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Abstract— For the purpose of anomaly-based intrusion detec-
tion in mobile networks, the utilization of profiles, based on
hardware signatures, calling patterns, service usage, and mobility
patterns, have been explored by various research teams and
commercial systems, namely the Fraud Management System
by Hewlett-Packard and Compaq. This paper examines the
feasibility of using profiles, which are based on the mobility
patterns of mobile users, who make use of public transportation,
e.g. bus. More specifically, a novel framework, which makes use of
an instance based learning technique, for classification purposes,
is presented. In addition, an empirical analysis is conducted in
order to assess the impact of two key parameters, the sequence
length and precision level, on the false alarm and detection rates.
Moreover, a strategy for enhancing the characterization of users
is also proposed. Based on simulation results, it is feasible to use
mobility profiles for anomaly-based intrusion detection in mobile
wireless networks.

Keywords: Mobile Networking, Security, Intrusion Detec-
tion, IBL, and Mobility Profiles.

I. INTRODUCTION

Mobile wireless networks continue to be plagued by theft of
identity and intrusion. Both problems can be addressed in two
different ways, either by misuse detection or anomaly-based
detection. Misuse detection is carried out by recognizing in-
stances of well known patterns of attacks. The main limitation
of this approach is that the system fails to uncover new kinds
of attacks, unless it has been instructed to do so. Anomaly-
based intrusion detection (ABID) consists of observing and
recognizing deviations from normal behavior, which has been
captured and maintained in electronic profiles. It is generally
acknowledged that the main limitation of the anomaly-based
detection approach is that it generates a higher rate of false
alarms than the misuse detection approach.

The limitation imposed by anomaly-based detection ap-
proach can be minimized by combining observations across
time and across domains. When intrusion detection is car-
ried out using a given profile, multiple observations can be
correlated in time using a state-probabilistic model such as
Bayes filters [1]. This strategy accommodates a moderate
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degree of variability in normal behavior, as indicated by
Morin and Debar in [2], and consequently reduces the rate
of false alarms. Furthermore, using a statistical tool, such as
multivariate analysis [3], the detection results, associated with
multiple profiles from different domains, can also be combined
to further reduce the rate of false alarms. Examples of intrusion
detection systems (IDSs), which make use of multi-sensor data
for enhanced detection, include AAFID by Balasubramaniyan
[4] and EMERALD by Porras and Neumann [5].

The use of different profiles for ABID has been investigated
by various groups. Node/device profiles are created by exploit-
ing the unique hardware signature of their wireless interface
[6] and [7], operating system (proposed by Taleck [8]), and
other characteristics of a wireless device. In terms of user-
based profiling, the use of calling patterns for fraud detection
in cellular networks is explored by Boukerche et al. [9]. Calls
are classified into the normal category or anomalous category
based on whether or not the time and location of the calls
match the profile of the user. If the probability of fraud is
high, then a warning message is sent to the client who owns
the phone.

Commercial systems, namely the Fraud Management Sys-
tem by Hewlett-Packard (FMS-HP) [10] and Compaq (FMS-
C) [11] also employ service usage profiles, which are built
using calling patterns, call frequency, call times and duration,
wireless home/roaming behavior, and other call-related infor-
mation.

In this paper, we examine the feasibility of using profiles,
which are based on the mobility patterns of users, for ABID
at the application layer. In particular, a novel framework
that makes use of a statistical classifier is presented. The
instance based learning (IBL) classification system [12] used
is a general class of machine learning techniques. In addition,
we focus on the analysis of two key system parameters,
the sequence length (SL) and precision level (PL), in order
to determine their impact on the false alarm and detection
rates. A strategy for enhancing the characterization of users
is also proposed. Finally, results of simulations, conducted
using location broadcasts (LBs) from users, who make use
of public transportation, e.g. bus, in the area of Los Angeles,
are discussed.

Our primary objective is to supplement existing user and
device-based profiles, with those based on mobility, in order
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to further enhance ABID in mobile wireless networks. In
fact, the use of mobility profiles is particularly applicable
for addressing the problem of stolen cell phones, given that
the mobility behavior of the thief and the authorized user are
likely to be different. Lastly, we believe that the underlying
framework can be applied, with minimal translation, e.g. use
of cells instead of geographical coordinates, to the mobile
wireless network.

The remaining sections of the paper are organized as
follows. Section 2 presents the framework for the application
of mobility profiles to ABID. Whereas Section 3 discusses the
analysis of the two key system parameters, simulation results
are presented in Section 4. Other related work are identified
in Section 5, followed by the conclusions and future research
initiatives in Section 6.

II. ABID USING MOBILITY PROFILES

This section provides an overview of the ABID system.
As with most IDSs, the two primary objectives are to define
user mobility profiles (UMPs) and to design an appropriate
classification system.

A. Framework

Details of the framework, which is used for the implemen-
tation of the ABID system, are provided in this subsection. It
is important to note that the detection process, as described
in the sequel, is repeated for each user. Moreover, during the
profiling phase, the subset of activities, from data collection
to the definition of the UMP, is typically carried out on a
one-time basis and prior to classification.

The intrusion detection process begins with the data col-
lection exercise. Once the LBs, which contain geograph-
ical/location coordinates (LCs) and other data, have been
captured for a period of approximately 3-6 months, a high-
level mapping (HLM) is applied. The purpose of using the
HLM is to decrease the granularity of the LCs in order to
accommodate minor deviations or intra-user variability. Upon
completion of this phase, the LCs (feature) are extracted from
each broadcast during feature extraction. A set (defined by
SL) of these chronologically ordered LCs are subsequently
concatenated to define a mobility sequence. This process
continues until all the mobility sequences (data set) have been
created. The unique sequences (training patterns), from the
first four out of six equal partitions of the data set, is stored
in the UMP, along with other user-related information. During
the classification phase, a set of mobility sequences of user
A is compared to the training patterns in his/her profile. If
the noise-suppressed similarity measure to profile (NSMP)
value falls within the pre-established thresholds (also stored in
profile), this set of mobility sequences is considered normal
(belonging to User A), otherwise an intrusion is suspected.

B. High-Level Mapping

The term intra-user variability refers to the difference
between the LCs (j represents the latitude and i represents
the longitude) that are transmitted by user A as he/she travels
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Fig. 1. Intra-user and inter-user variability

using routes one (solid line) and two (dashed line), see Fig.
1. Let us assume that the full sequence of LCs, associated
with route one, has been captured and stored in the profile
(training patterns) of user A. If the sequence of LCs, associated
with route two, is compared to those in the training patterns,
it would result in a similarity value of zero, and would be
interpreted as an intrusion. Thus, the HLM converts LCs,
based on one of three precision levels, in order to change
the degree of similarity between corresponding LCs in two
sequences.

This mapping process, which is applied to a LC in each
LB, is carried out as follows. The original format of the LC
is (###.#####) and (###.#####), where the first and second
terms represent the latitude and longitude respectively. Based
on the precision level (PL), the LC is truncated and rounded
to the specified number of digits after the decimal point. With
level three (highest precision), the specified digit of the first
and second terms (###.##) is rounded to 0 if it is within 0-
4, and to 5 if it is within 5-9 range. Thus, for example, the
LC 33.14623,114.26874 is mapped to 33.10,114.25. Similarly,
the HLM for levels two and one are (###.#) and (###.0)
respectively. The choice of PL is explored in Section 3.

Caution must nevertheless be exercised since minimizing
intra-user variability will also minimize inter-user variability.
That is, it will increase the similarity between LCs of User A
and an intruder, making it more difficult to distinguish between
the two users.

C. Feature Extraction

The extraction of LCs (feature) from the HLM data is
required in order to create mobility sequences. The selection
of the appropriate SL is also addressed in Section 3.

The feature extraction process begins by concatenating the
first set (e.g. ten) of chronologically ordered LCs into a single
sequence, where k = 1 and m = 10 represent the first and last
LC respectively. Each subsequent sequence of equal length is
obtained by shifting k and m by one, as suggested by Lane and



Brodlay [13]. The purpose of using an overlapping window,
which is continuously shifted by one, is to accommodate
different sequences that begin with different LCs. This process
is repeated until all the LCs in the HLM data stream have been
exhausted. The resulting set of sequences (data set) are used
for profiling and classification purposes.

D. Profile Definition

Once the mobility sequences have been obtained, the next
step is to create the UMP. A detailed description of each
component in the UMP ensues.

Identifier represents the unique identification of the user,
which has been issued by Industry Canada. It is transmitted
with all LBs. Training Patterns characterize the mobility
behavior of a user. Due to factors, such as traffic and weather, a
mobility sequence of a user may deviate from the norm. This
deviation is referred to as noise, which must be minimized.
The term window size refers to the number of mobility se-
quences to be used for obtaining the NSMP value. If the NSMP
value falls within the pre-established minimum and maximum
thresholds, the mobility sequences are considered normal.
The values of the thresholds are determined by obtaining a
distribution of the NSMP values, using the training patterns
and parameter sequences (5th partition of the data set), and by
applying the desired false alarm rate (application-dependent)
to the distribution.

As aforementioned, a mobility profile of each user is created
prior to classification. However, in order to address the issue
of concept drift (change in mobility patterns), it is essential
that these profiles be updated periodically. One approach is
to maintain a window of training patterns that is continuously
shifted in time, as new sequences are added (analogous to
the use of exponentially weighted moving average). As the
window is shifted, some of the components, e.g. thresholds,
in the UMP are updated accordingly. This should not only
reduce the rate of false alarms and increase the detection rate,
but also maintain a given level of performance (currently being
investigated).

E. Classification

The final step, in the intrusion detection process, is the
classification of a set of mobility sequences, as normal or
anomalous, using the NSMP value. The following subsection
provides a brief overview of the key concepts defined in
IBL. Readers are encouraged to consult the paper by Lane
and Brodlay [13] for a more detailed discussion of the IBL
framework.

Similarity Measure
As you may recall, a mobility sequence is composed of

a chronologically ordered sequence of LCs and that these
sequences are used for training, establishment of parameters
and test/simulation (6th and final partition of the data set)
purposes. Therefore, the similarity measure (SM) of two
sequences X (e.g. test sequence) and Y (e.g. training pattern)

of equal length l is defined as follows:

sim(X,Y ) =
l−1∑
i=0

w(X,Y, i)

with:

w(X,Y, i) =
{

0 if i < 0 or xi �= yi

1 + w(X,Y, i − 1) if xi = yi

where i represents the index of the sequence of LCs. Thus
w(X,Y, i) equals zero if the LCs of the X and Y sequences
at index i are not identical. Otherwise, a value of one is
added to the outcome of w(X,Y, i) at i − 1. The maximum
SM value for a given l is l(l+1)

2 .

Similarity Measure to Profile
Whereas the SM is determined based on a one to one

comparison of the LCs of a test sequence and training pattern,
the similarity measure to profile (SMP) is calculated by
performing a one to many comparison of a test sequence X
with all the training patterns in a profile D. It is defined as:

simD(X) = maxY ∈Dsim(Y,X).

Hence, the SMP is the maximum of the SM values.

Noise Suppression
As with all chaotic systems, noise is inherent and reflects

the deviation of an observed behavior (test sequence) from the
training patterns stored in the profile. A degree of intra-user
variability is to be expected, since it is a function of many
factors including traffic conditions and weather. Nevertheless,
noise can be suppressed, to some extent, by calculating the
average SMP of a set of W test sequences according to:

vD(p) =
1
W

p∑
q=p−W+1

simD(q).

The term vD(p) is referred to as the NSMP value of the
sequence starting at position p.

Decision Rule
Whether or not a set of mobility sequences is associated

with a given user, can be determined by comparing the
resulting NSMP value to the pre-established minimum tmin

and maximum tmax thresholds. While tmin is used for de-
tecting sequences, which have low NSMP values, tmax proves
beneficial in detecting sequences that have unusually high
similarity to the profiled behavior, perhaps an indication of
an impersonation attack.

The calculation of tmin and tmax, for each user, is carried
out by applying an acceptable false alarm rate r (application-
specific) to a normalized probability distribution (NPD) of
NSMP values. Thus, tmin and tmax are dependent on r and
NPD.

The parameter r dictates the width of the acceptance region
(between tmin and tmax) on the x-axis, see Fig. 2. It also
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represents a trade-off between false alarm and intrusion rates.
For example, a smaller value of r corresponds to a wider
acceptance region, with tmin being shifted to the left. As a
result, the rate of false alarms would be decreased. However,
the expanded region would also accommodate more intrusions,
and therefore, cause the corresponding detection rate to de-
crease.

As far as the NPD is concerned, it is generated by us-
ing the parameter sequences (5th partition of the data set)
and the training patterns (first four partitions), obtaining
a distribution/histogram of NSMP values (in the range of
0, . . . , l(l + 1)/2), and normalizing this distribution based
on the probability of each NSMP value. The actual set of
sequences from the data set, used for training and parameter
specification, is an important factor to be considered. By
allocating the first four partitions to training, the probability
of accurately characterizing the mobility behavior of a user
is increased. This is, of course, based on the assumption that
the mobility patterns of a user is typically established within
a given timeframe. In any event, new mobility patterns can
be incorporated into the training patterns, by addressing the
issue of concept drift, as aforementioned in the subsection on
profile definition.

Finally, tmax and tmin are established using r/2 quantiles
(upper and lower) of the NPD, as proposed by Lane and
Brodlay [13].

Fig. 2 illustrates the application of r = 0.05 to the NPD of
user 19, who was selected at random. In this figure, the x-axis
represents the spectrum (0, . . . , 55) of the similarity values
that are possible for a sequence of LCs of length 10. Please
note that the actual values are in the range of (1, . . . , 56)
for improved graphical representation. The y-axis represents
the probability of each NSMP value in the NPD. Both the
minimum and the maximum thresholds are indicated using
vertical lines. What is illustrated in the figure is the width

of the acceptance region (from the minimum threshold to the
maximum threshold), which is a function of the NPD and
the false alarm rate r. The narrow acceptance region, defined
by high NSMP values of 38 and 56, reflects the consistency
of the mobility behavior, as characterized by the parameter
sequences, with respect to the training patterns. As a result, the
detection rate should be high, since the probability of intruders
having high NSMP values, which fall within the thresholds,
is fairly low.

III. EMPIRICAL ANALYSIS OF SYSTEM PARAMETERS

In the previous sections on HLM and feature extraction, we
had indicated that the PL and SL are of significance and that
an appropriate value had to be selected.

Aside from stating the obvious, our first objective is to
determine the impact of these parameters on the characteriza-
tion of users (distribution of the NSMP values) and intrusions
(successful impersonation attempts against a user). We address
the impact of these parameters on false alarm and detection
rates in the section on simulation.

Given that the mobility behavior of the 50 users does differ
to some extent, and that this variability is likely to influence
the analysis of both parameters, we have categorized these
users based on the precision with which the training patterns
are being followed (repetitions). The three classes are defined
as follows. Whereas class one represents users with the highest
level of similarity (consistent behavior), class two and three
are associated with those with progressively lower levels of
similarity (more chaotic behavior). Due to space constraints,
we focus on the results obtained for user 19 (class 1 with 40%
of users) as they illustrate the expected behavior, associated
with an adequate level of characterization. Nevertheless, we
briefly comment on results (figures not shown) obtained for
user 23 (class 2 with 56%) and user 41 (class 3 with 4%).

A. Sequence Length

Fig. 3 illustrates the use of three different lengths (5,10,15)
for sequences and the impact on the characterization of user
19. Values of NSMP, which are located at the lower-end of
the SM spectrum are vulnerable to the choice of r. Since r
dictates the width of the acceptance region, in particular the
minimum threshold, all values of NSMP that are less than the
threshold are treated as false alarms.

Other parameters used include the window size of 100,
precision level of one (PL1), and minimum threshold of two.
The maximum threshold, however, was based on the SL being
used.

In Fig. 3, the x-axis represents the spectrum of similarity
values for all three SLs. Since the results, associated with
each length, have been incorporated into one plot, the range of
the x-axis is actually from 1-121 (for SL15). In other words,
results obtained for SL5 (length of five) are localized towards
the lower end of the spectrum. NSMP values, which have been
normalized, are indicated by the y-axis.

What is being illustrated is as follows: as the SL is in-
creased, the percentage of NSMP values, located at the higher-
end of the SM spectrum starts to decrease. In this case, the
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NSMP values are located precisely at 15, 55 and 120 on the x-
axis. Furthermore, as the percentage of these values decreases,
they are distributed towards the lower end of the spectrum.
This behavior is logical since the probability of achieving a
high NSMP value decreases as the SL is increased. Therefore,
should the NPD of a user be localized at the higher end of
the spectrum, selecting a larger SL would be not be advisable
since it shifts the NPD further towards the left. However, if
the NPD is located at the lower end of the spectrum (user 41),
it is advantageous to use a larger SL, since this results in the
NPD being shifted towards the higher end of the spectrum.
On the other hand, when the NPD is distributed between
the lowest and highest similarity values (user 23), a larger
sequence length is also desirable for shifting the NPD towards
the center of the spectrum, and away from the lower end.

We continue our analysis of the impact of SL on the
distribution of potential intrusions. All parameters, which were
used in the previous test, remain the same, with one exception.
The NSMP values of potential intrusions, are calculated using
the training patterns of user 19 and test sequences from the
remaining 49 users.

Fig. 4 depicts the distribution of intrusions associated with
each of the three SLs used. It is important to note that we have
zoomed in on the range of SM values between 1-16, since most
of the intrusions are located in this range. The original x-axis
does cover the range of 1-121. This figure demonstrates the
fact that, as the SL is increased, the distribution shifts towards
the higher end of the SM spectrum. This behavior is justified
since there is a higher probability of achieving a high NSMP
value when the SL is longer. The key difference between user
19 and users 23 and 41 is the magnitude of the distribution.
Due to the more chaotic behavior, the magnitude is higher for
user 23 and even more so for user 41.

The last detail to note is the small number of intrusions
at location 16 on the x-axis. It is an indication that one or
more of the 49 users have mobility sequences that are identical
(based on PL1) to user 19. In fact, most of these intrusions are
caused by user 13. Increasing the PL in order to increase the
granularity of the LCs, discussed next, addresses this problem.

B. Precision Level

We proceed with the analysis of the PL and its impact on the
characterization of users and number of potential intrusions.
Given that our goal is to minimize the number of intrusions
first and then address the problem of characterization, we have
used a SL of five.

Fig. 5 indicates that the distribution of NSMP, associated
with a given PL, shifts towards the lower end of the spectrum
as the PL is increased, e.g. from PL2 to PL3. This behavior is
consistent with all three classes of users. Therefore, a lower
PL can be used for HLM in order to improve characterization.
Doing so, increases the similarity between corresponding LCs.
Thus, the probability of a match between a training pattern and
a parameter sequence is higher, resulting in a higher NSMP
value.

Although the use of a lower PL is desirable for charac-
terization purposes, it becomes problematic where intrusions
are concerned, see Fig. 6. What is evident, in this figure
and applicable to all classes of users, is that the distribution
shifts towards the higher end of the spectrum as the PL is
decreased. On the other hand, the intrusions at SM value of
16 are eliminated when PL2 and PL3 are used. This should
not come as a surprise since increasing the PL also decreases
the similarity between two LCs. As a result, the probability of
obtaining a high NSMP value is reduced, as indicated by the
distribution of intrusions for PL3. Thus, the use of a higher
PL would reduce the number of intrusions and improve the
detection rate.

In summary, the selection of values for both the SL and
PL is a challenging task since all of the possible permutations
produce results that are negatively correlated. Nevertheless, an
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optimal strategy would produce results in which the NSMP
values, associated with characterization, are localized towards
the higher end of the spectrum, while those related to intru-
sions are located at the lower end. This would produce low
false alarm and high detection rates.

IV. SIMULATION

Our primary objective, in carrying out the following sim-
ulation exercise, was to determine the impact of PL on the
false alarm and detection rates (metrics). We relaxed the use
of various SLs for the time being, given that a smaller SL
is preferable for improving the detection rate. We were also
interested in the correlation between the quality of characteri-
zation, attainable using IBL, and the resulting false alarm and
detection rates.

A. Simulation Infrastructure

Details of the simulation infrastructure are as follows. The
acquisition of the LBs was carried out using the Automatic
Position Reporting System (APRS) and appropriate hardware
(e.g. receiver and antenna). The APRS is an internet-based
system (open-source) that tracks objects and users using
amateur radio.

It has been specified by Markoulidakis in [14] (follow-up
on the Universal Mobile Telecommunications System RACE
specification) that nearly 50% of all mobile users use public
transportation, e.g. bus, and that they can be characterized.
Furthermore, this statistic has been confirmed to some extent
by Wu in [15]. Hence, we targeted users who took the bus in
the area of Los Angeles. This city was selected due to the high
density of APRS users, an ideal environment that promotes a
high probability of intrusions. Finally, the top 50 users (those
who had transmitted the highest number of LBs) were selected
to participate in the simulation.

The captured LBs (approx. 2 million) were transferred from
the APRS to a MySQL database for further processing. All
subsequent analysis and simulations were carried out using an
HP laptop and Matlab software.

B. Details of Simulation

The simulation exercise was carried out for each of the 50
profiled users. In order to determine the percentage of false
alarms, a comparison or classification was made between the
test sequences of user A and his/her training patterns. The
resulting NSMP values, which were outside the minimum and
maximum thresholds (r=0.05), were considered false alarms
(FAs). Similarly, the percentage of true detect (TD) (detection)
was obtained by comparing the test sequences of the remaining
49 users to the training patterns of user A. The resulting
NSMP values, which fell outside the thresholds (r=0.05), were
considered TDs. Statistics, corresponding to the metrics, were
obtained for all profiled users.

C. Simulation Results

We limit the discussion and focus on the results obtained
for the representatives of each class, namely users 19, 23, and
41. Although an attempt was made to generalize the results
for each class, it proved challenging due to the moderate
level of intra-class variability.

False Alarm and Detection Rates
Fig. 7 illustrates the percentage of FAs and TDs correspond-

ing to the three PLs.
We begin with the discussion of user 19 (class 1) and

observe that there are no FAs for all three PLs. It is due to the
fact that all NSMP values, related to the test data, fell within
the pre-established thresholds. This is an indication that the
mobility sequences in the test data are similar to those in the
parameter data, which had been used to establish the thresh-
olds. In terms of TDs, the percentage of TDs decreases as the
PL is increased. Further scrutiny reveals that this behavior is
appropriate in light of the fact that the distribution of NSMP



values shifts to the lower end of the SM spectrum, see Fig. 5.
Therefore, as the minimum thresholds shift towards the lower
end of the SM spectrum, the probability of intrusions, within
the acceptance range, is higher, see Fig. 6. This results in an
increase in the rate of intrusions and a corresponding decrease
in the TD rate.

The characterization of user 23 (class 2), on the other hand,
is not as optimal. In fact, the NSMP values are distributed
between the SM values of 1 and 16 (figure not shown) for PL1.
The wide acceptance region and the fact that the minimum
threshold has a value of one (actual value is zero) reflects the
absence of sequences (parameter data) in the training data.
Although the test sequences may or may not be similar to
those in the parameter data, all of them have fallen within
the thresholds, resulting in zero FAs. These two factors (wide
region and value of minimum threshold) have also permitted
all intrusions to fall within the thresholds resulting in a TD
rate of zero. As the PL is increased to two and the maximum
threshold becomes equivalent to the minimum threshold, it
becomes more evident that the test sequences are dissimilar
to those in the parameter data, but are nevertheless similar to
the training patterns. As a result, all NSMP values, associated
with the test sequences, fall outside the thresholds causing
the FA rate to become 100%. The corresponding TD rate at
PL2 also increases due to the fact that the intrusions, which
fell outside the minimum and maximum threshold of one,
are now being detected at this level. Finally, as the PL is
increased to three, the number of FAs decreases as a result of
the increase in intra-user variability between the test sequences
and training patterns. As expected, the TD rate also decreases
as the PL is increased, since most of the intrusions fall within
the thresholds, and hence, are not detected.

Results for user 41 (class 3) are very interesting, although
somewhat misleading. We observe that, as with user 19, there
are zero FAs for all three PLs. However, unlike user 19, the
minimum threshold of one, for all three PLs, has permitted all
NSMP values of test sequences and intrusions to fall within
the narrow acceptance region (maximum threshold of four).
The end result (e.g. zero detection rate) is misleading since
test sequences of all other users are dissimilar, to some extent,
to the training patterns of user 41, yet are being considered
normal simply because of the minimum threshold.

Enhanced Characterization
What is evident, from the previous simulation exercise, is

the need to shift the minimum threshold towards the higher
end of the spectrum, such that it is greater than one. One
simple strategy is to add the parameter sequences, which have
a NSMP value of one, to the training patterns. This strategy
reduces the width of the acceptance region and shifts the NPD,
especially the minimum threshold, towards the higher-end of
the spectrum.

Fig. 8 demonstrates the application of this strategy and
the resulting impact on the FA and TD rates. With user
19 (class 1), the FA rates remain unchanged whereas the
TD rate for PL3 has increased by 19%. As far as user 23
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Fig. 7. False alarms and detections for different precision levels
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Fig. 8. False alarms and detections using enhanced characterization

(class 2) is concerned, the three TD rates, associated with
PL1,PL2, and PL3 are increased by 20%, 33%, and 233%
respectively. However, the FA rate for PL3 is also increased
due to the dissimilarity between some of the test sequences
and parameter sequences. Finally, the results for user 41 (class
3) exemplify the effectiveness of this strategy. Although a
5% increase in the FA rate (at PL1) is incurred, there is,
nevertheless, a significant improvement in the TDs (85%,
100%, 100%), associated with the three PLs.

V. RELATED WORK

The use of UMPs for ABID in mobile networks has not
been researched extensively. However, research initiatives,
which have been undertaken by researchers include Buschkes,
Kesdogan, and Reichl [16], Samfat and Molva [17], and
Sun and Yu [18]. The work conducted by Buschkes makes
use of sequences of cells, traversed by users, as a feature



of the profile. Intrusion detection of users, who use cloned
phones, is carried out by analyzing major deviations from
the route. Similarly, Samfat and Molva model the behavior
of users using the telephony activity and migration patterns.
The implementation of multi-level intrusion detection at the
visitor location, and use of multiple profiles, differentiates their
work from the others. Finally, the most recent work by Sun
and Yu also employs sequences of cells to represent a feature.
However, the characterization is accomplished via a high order
Markov model [19]. Furthermore, the sequences, which are
stored in a mobility trie (an acceptable solution given that the
size of the alphabet is small) is updated using the technique
of exponentially weighted moving average.

Of course, user mobility profiles have also been used to ad-
dress the inefficiencies of location-area based update schemes.
Details can be found in the work by Wong [20] and Ma [21].
Finally, the use of profile-based protocols for enhanced routing
in wireless Mobile Ad Hoc Networks is addressed by Wu in
[15].

VI. CONCLUSIONS AND FUTURE RESEARCH INITIATIVES

Based on simulation results, it is feasible to use mobility
profiles for ABID in mobile wireless networks. The challenge
is to accurately characterize the mobility behavior of users.
One simply strategy, which enhances the characterization of
users and increases the detection rate at a minimal cost (low
percentage of FAs), is to incorporate the missing parameter
sequences into the training patterns. Furthermore, the issue of
concept drift (accommodating variability in mobility behavior
over time) can also be addressed by continuously monitor-
ing the false alarm rate and selectively incorporating newly
observed mobility sequences into the training patterns, using
a window that is shifted in time (analogous to exponentially
weighted moving average). The selection criteria can be based
on pre-established thresholds, such as the frequency of all new
sequences encountered over a period of time.

Once the characterization of users has been adequately ad-
dressed, the selection of specific values for SL and PL should
be based on the level of intra-user variability. These values
could then be incorporated into a user’s profile. Categorizing
users into different classes, based on the level of variability,
represents an alternate strategy.

Finally, the adoption of the IBL classification technique
is suitable since the definition of the similarity measure is
comparable to that of the euclidian distance. Supplemented by
the high level mapping exercise, which reduces the intra-user
variability between mobility sequences and training patterns,
this technique performs well, as indicated by the false alarm
and detection rates obtained for all three classes of users.

As far as future research initiatives are concerned, the
following issues will be explored in the near future: user
privacy; concept drift; the expansion of the feature set (e.g.
time frame and other relevant features) for improving detection
rate; a comprehensive analysis of the system performance
for comparison purposes; and the use of different parameter
values, which reflect the mobility behavior of users.
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