
Improving TCP Performance over Long Delay Satellite Links

Jing Peng, Peter Andreadis, Claude Bélisle Michel Barbeau
 Communications Research Centre Canada Carleton University

 Ottawa, ON K2H 8S2 Canada Ottawa, ON K1S 5B6 Canada
 E-mail: {jing.peng, peter.andreadis, claude.belisle}@crc.ca E-mail: michel.barbeau@scs.carleton.ca

Abstract
TCP is robust and flexible when operated on wired terrestrial
networks. There are problems, however, when TCP is used
on long delay satellite links. In this paper, we first study the
effects that these long delays have on TCP, and then we
present a transport layer solution that is implemented in
OPNET 7.0. This solution enables TCP to share congestion
control information among connections between the same
host-pair. The shared information is used to speed up new
connections to the same destination, and to coordinate
concurrent connections in order to reduce the possibility of
congestion losses. Simulation results show that, with the
presence of information about the same channel discovered
by previous connections, this solution performs better than
standard TCP. As the delay increases, the degree of
performance improvement also increases, making this
approach particularly well-suited for long delay satellite
links.

1. Introduction
There is increasing need to use communications satellites to
carry Internet traffic. Satellite communications offer many
benefits, such as wide coverage areas, natural broadcast
capabilities, and the ability to reach remote and
geographically adverse locations at relatively low cost.
However, many studies show that satellite links can cause
some problems to the reliable end-to-end data transmission
on the Internet, which is realized by the Transmission
Control Protocol (TCP) [1][2].

Long propagation delay is one of the main causes of negative
effects on TCP’s performance [3]. Latency in a satellite
environment is higher than the one in a terrestrial
environment. The one-way propagation delays are 110 ~ 150
ms for medium earth orbit systems (MEO) and 250 ~ 280 ms
for geostationary satellites (GEO). Intersatellite links, on-
board processing and other network factors can increase one-
way propagation delay by more than one second.

Sharing TCP state information is one of the solutions
suggested in RFC 2760 [2] to better utilize the bandwidth in
long-delay satellite environments. Sharing TCP state
information was first used in TCP Extensions for
Transactions (T/TCP) to accelerate data delivery prior to the
completion of the three-way handshake [4]. Touch [5]
extended this idea and provided a general guidance for
sharing TCP state information in RFC 2140. Some

researchers implemented this idea to provide efficient support
for numerous, short concurrent transfers existing in Web
applications [6][7]. Sharing TCP state information is
particularly suitable for use in a satellite environment where
many transmissions are short compared to the delay-
bandwidth product.

We have implemented sharing TCP state information for the
purpose of improving TCP performance over long delay
satellite links. Sender side modification has been made to the
TCP protocol. The resulting TCP is called Sharing TCP
(STCP). In STCP, information about the channel between a
host-pair is shared among sequential and concurrent
connections. New connections to the same destination can
start up more efficiently. Concurrent connections are under
better control so that the possibility of congestion losses is
reduced. In addition, STCP provides a new mechanism to
allocate the network capacity among concurrent connections
in a relatively fair manner. This allocation mechanism works
in a distributed manner to ensure that minimal overhead is
added to the TCP operation.

The rest of the paper is organized as follows. Section 2
reviews TCP and its problems over long delay satellite links.
Section 3 presents the design and implementation of STCP.
Section 4 discusses the simulation results. Section 5
concludes the paper.

2. TCP Review
TCP is a connection-oriented, end-to-end reliable protocol. It
provides a set of congestion control mechanisms to ensure
the reliable delivery of data, and to adjust the data
transmission according to network conditions. The
fundamental congestion control mechanisms are slow start,
congestion avoidance, fast retransmit and fast recovery [8].

TCP uses a state variable, congestion window (cwnd) to
represent the largest amount of data a TCP connection can
transmit into the network without waiting for the
acknowledgments. Another state variable, slow start
threshold (ssthresh), is used to determine whether the slow
start or congestion avoidance algorithm is used to control
data transmission.

Slow start defines a mechanism when starting traffic on a
new connection, or after repairing loss detected by the
retransmission timer. A connection starts out by setting the

 1

congestion window to one Maximum Segment Size (MSS)
and sending out one segment. For each segment that is
acknowledged successfully, the congestion window is
increased by one MSS. That is, the congestion window is
doubled for every Round Trip Time (RTT). Once the size of
the congestion window reaches the slow start threshold,
congestion avoidance is used to probe the network for
additional capacity. During congestion avoidance, the
congestion window is increased by approximately one MSS
per RTT.

TCP retransmits a segment if an acknowledgment (ACK) is
not received for the segment before a specific TCP clock
times out. This timeout is called the Retransmit Timeout
(RTO). Whenever a loss happens, the TCP sender always
reduces its transmission rate because TCP assumes that all
the losses are caused by network congestion. If a timeout
occurs, the congestion window is reduced to one MSS, and
slow start is used to control the data transmission.

Fast retransmit provides a more efficient way to detect a loss
before the timer expires. It is based on duplicate ACKs that
are sent from the data receiver to indicate receipt of out-of-
order segments. When fast retransmit detects a loss, fast
recovery is used to control data transmission during loss
recovery. When loss recovery is finished, the sender cuts the
congestion window to half and resumes with congestion
avoidance, rather than going into slow start.

Long delays cause problems to TCP’s congestion control
mechanisms. The direct effect of long delays on TCP is that
it takes longer for a TCP segment to reach the destination and
for an acknowledgment to come back. Since TCP always
starts with a congestion window size of one MSS and
gradually increase its transmission rate upon receiving the
acknowledgments, it takes much longer for TCP to fill the
pipe on a long delay satellite network than on a terrestrial
network [1]. If multiple TCP connections are sharing a
satellite link, the group of concurrent connections increases
the overall congestion window faster than a single TCP
connection and is more likely to cause congestion losses [5].
The loss recovery over long delay satellite links is very costly
because a large amount of time is required for retransmission
and for reaching the optimum transmission rate after rate
reduction. Furthermore, if one or more of the concurrent
connections close, some bandwidth is released. The amount
of time it takes for the remaining connections to make use of
the released bandwidth can be significant [9].

3. Design and Implementation of STCP
STCP is an extension to TCP that aims to mitigate the
problems described in Section 2. STCP is based on the idea
of sharing TCP state information proposed in RFC 2140 [5].
The design goal of STCP is to speed up similar connections
and to coordinate concurrent connections by sharing the
information about the network condition. Current

implementation of STCP focuses on the information sharing
of the slow start threshold and the congestion window among
sequential and concurrent connections between the same
host-pair.

In this section, we present the design and implementation of
STCP in OPNET 7.0. First we introduce a new structure
added to the TCP layer to store the shared information. Then
we discuss how the information of the slow start threshold
and the congestion window is shared among similar
connections.

3.1 Data Structure
The new structure used to store the shared information is
called Ensemble Control Block (ECB), a name borrowed
from Eggert et al. [6]. An ECB contains the information
about the channel between a pair of hosts. This channel is
shared by multiple connections on the same host with the
same destination IP address. We call such a group of
concurrent connections an ensemble. The ECB structure
definition is shown in Figure 1.

Typedef struct
{

IP_Addr rem_addr;
TcpT_Size n_ssthresh;
TcpT_Size n_cwnd;
TcpT_Size used_cwnd;
int num_connections;
Boolean add_new_flag;
TcpT_Size quota;
TcpT_Size contribution;

} ECB;

Figure 1: ECB Structure Definition

In an ECB, field rem_addr is the destination IP address. Field
n_ssthresh represents the slow start threshold for that
channel. Field n_cwnd represents the aggregate congestion
window, which specifies the largest amount of data the group
of connections can put on that channel without waiting for
the acknowledgments. Each connection obtains a share of
n_cwnd and stores the share in its congestion window cwnd,
which is defined in standard TCP to limit the largest amount
of outstanding data a connection can put on that channel.
Field used_cwnd is defined as the sum of the congestion
windows of the connections sharing the ECB.

Field num_connections is the number of member connections
currently associated with this ECB. Fields add_new_flag,
quota and contribution are used for congestion window
reallocation when opening a new connection. The use of the
three fields will be discussed in Section 3.3.

OPNET comprises two models related to the TCP
implementation: TCP manager and TCP connection. They

 2

provide the most widely used functionalities of TCP [10].
TCP manager represents the root process of the TCP
protocol. It creates and invokes the appropriate connection
processes upon the requests from other layers. A TCP
connection process is spawned by the TCP manager to handle
the activities related to an individual connection.

In STCP, TCP manager maintains a list of ECBs. When
opening a new connection, TCP manager searches the list for
an existing ECB associated with the destination IP address. If
no ECB is found, a new ECB is created for that destination IP
address. The new connection is then associated with the
ECB. n_ssthresh and n_cwnd in the new ECB are initialized
to the values that the slow start threshold and congestion
window would have for a new connection in standard TCP,
as specified in RFC 2581 [8]. For example, n_ssthresh can be
initialized to the advertised receive window and n_cwnd can
be initialized to one MSS. If an ECB is found and no
connection is currently associated with the ECB, the new
connection is associated with the ECB and starts with a
congestion window size equal to n_cwnd. If an ECB is found
and there is at least one connection associated with the ECB,
the new connection is associated with the ECB and obtains a
share of the aggregate congestion window. Allocation of the
aggregate congestion window to the connections sharing the
same ECB will be discussed in more detail in section 3.3.

3.2 Sharing Slow Start Threshold
There is a single slow start threshold for the connections
sharing the same ECB, denoted as n_ssthresh. An individual
slow start threshold for each connection is no longer
necessary. All the operations on ssthresh defined in the
congestion control mechanisms in standard TCP [8] are
applied to n_ssthresh in STCP.

In standard TCP, the initial value of the slow start threshold
may be arbitrarily high, and the congestion window keeps
increasing until there is a loss. Then the slow start threshold
is updated to a more reasonable value, half of the previous
congestion window. However, this information is destroyed
when the connection is closed. Another connection using the
same channel has to go through the same procedure, causing
loss first, and then reducing its transmission rate and
updating the information.

By reusing information of the slow start threshold in STCP,
another connection using the same channel is able to change
from slow start to congestion avoidance before causing a
loss. In this way, unnecessary retransmissions and rate cuts
can be reduced.

3.3 Sharing Congestion Window
As discussed in section 3.1, there are three types of
congestion window variables in STCP: n_cwnd is the
aggregate congestion window for the connections associated
with the same ECB; cwndi is the congestion window of

connection i (i = 1 … num_connections); used_cwnd is
defined as the sum of the congestion windows of the
connections. In other words, n_cwnd represents the available
network capacity discovered so far, cwndi represents the
share of network capacity allocated to connection i, and
used_cwnd represents the part of network capacity being
used by the connections.

After receiving an acknowledgment, a connection increases
the aggregate congestion window n_cwnd according to the
congestion control mechanisms defined in standard TCP [8].
If every segment is acknowledged successfully, n_cwnd is
doubled per RTT during slow start and is increased by one
MSS per RTT during congestion avoidance. The decision of
whether to change from slow start to congestion avoidance
depends on the values of n_cwnd and n_ssthresh.

STCP applies a distributed window allocation algorithm to
assign a share of n_cwnd to each member connection. A
connection invokes the window allocation algorithm to
update its share cwnd whenever it updates the value of the
aggregate congestion window or it needs to send out data.

To prevent connections from transmitting more data than
allowed by the network and to fully utilize the available
network capacity, the window allocation algorithm targets
satisfaction of Equation 1:

n_cwnd = used_cwnd (1)

Originally used_cwnd is equal to n_cwnd. When a member
connection receives acknowledgments or detects losses,
n_cwnd is updated, resulting in a difference between n_cwnd
and used_cwnd. When invoked by connection k, the window
allocation algorithm calculates a new share for the
connection as follows:

new_cwndk = n_cwnd –
i=

 = n_cwnd –

 = cwndk + (

where cwndk is the congestion
before invoking the windo
new_cwndk is the new conge
connection k, cwndi is the conges
which is associated with the sam
n is the number of connectio
connection k. Connection k obta
difference between n_cwnd and
gets a reduced share otherwise.

If the result of Equation 2 is nega
n_cwnd is reduced to a very sma
adjustment is performed:

 3
n

 ∑ cwndi
1, i≠k

 (used_cwnd - cwndk)

n_cwnd – used_cwnd) (2)

 window of connection k
w allocation algorithm,

stion window assigned to
tion window of connection i
e ECB as connection k, and
ns sharing the ECB with
ins an increased share if the
used_cwnd is positive, and

tive, which is possible when
ll value, then the following

 If (new_cwndk ≤ 0)

 new_cwndk = MSS

Finally the window allocation algorithm updates used_cwnd
as follows:

used_cwnd = used_cwnd – cwndk + new_cwndk (3)

After the above update is performed, used_cwnd becomes
equal to n_cwnd again. If all the member connections
progress at the same speed and they all make full use of their
congestion windows, each connection can get a fair share of
the aggregate congestion window.

If a loss is detected by duplicate ACKs on a connection, the
connection reduces the aggregate congestion window
 according to Equation 4:

n_cwnd = n_cnwd – cwndk / 2 (4)

where cwndk is the congestion window of the connection that
detects the loss. Then the connection invokes the window
allocation algorithm and obtains a new congestion window
which is equal to half of its previous congestion window. The
other connections remain unaffected. If all the connections
detect losses, then n_cwnd is reduced to approximately half
of its previous value when the first loss is detected.

If a loss is detected by a timeout event, a single TCP
connection will reduce the congestion window to one MSS.
For a group of independent TCP connections, only the
connections that detect a timeout will reduce the congestion
window to one MSS, while the others keep increasing the
transmission rate. Because a timeout event usually indicates
severe network congestion, STCP reduces the aggregate
congestion window in a way similar to a single TCP
connection in order to prevent deteriorating network
congestion and causing more losses. If a timeout occurs on a
connection, the connection reduces the aggregate congestion
window according to Equation 5:

n_cwnd = num_connections * MSS (5)

Any connection sharing the same ECB will obtain a
congestion window of one MSS when it invokes the window
allocation algorithm.

When opening a new connection, STCP intends to give the
new connection a fair share of the network capacity as well
as to keep the increase of the overall congestion window of
an ensemble like the one of a single TCP connection. The
share of the new connection comes from contributions of
existing connections associated with the same ECB. First,
TCP manager sets the field add_new_flag in the ECB to true,
indicating that there is a new connection trying to get a share

of the network capacity. Then it calculates the amount of
share that each existing connection is expected to give to the
new connection. The result of this calculation is stored in the
field quota in the ECB. Field contribution represents the
amount of the share that has been granted so far by existing
connections and is available to the new connection. When
invoked by an existing connection, the window allocation
algorithm checks the value of add_new_flag. If the value is
true, it then reduces the new share of the connection by quota
and increases contribution by quota. add_new_flag remains
true when the reallocation process is going on. The
congestion window of the new connection is initialized to
zero. Before it sends out the first segment, it invokes the
window allocation algorithm, and obtains a new congestion
window equal to contribution. Thus, the window reallocation
process is completed and add_new_flag is set to false by the
new connection.

When a connection is closed, the released share from the
closed connection will be utilized by remaining connections
once the window allocation algorithm is invoked.

The following example illustrates how connections share the
congestion window information in STCP. This example
involves three connections between the same host-pair. The
first connection runs alone and is closed before the second
connection is opened. The third connection is opened later
than the second connection and runs concurrently with the
second connection for some time. Finally the second
connection and the third connection are closed sequentially.
Figure 2 shows the congestion windows of the three
connections with comparison between TCP and STCP.

In Figure 2, the solid lines represent the congestion windows
when STCP is used, and the dashed lines represent the
congestion windows when standard TCP is used. For the first
connection, TCP and STCP perform the same, thus the
congestion windows of the first TCP connection and the first
STCP connection are identical. The second and third TCP
connection also perform the same as the first TCP
connection, therefore the congestion windows of the three
TCP connections are identical. When the second STCP
connection is opened at time T2, it reuses the knowledge
about the network capacity discovered by the first STCP
connection and starts with an initial congestion window
larger than one MSS. At time T3, the second STCP
connection gives part of its share of the network capacity to
the third STCP connection and cuts its congestion window to
half. Thus, the third STCP connection starts with an initial
congestion window equal to the congestion window of the
second STCP connection. When the second STCP connection
is closed at time T4, the third STCP connection obtains the
released network capacity and almost doubles its congestion
window size.

 4

Figure 2: Sharing Congestion Window Infor

4. Simulation Results
In this section, simulation results of STCP with c
to standard TCP are presented. Simulations are co
both FTP and HTTP applications. The performanc
in various one-way delays is also simulated and dis

4.1 FTP Simulation
In this simulation, we use two similar scenarios to
1MB files from a server to a client. The first scen
Basic TCP, uses standard TCP, while the secon
uses STCP. The files are sent in two consecutive g
three concurrent transfers occurring in each grou
transfer times are shown in Figure 3.
In Figure 3, the first group of STCP connection
slightly slower than the first group of TCP conn
group of STCP connections increases the

congestion window like a single TCP connection. However, a cwnd1 (kB)

T1

(a) Congestion Window of Conn

T

1 MSS

T

cwnd2 (kB)

T2 T3 T4

(b) Congestion Window of Conne

1 MSS

Ti

cwnd3 (kB)

T3 T4

(c) Congestion Window of Conne

1 MSS

STCP
group of independent TCP connections increases the

TCP
aggregate congestion window N times faster than a single

TCP connection, where N is the number of connections. So
the total transfer time for the first STCP group is about 5%
longer than that of the first TCP group. Once STCP has
obtained some information about the network condition from
the first group, the second group of STCP connections starts
up more quickly than the first STCP group, while the second
group of TCP connections performs the same as the first TCP
group. Figure 3 shows that the second STCP group is about 3
times faster than the second TCP group.

ection 1

ime (sec)

STCP
35
TCP
10

15

20

25

30

Fi
le

 D
ow

nl
oa

d
Ti

m
e

(s
ec

)

Basic_TCP

STCP

ime (sec)

ction 2

STCP

5

TCP
mation

omparison
nducted for
e of STCP
cussed.

transfer six
ario, called
d scenario
roups, with
p. The file

s performs
ections. A
aggregate

Figure 3: FTP File Download Time

4.2 HTTP Simulation
In this simulation, we compare the STCP scenario with the
Basic TCP scenario in carrying HTTP traffic. The two
scenarios transfer three consecutive Web pages from the
server to the workstation. The pages consist of the same
number of objects. Each page is 100kB. The page download
times are shown in Figure 4.

Because HTTP 1.1 uses a persistent connection to transfer all
the data in one Web page, TCP performs the same when
downloading each of the three pages. STCP has the same
performance as TCP when downloading the first page. Using
the knowledge about the network condition obtained in the
first transfer, the second connection established to download
the second page starts with a congestion window size larger
than one MSS. Therefore, the second page in the STCP
scenario is downloaded in a shorter time than that of the first
page. The third transfer is even faster. Comparing STCP with
standard TCP for the third page, the download time for STCP
is almost 3 times faster.

0
0 50 100 150 200 250 300

Time (sec)

me (sec)

ction 3

5

0

2

4

6

8

10

12

40 60 80 100 120 140
Time (sec)

Pa
ge

 D
ow

nl
oa

d
Ti

m
e

(s
ec

)

Basic_TCP

STCP

Figure 4: HTTP Page Download Time

4.3 Various Delays
By comparing standard TCP and STCP under various values
of delay, we can see how much STCP can improve TCP's
inefficiency over long delay satellite links.

We set up two scenarios, each transferring two files
sequentially. The file size is fixed to 1MB. For scenario
Basic TCP, the two files are transferred in the same amount
of time. For STCP, the first transfer is the same as TCP,
while the second transfer is faster than the first transfer in the
same scenario, thus faster than the second transfer in the TCP
scenario. We vary the one-way delay from 0.05 to 0.67
seconds for both scenarios, and observe that the performance
improvement in transferring the second file using STCP is
significant, as shown in Figure 5. As the delay increases, the
degree of performance improvement also increases.

Figure 5: Download Time of the 2nd File under Various
Delays

5. Conclusion
In this paper, we have presented a sender-side TCP
modification, STCP, to improve TCP performance over long
delay satellite links by sharing congestion control
information. Simulations for FTP and HTTP applications
have been conducted. Simulation results show that this
solution performs better than standard TCP when there exists
information about the same channel discovered by previous
connections.

Future work will focus on how to maintain the state
information discovered by previous connections when the
information is not currently used by any connection, and how
to share the state information among connections on the same
subnet.

References
[1] Allman, M., Glover, D., Sanchez, L., Enhancing TCP
over Satellite Channels using Standard Mechanisms, IETF
RFC 2488, January 1999.

[2] Allman, M., et al., Ongoing TCP Research Related to
Satellites, IETF RFC 2760, February 2000.

[3] Ghani, N., Dixit, S., TCP/IP Enhancements for Satellite
Networks, IEEE Communications Magazine July 1999.

[4] Braden, R., T/TCP -- TCP Extensions for Transactions,
IETF RFC 1644, July 1994

[5] J.Touch, TCP Control Block Interdependence, IETF RFC
2140, April 1997.

[6] Eggert, L., Heidemann J., and Touch, J., “Effects of
Ensemble-TCP”, SIGCOMM Computer Communication
Review, December 20, 1999.

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8

One-way Delay (sec)

2n
d

Fi
le

 D
ow

nl
oa

d
Ti

m
e

(s
ec

)

Basic_TCP

STCP

[7] Balakrishnan, H., Padmanabhan, , V.N., Seshan, S.,
Stemm, M., Katz, R.H., TCP Behavior of a Busy Internet
Server: Analysis and Improvements, Proc.IEEE Infocom,
March 1998

[8] Allman, M., et al., TCP Congestion Control, IETF RFC
2581, April 1999.

[9] Stadler, J. Scott, and Gelman, Jay, “Performance
Enhancement for TCP/IP on a Satellite Channel”, MIT
Lincoln Laboratory, IEEE Communications, January 1998.

[10] OPNET Modeler Documentation, Model Descriptions,
Transport Layer Protocols, TCP Model, version 7.0.B.

 6

	Improving TCP Performance over Long Delay Satellite Links
	Jing Peng, Peter Andreadis, Claude Bélisle �
	Communications Research Centre Canada Carleton University
	Ottawa, ON K2H 8S2 Canada Ottawa, ON K1S 5B6 Canada
	Abstract
	1. Introduction
	2. TCP Review
	3. Design and Implementation of STCP
	Figure 1: ECB Structure Definition
	Figure 2: Sharing Congestion Window Information

	4. Simulation Results
	Figure 3: FTP File Download Time
	Figure 4: HTTP Page Download Time

	References

