow Start Threshold 
There is a single slow start threshold for the connections 
sharing the same ECB, denoted as n_ssthresh. An individual 
slow start threshold for each connection is no longer 
necessary. All the operations on ssthresh defined in the 
congestion control mechanisms in standard TCP [8] are 
applied to n_ssthresh in STCP. 
 
In standard TCP, the initial value of the slow start threshold 
may be arbitrarily high, and the congestion window keeps 
increasing until there is a loss. Then the slow start threshold 
is updated to a more reasonable value, half of the previous 
congestion window. However, this information is destroyed 
when the connection is closed. Another connection using the 
same channel has to go through the same procedure, causing 
loss first, and then reducing its transmission rate and 
updating the information.  
 
By reusing information of the slow start threshold in STCP, 
another connection using the same channel is able to change 
from slow start to congestion avoidance before causing a 
loss. In this way, unnecessary retransmissions and rate cuts 
can be reduced.  
 
3.3 Sharing Congestion Window 
As discussed in section 3.1, there are three types of 
congestion window variables in STCP: n_cwnd is the 
aggregate congestion window for the connections associated 
with the same ECB; cwndi is the congestion window of 

connection i (i = 1 … num_connections); used_cwnd is 
defined as the sum of the congestion windows of the 
connections. In other words, n_cwnd represents the available 
network capacity discovered so far, cwndi represents the 
share of network capacity allocated to connection i, and 
used_cwnd represents the part of network capacity being 
used by the connections.  
 
After receiving an acknowledgment, a connection increases 
the aggregate congestion window n_cwnd according to the 
congestion control mechanisms defined in standard TCP [8]. 
If every segment is acknowledged successfully, n_cwnd is 
doubled per RTT during slow start and is increased by one 
MSS per RTT during congestion avoidance. The decision of 
whether to change from slow start to congestion avoidance 
depends on the values of n_cwnd and n_ssthresh. 
 
STCP applies a distributed window allocation algorithm to 
assign a share of n_cwnd to each member connection. A 
connection invokes the window allocation algorithm to 
update its share cwnd whenever it updates the value of the 
aggregate congestion window or it needs to send out data.  
 
To prevent connections from transmitting more data than 
allowed by the network and to fully utilize the available 
network capacity, the window allocation algorithm targets 
satisfaction of Equation 1: 

 
n_cwnd = used_cwnd           (1) 

 
Originally used_cwnd is equal to n_cwnd. When a member 
connection receives acknowledgments or detects losses, 
n_cwnd is updated, resulting in a difference between n_cwnd 
and used_cwnd. When invoked by connection k, the window 
allocation algorithm calculates a new share for the 
connection as follows: 
 

new_cwndk = n_cwnd – 
i= 

       = n_cwnd  –
 
       = cwndk + (
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 If (new_cwndk ≤ 0) 
 
  new_cwndk = MSS 
 
Finally the window allocation algorithm updates used_cwnd 
as follows: 
 

used_cwnd = used_cwnd – cwndk + new_cwndk            (3) 
 
After the above update is performed, used_cwnd becomes 
equal to n_cwnd again. If all the member connections 
progress at the same speed and they all make full use of their 
congestion windows, each connection can get a fair share of 
the aggregate congestion window.  
 
If a loss is detected by duplicate ACKs on a connection, the 
connection reduces the aggregate congestion window 
 according to Equation 4: 
 

n_cwnd = n_cnwd – cwndk / 2          (4) 
 
where cwndk is the congestion window of the connection that 
detects the loss. Then the connection invokes the window 
allocation algorithm and obtains a new congestion window 
which is equal to half of its previous congestion window. The 
other connections remain unaffected. If all the connections 
detect losses, then n_cwnd is reduced to approximately half 
of its previous value when the first loss is detected.  
 
If a loss is detected by a timeout event, a single TCP 
connection will reduce the congestion window to one MSS. 
For a group of independent TCP connections, only the 
connections that detect a timeout will reduce the congestion 
window to one MSS, while the others keep increasing the 
transmission rate. Because a timeout event usually indicates 
severe network congestion, STCP reduces the aggregate 
congestion window in a way similar to a single TCP 
connection in order to prevent deteriorating network 
congestion and causing more losses. If a timeout occurs on a 
connection, the connection reduces the aggregate congestion 
window according to Equation 5: 
 

n_cwnd = num_connections * MSS                      (5) 
 
Any connection sharing the same ECB will obtain a 
congestion window of one MSS when it invokes the window 
allocation algorithm.  
 
When opening a new connection, STCP intends to give the 
new connection a fair share of the network capacity as well 
as to keep the increase of the overall congestion window of 
an ensemble like the one of a single TCP connection. The 
share of the new connection comes from contributions of 
existing connections associated with the same ECB. First, 
TCP manager sets the field add_new_flag in the ECB to true, 
indicating that there is a new connection trying to get a share 

of the network capacity. Then it calculates the amount of 
share that each existing connection is expected to give to the 
new connection. The result of this calculation is stored in the 
field quota in the ECB. Field contribution represents the 
amount of the share that has been granted so far by existing 
connections and is available to the new connection. When 
invoked by an existing connection, the window allocation 
algorithm checks the value of add_new_flag. If the value is 
true, it then reduces the new share of the connection by quota 
and increases contribution by quota. add_new_flag remains 
true when the reallocation process is going on. The 
congestion window of the new connection is initialized to 
zero. Before it sends out the first segment, it invokes the 
window allocation algorithm, and obtains a new congestion 
window equal to contribution. Thus, the window reallocation 
process is completed and add_new_flag is set to false by the 
new connection. 
 
When a connection is closed, the released share from the 
closed connection will be utilized by remaining connections 
once the window allocation algorithm is invoked. 
 
The following example illustrates how connections share the 
congestion window information in STCP. This example 
involves three connections between the same host-pair. The 
first connection runs alone and is closed before the second 
connection is opened. The third connection is opened later 
than the second connection and runs concurrently with the 
second connection for some time. Finally the second 
connection and the third connection are closed sequentially. 
Figure 2 shows the congestion windows of the three 
connections with comparison between TCP and STCP.       
 
In Figure 2, the solid lines represent the congestion windows 
when STCP is used, and the dashed lines represent the 
congestion windows when standard TCP is used. For the first 
connection, TCP and STCP perform the same, thus the 
congestion windows of the first TCP connection and the first 
STCP connection are identical. The second and third TCP 
connection also perform the same as the first TCP 
connection, therefore the congestion windows of the three 
TCP connections are identical. When the second STCP 
connection is opened at time T2, it reuses the knowledge 
about the network capacity discovered by the first STCP 
connection and starts with an initial congestion window 
larger than one MSS. At time T3, the second STCP 
connection gives part of its share of the network capacity to 
the third STCP connection and cuts its congestion window to 
half. Thus, the third STCP connection starts with an initial 
congestion window equal to the congestion window of the 
second STCP connection. When the second STCP connection 
is closed at time T4, the third STCP connection obtains the 
released network capacity and almost doubles its congestion 
window size.     
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Figure 2: Sharing Congestion Window Infor

 
4. Simulation Results 
In this section, simulation results of STCP with c
to standard TCP are presented. Simulations are co
both FTP and HTTP applications. The performanc
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4.1 FTP Simulation 
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STCP 
group of independent TCP connections increases the 

TCP 
aggregate congestion window N times faster than a single 

TCP connection, where N is the number of connections. So 
the total transfer time for the first STCP group is about 5% 
longer than that of the first TCP group. Once STCP has 
obtained some information about the network condition from 
the first group, the second group of STCP connections starts 
up more quickly than the first STCP group, while the second 
group of TCP connections performs the same as the first TCP 
group. Figure 3 shows that the second STCP group is about 3 
times faster than the second TCP group.  
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Figure 3: FTP File Download Time 

 
4.2 HTTP Simulation 
In this simulation, we compare the STCP scenario with the 
Basic TCP scenario in carrying HTTP traffic. The two 
scenarios transfer three consecutive Web pages from the 
server to the workstation. The pages consist of the same 
number of objects. Each page is 100kB.  The page download 
times are shown in Figure 4. 
 
Because HTTP 1.1 uses a persistent connection to transfer all 
the data in one Web page, TCP performs the same when 
downloading each of the three pages. STCP has the same 
performance as TCP when downloading the first page. Using 
the knowledge about the network condition obtained in the 
first transfer, the second connection established to download 
the second page starts with a congestion window size larger 
than one MSS. Therefore, the second page in the STCP 
scenario is downloaded in a shorter time than that of the first 
page. The third transfer is even faster. Comparing STCP with 
standard TCP for the third page, the download time for STCP 
is almost 3 times faster. 
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Figure 4: HTTP Page Download Time 

 
4.3 Various Delays 
By comparing standard TCP and STCP under various values 
of delay, we can see how much STCP can improve TCP's 
inefficiency over long delay satellite links.  
 
We set up two scenarios, each transferring two files 
sequentially. The file size is fixed to 1MB. For scenario 
Basic TCP, the two files are transferred in the same amount 
of time. For STCP, the first transfer is the same as TCP, 
while the second transfer is faster than the first transfer in the 
same scenario, thus faster than the second transfer in the TCP 
scenario. We vary the one-way delay from 0.05 to 0.67 
seconds for both scenarios, and observe that the performance 
improvement in transferring the second file using STCP is 
significant, as shown in Figure 5. As the delay increases, the 
degree of performance improvement also increases.  
 

 
Figure 5: Download Time of the 2nd File under Various 
Delays 
 

5. Conclusion 
In this paper, we have presented a sender-side TCP 
modification, STCP, to improve TCP performance over long 
delay satellite links by sharing congestion control 
information. Simulations for FTP and HTTP applications 
have been conducted. Simulation results show that this 
solution performs better than standard TCP when there exists 
information about the same channel discovered by previous 
connections.  
 
Future work will focus on how to maintain the state 
information discovered by previous connections when the 
information is not currently used by any connection, and how 
to share the state information among connections on the same 
subnet.   
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