
International Conference on Telecommunications (ICT), Beijing, 2002

1

An Introduction to a UML Platform Independent Model of a
Software Radio

Michel Barbeau and Francis Bordeleau

School of Computer Science
Carleton University

1125 Colonel By Drive,
Ottawa (Ontario), Canada K1S 5B6

Jeff Smith
Mercury Computer Systems Inc.

199 Riverneck Road
Chelmsford, MA US 01824

Abstract

This paper is a tutorial about a Platform
Independent Model (PIM) of a Software Radio
(SWR), which is being developed by the Object
Management Group (OMG) SWR Domain Specific
Interest Group (DSIG). The tutorial gives a short
introduction to the concept of SWR and Model
Driven Architecture (MDA). The tutorial then
focuses on the two most important packages of the
PIM, namely, the CF Control and Base Application
packages.

1. Introduction

The objectives of this tutorial are to introduce the
concept of Software Radio (SWR), to give an
overview of the Unified Modeling Language
(UML) [OMG 01] model of a SWR that is being
standardized by the OMG [OMG 02a] and to
review some of the related issues. It is important to
stress that this is in-progress work and the tutorial
provides an early exposure to it.

The concept of SWR has been defined by
Mitola [Mito 00]. It is a radio consisting of a
programmable hardware platform, which functions
can be implemented in software. Standardization
efforts are invested in this area for the sake of
enabling the integration and interoperability of
SWR components from different sources.
Standardization efforts are being conducted by the
Joint Tactical Radio Systems (JTRS) Joint Program
Office (JPO) [Join 01], Software Defined Radio
(SDR) Forum [SDR 02] and Object Management
Group (OMG) Software Radio (SWR) Domain
Special Interest Group (DSIG) [OMG 02a]. The
SDR Forum has standardized a model of a SWR
called the Software Communications Architecture
(SCA). UML diagrams are used for the
specification of interfaces to the elements of a
SWR. Sequence diagrams are also used. CORBA is
used for the integration of the components. This
model has been adopted by JTRS JPO. The SDR
Forum conducts activities related to the SCA. It
sponsors the development of a reference
implementation of the SCA at the Communications
Research Centre (CRC) [CRC 02].

The OMG SWR DSIG develops using UML a
standard model of a SWR. The OMG SWR DSIG
tries to maintain compatibility with the SCA (in
fact their model is derived from the SCA), but in

contrast to the SCA, the UML is used to model all
aspects of a SWR (structural, behavioural, in
addition to interfaces) and the Model Driven
Architecture (MDA) approach is used [OMG 02b].
The MDA approach makes a separation between a
Platform Independent Model (PIM) and a Platform
Specific Model (PSM). A PIM makes abstraction of
implementation platforms. For instance, in the
SWR case the concept of distributed object is used.
At the level of the PIM, this concept remains
abstract and does not refer to one of its particular
realization, such as CORBA and EJB. In contrast, a
PSM would have to resolve this issue.

The use of the UML and MDA are well
justified in this context. The architecture of a SWR
is a complex problem to address. UML and MDA
are tools for addressing complexity of software.
The conceptual tools they provide for handling
complexity are abstraction, encapsulation and
hierarchical structure and behaviour. The UML and
MDA also benefit from a wide acceptance. The
UML and MDA artefacts are readable by a wide
audience and supported by a variety of tools.

In this tutorial, we introduce the concept of
SWR (Section 2) and UML and the MDA approach
(Section 3). We make a presentation of the UML
model of a SWR as being defined by the OMG
(Section 4). Section 5 concludes the tutorial.

2. Software Radio

Digital Signal Processing (DSP) is a technology
enabling the concept of SWR. In a nutshell, DSP
consists of measuring analog signals, representing
the measurements numerically (i.e. Analog to
Digital Conversion (ADC)), doing some processing
with the numbers and converting the results of this
processing back to an analog signal (i.e. Digital to
Analog Conversion (DAC)). The processing
corresponds to a software representation of
transformations such modulation, filtering and
coding.

ADC DACDSP

Am
pl

ifi
er

Antenna

Speaker

Figure 1. Architecture of a SWR receiver.

International Conference on Telecommunications (ICT), Beijing, 2002

2

At the heart of a SWR is a processor that
does DSP. For the sake of flexibility, radio-
frequency components of the hardware architecture
of a SWR are made as general as possible, see
Figure 1. Antennas are either wideband or multi-
band. On the receiver side, the amplifier and ADC
are also made wideband.

3. UML and the MDA Approach

The Model Driven Architecture (MDA) is a three-
tier approach: the Platform Independent Model
(PIM), Platform Specific Model (PSM) and
Enterprise Deployment Model (EDM), see Figure
2. A PIM is expressed using UML and describes
how an application or a system is structured, while
making abstraction of implementation details. For
instance, the PIM of a file transfer application
would define a get operation in a generic way as an
action that transfers the blocks of a file from a
source file system to a target file system. The PSM,
also expressed with UML, adds constraints and
implementation details. The PSM of the file
transfer application would specify that FTP over
TCP/IP is used to implement the operations. The
EDM is the final product and corresponds to code
written in a specific programming language for a
specific OS. The EDM for the file transfer
application could be source code in C for Linux.
There is a one-to-many relationship from a PIM to
PSMs and another one-to-many relationships from
a PSM to EDMs.

PIM EDMPSM1 N 1 N

Figure 2. The MDA approach.

The MDA approach gives rise to model driven
development, see Figure 3. The PIM and PSM are
developed according to the rules defined within a
metamodel, a model of models. The metamodel
itself can be described with UML. From the PIM to
the PSM there is mapping relationship which adds
infrastructure (e.g. a concrete distributed object
framework such as CORBA). From the PSM to the
PIM there is a refactoring relationship that abstracts
infrastructure.

UML Metamodel

PIM

PSM Infrastructure

expressed
with

described
with

described
with

Mapping Refactoring

depends
on

Figure 3. Model driven development.

4. UML Model of the SWR

The OMG SWR DSIG community uses the
following terminology: waveform, application and
domain. A SWR can be loaded with waveforms. A
waveform consists of transformations. In a SWR
transmitter, transformations encode data (e.g.
voice) and produce signals that can be transmitted
over the air. In a SWR receiver, transformations
decode a signal received over the air and produce
data (e.g. packets). In other words, a waveform is a
software representation of a radio communications
standard or mode.

An application is a program which
execution realizes a given waveform. An
application provides an interface through which it
can be configured, controlled and monitored.

A domain is a set of hardware devices and
applications. A given domain is under the control of
a domain manager.

Packages

The top level of the OMG UML model of a SWR is
organized into packages, see Figure 4. A UML
package is a folder metaphor. It is used to group
together a collection of connected elements of a
model, such as classes, associations and even other
sub packages. The graphical representation of a
package evokes a folder and is a rectangle with a
small tab on the top left corner. The name of the
package is written inside the rectangle.

CF BaseTypes

CF Services Base
Application

CF Control

Domain Profile

Figure 4. Package view of a SWR.

A package can be connected to other

packages. Such a connection is represented by a
dashed arrow with an open arrowhead from a
referee package to a referenced package. Elements
defined in the referenced package become visible in
the referee package. The representation of a
collection of connected packages is called a
package view.

The UML PIM of a SWR consists of five
packages, namely, Core Framework (CF) Base
Types, CF Services, Domain Profile, Base
Application and CF Control. The CF Base Types is
a utility package that defines data types used by

International Conference on Telecommunications (ICT), Beijing, 2002

3

other elements of the UML PIM of a SWR. Data
types are defined as classes. For example the
Property type used in the Base Application package
is defined here. The CF Service package comprises
four support services, namely, the event service,
file service, logging service and naming service.
The Domain Profile package defines XML files that
describe a domain. An important type of file is the
one describing how an application should be
assembled. Not all packages are currently at the
same stage of progress within the OMG SWR
DSIG. Considerable effort has been invested so far
for the Base Application and CF Control packages.
These two packages are reviewed in more detail in
the sequel.

4.1 The Base Application Package

The Base Application package defines the elements
that are at the core of applications. These elements
are defined as interfaces and classes, see Figure 6.
Every class is pictured as a rectangle with three
compartments. The top compartment contains the
name of the class. The middle compartment
contains a list of typed data members. The bottom
compartment contains signatures of operations.

An interface defines signatures of
operations that are realized by classes. The
interface itself does not address implementation and
has no data members and internal structure. An
interface is represented by an <<interface>> class
stereotype. An interface can be connected to other
interfaces through generalization relationships. This
kind of relationships is represented by a solid arrow
with a closed arrowhead directed towards the parent
interface. A realization relationship is represented
as a solid arrow with a closed arrowhead from a
class to a supported interface.

Central to the Base Application package
are the Resource and Port abstractions. A Resource
is the abstraction of a software element of a SWR
application. The Resource class realizes a number
of interfaces, namely, the ResourceInterface,
LifeCycle, PropertySet, PortSupplier and
TestableObject interfaces. Together they define an
Application Programming Interface (API) which is
used by other elements of the SWR to control a
resource.

Released Initialized Test Mode

initialize

releaseObject

test

return from
test

Figure 5. Statechart diagram for Resource instance.

In UML, statechart diagrams are used to
model the behaviour of instances of classes. A
statechart diagram consists of states and transitions.
A state is represented by a rectangle with rounded
corners. The initial pseudo state is illustrated by a
filled circle with a single outgoing transition. A
transition is pictured by an arc from a source state
to a target state. The arc has an associated action
label. A statechart diagram of Resource instance is
pictured in Figure 5.

The LifeCycle interface declares
operations which invocations initialise or release
internal elements of a resource (e.g. set values of
data members or configure parameters). The
TestableObject interface declares an operation with
which can be launched test routines built in a
resource. It is a black box form of testing. A
resource may have several properties. A property is
an identity-value pair. The value of an individual
property can be configured or inspected using
operations declared on the PropertySet interface.

A Resource has zero-to-many ports, which
can be retrieved individually by name using the
operations declared on the PortSupplier interface.
Ports can be connected to each other using
operations declared on the Port class. Each
connection is unidirectional and a port can be
connected to several other ports.

The ResourceInterface amalgamates all the
aforementioned interfaces and declares additional
operations in order to start or stop the execution of
a resource and to extract its identity.

A ResourceFactory is an optional path that
can be taken to create resources by identity and
specified properties or to release resources by
identity. It is inspired from the Factory design
pattern. In addition, a Resource instance may be
shared. For each resource that it produces, the
ResourceFactory maintains a count of references.
The resource is effectively released only when the
reference count reaches the value zero. A shutdown
operation releases the ResourceFactory itself.

4.2 The CF Control Package

The CF Control package addresses the control and
management of resources, ports (defined in the
Base Application package) and devices within a
domain.

Application Class

An instance of the Application class is the
abstraction of an application, which is a member of
a domain (see Figure 7). The Application class
declares operations for the control, configuration
and monitoring of an application. An application
consists of Resources, is a kind of Resource and is
created using the services of an ApplicationFactory.
Operations declared in the Resource class are

International Conference on Telecommunications (ICT), Beijing, 2002

4

overloaded in the Application class. For instance,
the invocation of the releaseObject operation on an
instance of the Application class releases all
resources that an application has and returns the
capacity of hardware devices granted to the
application.

There is an important aspect of
applications that deserves further explanations.
Every application has a profile. Its profile is a
specification of how the application is assembled in
terms of resources and needs of capacity on
hardware devices. This specification is expressed
using the XML language and is stored either in a
file or in memory. Hence, the application has an
attribute named profile which is either a reference
to a file (which can be resolved using the file
service (of the CF Services package)) or an internal
representation of an XML specification.

ApplicationFactory Class

The creation of an application is done by name
using the create operation declared on the
ApplicationFactory class. An instance of the
ApplicationFactory class is associated with one
named type of applications and one XML
specification for the assembly of this type of
applications. The create operation takes three
parameters: the name of the instance of the
application being created, a mapping of resources
to hardware devices and a configuration consisting
of a set of properties (i.e. identity-value pairs).

Device Class

An instance of the Device class (see Figures 7 and
8) is a software abstraction of a hardware device. It
is analogous to the notion of device presents within
Unix. It is hence another kind of resource. The
Device class defines attributes that describe the
capabilities of a device in terms of ports and
properties.

There are three sub classes of the Device
class, see Figure 8. An instance of the
AggregateDevice class is a device composed of
other devices. An instance of the LoadableDevice
class can be loaded with software (e.g. a driver).
This software determines its behaviour. An instance
of the ExecutableDevice class declares operations
for the control of the execution and termination of a
software loaded on a device.

DeviceManager Class

Instances of the Device class must be registered
with an instance of the DeviceManager class. Its
keeps a list of registered devices and a map of
instances of the Device class to hardware devices,
which are designated with labels (e.g. on Unix,
name of entries if the /dev directory). The device

manager is responsible for the creation of the file
system (defined in the CF Services package). The
device manager should register itself with the
domain manager, to be discussed next.

DomainManager Class

An instance of the DomainManager class is the
entry point to a domain, which is a set of hardware
devices and applications. It provides operations for
the control and configuration of a domain. A key
operation addresses the installation of applications
within a domain. Indeed, before an application can
be created, using the create operation of the
appropriate application factory, it must be installed
within a domain. The installApplication operation
takes the name of a file that defines the profile of a
type of applications. It verifies that all files required
for creating an application of this type are present
in the file system. If yes, is reports the success of
the installation by generating an event and creating
a log entry using the event service and logging
service defined in the CF Services package.

After the installation, the application can
proceed with the creation and assembly of all
resources that are part of an application. Note that a
DomainManager also knows the application
factories and provides operations that return
handles to them. An instance of the
DomainManager class can be registered with a
naming service (defined in the package CF
Services), which can be lookup by distributed client
programs. At this point, the paper has given almost
the big picture of the SWR PIM of the OMG SWR
DSIG.

The DomainManager class realizes four
interfaces: the DomainRegistration,
ApplicationInstallation, DomainHCI and
DomainEventChannels interfaces, see Figure 9.

DomainRegistration Interface

A domain contains hardware devices, services (see
the CF Services package) and applications. When
an instance of the Device class is inserted in the
domain, the device and its device manager must be
registered. This is normally done when a SWR is
initialized, following a start-up or reboot. To this
end, the DomainManager realizes the
DomainRegistration interface. A device manager is
registered with the registerDeviceManager
operation while a device and its association with a
device manager are registered with the
registerDevice operation.

The following services may be inserted
within a domain: event service, file service, log
service and naming service. A new service is
inserted within a domain with the registerService
operation.

International Conference on Telecommunications (ICT), Beijing, 2002

5

ApplicationInstallation Interface

The ApplicationInstallation interface declares
operations with which applications are introduced
within a domain. A new application is introduced
with the installApplication operation. The argument
of the operation is the name of a file containing the
profile of the application.

DomainHCI Interface

The DomainManagerHCI interface declares a set of
operations that a HCI client would use to retrieve
domain information. For instance, the
getApplicationFactories operation returns the list of
factories which are available to the client.

DomainEventChannels Interface

The DomainEventChannels interface declares a set
of operations that a client can use for registering or
unregistering with a domain event channel. A
registered client is notified when applications are
either installed or uninstalled.

5. Conclusion

This tutorial has introduced the PIM of a SWR
being developed by the OMG SWR DSIG. This is
ongoing work. The reader may follow the progress
made by the DSIG at the following URL:
swradio.omg.org. UML models and related
documents are available on-line. Future work is the
development of PSMs and EDMs. Another
important issue that needs to be addressed is the
validation of the mappings from the PIM to the
PSMs and from a PSM to the EDMs.

Acknowledgements

The authors would like to acknowledge financial
support from Communications and Information
Technology Ontario (CITO) and Natural Sciences
and Engineering Research Council of Canada
(NSERC).

References

[Arch 01] Architecture Board ORMSC, “Model
Driven Architecture,” Document number
ormsc/2001-07-01, 2001.

[CRC 02] Communications Research Centre (CRC)
Canada, “SCA Reference Implementation,”
www.crc.ca/en/html/scari/home/home, 2002.

[Join 01] Joint Tactical Radio Systems (JTRS) Joint
Program Office (JPO), “Software Communications
Architecture Specification,” V2.2,
www.jtrs.saalt.army.mil/SCA/SCA.html, 2001

[Mito 00] J. Mitola III, “Software Radio
Architecture – Object-Oriented Approaches to
Wireless Systems Engineering,” John Wiley &
Sons, Inc., 2000.

[OMG 01] Object Management Group (OMG),
“OMG Unified Modeling Language Specification,”
Version 1.4, September 2001. (available at:
www.omg.org)

[OMG 02a] Object Management Group (OMG),
Software Radio DSIG, swradio.omg.org, 2002.

[OMG 02b] Object Management Group (OMG),
“Model Driven Architecture (MDA),”
www.omg.org/mda, 2002.

[SDR 02] Software Defined Radio (SDR) Forum,
www.sdrforum.org, 2002.

ResourceInterface

start()
stop()
getIdentifier()

<<Interface>>

LifeCycle

initialize()
releaseObject()

<<Interface>> PropertySet

configure()
query()

<<Interface>>

TestableObject

runTest()

<<Interface>>
PortSupplier

getPort()

<<Interface>>

ResourceFactory
identifier : string

createResource()
releaseResource()
shutdown()
getIdentifier()

Port
Resource

identifier : String
0..10..*

+creator

0..1

+product
0..*1..* 11..* 1

0..n0..n 0..n

DependsOn

0..n

Figure 6. Class diagram of Base Application.

International Conference on Telecommunications (ICT), Beijing, 2002

6

Application

ApplicationFactory

1

0..*

+creator1

+product
0..*

Device

0..*

0..*

+appTeardownManager
0..*

+capacityDeallocator
0..*

0..*
0..* +appConfigManager

0..*+capacityAllocator
0..*

DomainManager

1

0..*

+registar
1

+informationProvider
0..*

1

0..*

+applicationDirectory

1

+runningApplication

0..*

1

0..*

+creator1

+product

0..*

DeviceManager 0..*

1 +product

0..*+creator

1
1 0..*+registrar 1

+registrant

0..*

1

0..*

+registrar

1

+informationProvider 0..*

Figure 7. Class diagram for Application and Device.

ExecutableDevice

terminate()
execute()

LoadableDevice

load()
unload()

Resource

identifier : String
(from Base Application)Device

usageState : UsageType
adminState : AdminType
operationalState : OperationalType
softwareProfi le : string
label : string
compositeDevice : AggregateDevice

allocateCapacity()
deallocateCapacity()
getUsageState()
getOperationalState()
setAdminState()
getAdminState()
getSoftwareProfile()
getLabel()
getCompositeDevice()

AggregateDevice
devices : DeviceSequence

addDevice()
removeDevice()

0..*0..*

Figure 8. Class diagram for devices.

DomainManager
identifier : string

DomainEventChannels

registerWithEventChannel()
unregisterFromEventChannel()

<<Interface>>
DomainRegistration

registerDevice()
registerDeviceManager()
unregisterDeviceManager()
unregisterDevice()
registerService()
unregisterService()

<<Interface>>

ApplicationInstallation

installApplication()
uninstallApplication()

<<Interface>>
DomainHCI

getApplications()
getApplicationFactories()
getIdentifier()
getFileMgr()
getDeviceManagers()
getDomainManagerProfile()

<<Interface>>

Figure 9. The DomainManager class.

