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Abstract—Hyperbolic position bounding (HPB) provides a
mechanism to probabilistically delimit the location of a wireless
network malicious insider to a candidate area. A large scale path
loss model is used to construct a probable distance difference
range between a rogue transmitter and a pair of trusted receivers.
Hyperbolas are constructed at the minimum and maximum
bounds of this range to delineate the position of a rogue with a
given confidence level. We describe an outdoor experiment with
a WiFi/802.11 network. Measured received signal strength (RSS)
values, as well as path loss parameters obtained from signal
propagation losses, are used by HPB to bound the location of a
mobile transmitter within the WiFi/802.11 network with a degree
of confidence. Experimental results are compared against prior
simulation results and found to be consistent.

Index Terms—Insider Attacks, Location Estimation, Mobile
Networks, WiFi/802.11 Networks, Wireless Networks, Wireless
Security

I. INTRODUCTION

Wireless mobile networks are on the cusp of actualizing
revolutionary advances in many areas, including public safety
and health care. Vehicular communications, for example, can
convey real-time, life-preserving notifications of impending
collisions and other hazards, and thus reduce the daily carnage
on our roads. Implantable medical devices can regulate heart
rhythm and automatically inject drugs into cardiac patients
based on dynamic sensor readings. Consequently, attacks upon
such networks can have dire consequences, possibly resulting
in loss of life. The remote manipulation of tram system control
signals by a young hacker in Poland nearly resulted in disas-
trous consequences for the passengers of several trains [1].
Researchers have demonstrated that implantable cardioverter
defibrillator devices are vulnerable to reprogramming and
denial of service attacks [2]. To bolster public faith in mobile
networks and ensure that these don’t fall prey to unscrupulous
attackers from within and without, security mechanisms must
be put in place for attack prevention. Yet the majority of them
focus on protecting wireless networks solely from outsider
attacks, even though network insiders, as authorized nodes
entrusted with valid credentials, can thwart most security mea-
sures. A survey conducted by CSO Magazine, the U.S. Secret
Service and CERT reports that over 40% of the attributable
security breaches uncovered were committed by malicious
insiders [3]. Because of these attackers’ privileged position

in the network, the mitigation of their exploits poses a far
more formidable challenge.

In [4], we propose a hyperbolic position bounding (HPB)
mechanism to pinpoint the probable location of a malicious
node to a candidate area, with a degree of confidence. Our
threat model assumes that a rogue insider, in possession of
valid credentials such as an authorized MAC address or digital
certificate, broadcasts an attack message providing falsified
information, for example an erroneous position report in
vehicular networks or a tampered sensor reading input to an
implantable medical device. Credentials which are forged or
stolen may be untraceable to an attacker’s real identity. An
important first step in apprehending a malicious insider and
containing the impact of subsequent attacks lies in determining
the physical location of the signal source at the time of
the exploit. A mobile attacker’s whereabouts may thus be
tracked as it continues broadcasting. Because little is known
about the rogue insider and the radio equipment used in an
attack, no assumptions can be made regarding cooperation
with localization efforts or the effective isotropic radiated
power (EIRP) of a broadcast transmission. An attack message
is simultaneously received at a number of trusted nodes with
globally known coordinates. These receivers can communicate
with each other over a secure channel in order to aggregate
relative received signal strength (RSS) values. Using a large
scale radio signal path loss model to estimate transmitter-
receiver (T-R) distances, each pair of receivers computes its
probable distance difference range to a rogue transmitter.
Hyperbolas are defined at the minimum and maximum bounds
of the distance difference range. A rogue transmitter is located
in the hyperbolic area between the minimum and maximum
hyperbolas with a degree of confidence. With multiple receiver
pairs, a hyperbolic area is computed for each possible pair,
and the rogue is deemed to lie in the intersection of all
hyperbolic areas with a confidence level aggregated according
to the compound probability scheme put forth in [5]. The HPB
mechanism is executed with simulated RSS values, and its
performance is evaluated according to two metrics: the success
rate in correctly bounding the position of a transmitter to a
candidate area consisting of the intersection of all computed
hyperbolic areas; and the size of the candidate area as a
percentage of the total simulation grid size.



We follow up the work in [4] with an evaluation of the HPB
mechanism using measured, rather than simulated, RSS values.
We describe an outdoor experiment conducted to harvest
RSS values from a WiFi/802.11 network. A mobile laptop is
used as a rogue transmitter as it moves through five separate
locations. Packets are broadcast from each transmitter location
and received by four monitoring desktops. The packets’ RSS
values are recorded at each receiver, as is the T-R distance.
The HPB algorithm is executed for each packet received by all
four desktop monitors. The experimental results are evaluated
along the same metrics as the simulation results, and the two
are compared.

Section II outlines existing work in location estimation.
Section III presents the HPB algorithm and its performance
evaluation using simulated RSS values. Section IV describes
the outdoor experiment with a WiFi/802.11 network, evaluates
HPB with measured RSS values and compares the experimen-
tal and simulation results. Section V discusses the suitability
of HPB for tracking a mobile attacker. Section VI concludes
the paper.

II. RELATED WORK

Existing localization schemes are largely predicated upon
a number of restrictive assumptions regarding the target node
being localized, as illustrated in Table I.

TABLE I
LOCALIZATION SCHEME ASSUMPTIONS

Scheme Special Local Cooperation EIRP
Hardware Knowledge Knowledge

Triangulation directional none none none
rec. antenna

Time-based acc. CPU, none round-trip none
[6]–[8] synch. clocks response

Sig.-based none signal profiles none training phase
[9]–[12] EIRP

Relative RSS none none none same as
[13], [14] other nodes

RSS none distance to none must be
ring-based ref. point known
[15], [16]
HPB [4] none none none none

Triangulation, for example, requires a directional antenna
at the receiver to detect the source direction of an inbound
signal. Such specialized hardware poses an additional burden
on network deployment costs.

Time-based mechanisms, where T-R distances are esti-
mated from Time-of-Arrival (TOA) round-trip beacons, in-
clude the location verification methods put forth by Brands and
Chaum [6], Sastry et al. [7] and Waters and Felten [8]. These
schemes make a number of assumptions that are unsuitable for
our threat model. They require the availability of accelerated
processors at both the transmitter and receiver to factor out the
relatively large processing delays compared with the beacon’s
time of flight. They assume that the clocks at each node feature
nanosecond precision and are synchronized with each other.
They also require the cooperation of the target node, since the
round-trip beacon must be returned.

Signature-based localization schemes using RSS values ne-
cessitate the compilation of a training set of signalprints in
advance of the position estimation efforts, as described by
Bahl and Padmanabhan [9], Faria and Cheriton [10], Ladd et
al. [11] and Roos et al. [12]. These methods have been used
solely in indoor scenarios where typically few environmental
variations occur.

With relative RSS localization mechanisms, such as the ones
described by He et al. [13] and Chong Liu et al. [14], a
node seeking to learn its position compares the RSS values it
receives from trusted anchors. While this scheme may possibly
be reversed to have an anchor localize a node without its
cooperation by comparing the target node’s RSS with that of
other anchors, this method assumes that all transmitter EIRPs
are equal.

RSS variations are taken into account by Barbeau and
Robert [15] and Bo-Chieh Liu et al. [16] to construct a min-
imum and maximum distance annulus between a transmitter
and a receiver. The latter scheme requires a known distance
to at least one other node. Both mechanisms assume a known
EIRP, which is inconsistent with our threat model.

III. HYPERBOLIC POSITION BOUNDING

We describe how the HPB algorithm uses a large scale path
loss propagation model to estimate a probable range of dis-
tance differences between a transmitter and a pair of receivers.
Hyperbolas computed at the minimum and maximum bounds
of this range bound the transmitter position with a degree of
confidence. We outline the simulation scenario employed in [4]
and present the results in terms of success rate and candidate
area size.

A. Location Estimation Algorithm

Radio signals attenuate as they travel through the air
between a transmitter and a receiver, so that for a fixed
distance and EIRP, the signal loss between the EIRP and RSS
values fluctuate around a mean loss in a predictable fashion.
Rappaport [17] demonstrates that the path loss variations, or
shadowing, follow a Normal probability distribution. Rappa-
port’s log-normal shadowing model predicts the amount of
path loss at a given T-R distance, based on a reference distance
d0 close to the transmitter, a path loss L(d0) at d0 assuming
free space propagation [18], a path loss exponent n dependent
upon the propagation environment, and a random amount of
signal shadowing with mean zero and standard deviation σ.
The path loss parameters in the log-normal shadowing model,
n and σ, are measurable through experimental results, for
example in [19] and [20]. Linear regression techniques are
used to ascertain values of n and σ from actual path loss
measurements.

Barbeau and Robert [15] broaden the applicability of the
log-normal shadowing model to compute probable minimum
and maximum T-R distances, based on the minimum and maxi-
mum bounds of the signal shadowing interval associated with
a given level of confidence. These minimum and maximum
distances are used to construct an annulus around a receiver,



in order to estimate the location of a transmitter within the
annulus with a degree of confidence.

In [4], we extend Barbeau and Robert’s algorithm to con-
sider a range of possible EIRP values, as required by our threat
model. We define the minimum and maximum bounds of the
distance range between a transmitter and a receiver Rk as d−k
and d+

k respectively, using an estimated EIRP interval [P−,
P+], a RSS value RSSk, and the minimum and maximum
bounds of the signal shadowing range [−zσ,+zσ] associated
with a desired level of confidence. The value of z is the
Normal distribution constant corresponding to confidence C,
where z equals Φ−1( 1+C

2 ) and can be obtained from a Normal
distribution table. The value of σ is the standard deviation of
the signal shadowing.

Lemma 1. The minimum and maximum distances, d−k and
d+

k respectively, between transmitter T and receiver Rk, sent
within an estimated EIRP interval [P−, P+], can be computed
with confidence level C as:

d−k = d0 × 10
P−−RSSk−L(d0)−zσ

10n

d+
k = d0 × 10

P+−RSSk−L(d0)+zσ

10n

Alternately, we say that the probability that transmitter T is
located in the area bounded by [d−k , d+

k ] is C:

Pr(d−k ≤ T ≤ d+
k ) = C

Proof: The proof can be found in [4].
Multiple annuli may be computed around several receivers,

and the location of the transmitter can be estimated within the
annuli intersection. This approach is more successful when
the difference between minimum and maximum distances is
not significant. With the introduction of an EIRP range, the
annuli may be so wide that their intersection is too large to
effectively locate the transmitter, even if multiple receivers are
considered.

The HPB mechanism therefore exploits the geometric prop-
erties of hyperbolas, where every point on a curve is at an
equal distance difference of two foci. In our approach, a pair
of receivers computes their probable distance difference range
to a transmitter. Hyperbolas associated with the minimum
and maximum bounds of this range are constructed with the
receiver pair as the foci.

Theorem 1. Let di and dj be the unknown distances between
a transmitter T and receivers Ri and Rj respectively.

1. The minimum bound ∆d−i,j of the distance difference
range between di and dj , with confidence level C, is the
distance difference at the minimal EIRP (P−) over the
full signal shadowing range [−zσ,+zσ].

∆d−i,j =
(

d0 × 10
P−−RSSi−L(d0)−zσ

10n

)
−

(
d0 × 10

P−−RSSj−L(d0)+zσ

10n

)
2. The maximum bound ∆d+

i,j of the distance difference
range between di and dj , with confidence level C, is the

distance difference at the maximal EIRP (P+) over the
full signal shadowing range [+zσ,−zσ].

∆d+
i,j =

(
d0 × 10

P+−RSSi−L(d0)+zσ

10n

)
−

(
d0 × 10

P+−RSSj−L(d0)−zσ

10n

)
Proof: The proof can be found in [4].

The minimum and maximum hyperbolas between a pair of
receivers can be constructed from the bounds of the distance
difference range defined in Theorem 1. The transmitter is
located in the resulting hyperbolic area with confidence C.

Theorem 2. Let a transmitter T be located at unknown
coordinates (x, y) and a pair of receivers Ri, Rj at known
coordinates (xi, yi) and (xj , yj) respectively. Let ∆d−i,j and
∆d+

i,j be defined as the minimum and maximum bounds, re-
spectively, of the distance difference range between Ri and Rj

with confidence level C. Let H−
i,j be the hyperbola representing

the minimum bound of the distance difference range between
Ri and Rj , as defined by equation

√
(x− xi)2 + (y − yi)2−√

(x− xj)2 + (y − yj)2 = ∆d−i,j . Let H+
i,j be the hyper-

bola representing the maximum bound of the distance dif-
ference range between Ri and Rj , as defined by equation√

(x− xi)2 + (y − yi)2 −
√

(x− xj)2 + (y − yj)2 = ∆d+
i,j .

A transmitter T is located in the area Ai,j between the
hyperbolas H−

i,j and H+
i,j with confidence level C. Alternately,

we say that Pr(T ∈ Ai,j) = C and Pr(T ∈ Ai,j) = (1− C),
where Ai,j is the complement of Ai,j .

Proof: The proof can be found in [4].

B. Simulation Results

The HPB mechanism is evaluated by simulating the location
of a rogue transmitter at 100-meter intervals along the X
and Y axes of a 1000 × 1000 meter grid, as depicted in
Figure 1. Our simulation scenario features four receivers, and
thus six possible receiver pairs, executing the HPB algorithm
1000 times for each transmitter location, for each of four
confidence levels C = {0.95, 0.90, 0.85, 0.80}. The simulation
assumes a frequency of 2.4 GHz, consistent with WiFi/802.11
networks. The path loss parameters n and σ are taken from
experiments conducted by Liechty et al. [19], [21] for this
frequency. RSS values are simulated at each receiver, using
the log-normal shadowing model. For each HPB execution,
every receiver generates a random amount of signal shadowing
along a Normal distribution curve with mean zero and standard
deviation σ. The shadowing is added to the receiver simulated
RSS value. The EIRP range is determined dynamically by
taking the receiver with the highest RSS as a reference point
and assuming it is the closest receiver to the transmitter
location. The EIRP range is set to the intersection of the
EIRP ranges required for each remaining receiver to reach
the reference point.

The candidate area determined by HPB as the probable
location of the transmitter consists of the intersection of the
hyperbolic areas computed by every possible receiver pair
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Fig. 1. Simulation Grid

using Theorem 2. The performance of HPB is evaluated along
two metrics: the success rate and candidate area size.

The success rate reflects the percentage of HPB executions
for which the transmitter is located in the candidate area. We
define the central range points, shown in Figure 1, as the
points located in the area between all four receivers. In our
simulation results, we find that the success rate in the central
range is commensurate with the confidence level. So for C =
0.95, the success rate in the central range is 94%; for C =
0.90, it is 86%; for C = 0.85, it is 76%; and for C = 0.80,
it is 67%. The decrease in success rate with the confidence
level reflects the narrowing of the shadowing interval due to
the reduced value of the Normal distribution constant z. As
less signal shadowing is taken into account, larger intervals
of shadowing are ignored which may be associated with the
actual transmitter location.

The candidate area size within the central range comprises
27% of the total simulation grid for C = 0.95, 21% of the
grid for C = 0.90, 16% for C = 0.85, and 12% for C = 0.80.
Again, the reduced area size for a decreasing confidence
level is due to a smaller shadowing interval, resulting in
smaller hyperbolic areas whose intersection is correspondingly
smaller.

IV. OUTDOOR EXPERIMENT

In order to validate our simulation results and further
evaluate the HPB algorithm’s suitability for localizing a rogue
transmitter, we describe an outdoor experiment involving five
WiFi/802.11 devices, as outlined in [22]. We report on the
path loss parameters computed from measured signal losses
and assess them against Liechty’s results for WiFi/802.11
networks [21]. We evaluate the performance of HPB using
experimental RSS values. We assess the usability of the
annuli method by comparing its localization performance with
that of HPB. We compare the performance of HPB on the
experimental RSS values with the prior simulation results.

A. Configuration

We set up four fixed desktop receivers, labeled R1 through
R4 in Figure 2, each equipped with a Trendnet network
interface card, enabling access to the RSS values of received
packets. A laptop is configured as a mobile transmitter, broad-
casting packets with a transmitting power of 17 dBm using an
antenna with a 7 dBi gain, for a total EIRP of 24 dBm, from
five separate locations, labeled T1 through T5. The distances
from the transmitter locations to each receiver are recorded in
order to plot the path loss parameters. The transmitter antenna
is situated at 1.5 m above the ground and the receiver antennas
at 2.5 m.
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In order to compare the experimental results with the
simulation results described in Section III-B, we require both
grids to be comparable in size with respect to the area of
the central range. In the simulation scenario, the central range
constitutes 16% of the simulation grid area. We therefore set
the experimental grid to be 100 × 180 meters, so that its
central range between the four receivers also comprises 16%
of the total area.

All the packets simultaneously received by the four desktop
monitors are separated into two equal-sized groups. The first
group is used to compute the path loss parameters for our
experiment in Section IV-B. The second group is input to
HPB for localization of each packet’s originating position in
Section IV-C.

B. Path Loss Parameters

Our experiment varies slightly from Liechty’s previous work
at the 2.4 GHz frequency because of the shorter T-R distances
used. While our scenario involves a 100 × 180 meter grid,
Liechty employed a larger 500 × 600 meter test area. We
compute the path loss exponent n and signal shadowing
standard deviation σ for our experiment and compare our
values with those in [21].

The path loss for each packet, as the difference between
the EIRP and RSS, is plotted in Figure 3 as a function of the



logarithm of the T-R distance. We find that the best-fit path
loss exponent n equals 2.93 (depicted as a dashed line). The
standard deviation associated with this value of n is σ = 5.29.
Given that Liechty’s results yielded n = 2.76 and σ = 5.62,
our findings are consistent with previous research.
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C. HPB Experimental Results

The HPB success rate for every transmitter location in our
experiment is computed for each of four confidence levels
C = {0.95, 0.90, 0.85, 0.80}. For C = 0.95, 100% of HPB
executions are successful; for C = 0.90, the success rate is
98%; for C = 0.85, it is 96%; and for C = 0.80, it is 95%.
Overall, the HPB success rate is quite high and decreases with
the corresponding confidence level.

The success rates at individual transmitter locations, for
confidence level C = 0.80, are illustrated in Figure 4.
While success rates are quite high on the outer edges of the
experimental grid, the successful localization of the middle
transmitter position T2 may suffer slightly from a large number
of reflected packets, as it was within range of surrounding cam-
pus buildings on all four sides. For example, with transmitter
location T5, packets reflected off the Tory Building, positioned
as shown in Figure 2, may be out of range for receivers R2

and R3 and not be measured. Since packets not received by
all four monitors are unusable for our threat scenario, they are
omitted from our evaluation. In contrast, packets originating
from T2 may be reflected from all surrounding buildings and
received by all four monitors, but at RSS values that are not
commensurate with T2’s relative distance to each receiver.
Consequently, the success rate for transmitter location T2 may
have been affected.

Experimental results for candidate area sizes, given the
four confidence levels, are found in Figure 5 and are deemed
accurate with ± 4% within a 90% confidence interval. As with
the simulation results outlined in Section III-B, the intersection
of hyperbolic areas decreases in size as the confidence level
drops, due to lower values of z, and thus smaller hyperbolic

Fig. 4. HPB Experimental Results Success Rate for C = 0.80

areas. Candidate area sizes also tend to decrease with the
distance from the middle of the experimental grid, because
a higher percentage of a centrally located area necessarily lies
within the grid. Peripheral candidate areas are truncated at the
edges of the grid and thus reflect a smaller percentage of the
overall grid area.
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D. HPB vs. Annuli Method Experimental Results

With the annuli method described in Section III, the can-
didate area comprises the intersection of the minimum and
maximum distance annuli around all the receivers, computed
using Lemma 1. However, as previously observed, this can-
didate area may be too large to suitably pinpoint the location
of a rogue transmitter. We use our experimental scenario and
measured RSS values to examine the relative performance of
the annuli method and HPB.

For example, Figure 6 illustrates the minimum and maxi-
mum distances, d−k and d+

k respectively, from each receiver Rk

to the transmitter, computed using Lemma 1. The reference



distance d0 is set to one meter, in keeping with the small
grid size used for the experiment. The dynamic EIRP range
is set to P− equals 23 dBm and P+ equals 32 dBm. The
RSS values measured at each receiver R1 to R4 are -55
dBm, -56 dBm, -42 dBm and -57 dBm, respectively. The
loss at d0 is computed as free space propagation and equals
32 dB. The path loss parameters n = 2.93 and σ = 5.29
are determined in Section IV-B. The transmitter is located
within each annulus with confidence level C = 0.95, and
so the associated normal distribution constant z equals 1.96.
The signal shadowing is thus contained within the interval
[−1.96× 5.29 dB,+1.96× 5.29 dB] = [−10 dB,+10 dB] with
probability 0.95.

For R1, the minimum and maximum distances to the
transmitter are 16 m and 170 m; for R2, 18 m and 184 m;
for R3, 6 m and 61 m; and for R4, 19 m and 199 m. The
corresponding annuli are depicted in Figure 6. The dotted area
represents the intersection of all annuli within the 100 × 180
meter grid and constitutes 44% of the grid area.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

R
1

R
2

R
3

R
4

T
4

 

 

 

Area Size = 44 %

d
−

1

d
−

2

d
−

3

d
−

4

d
+
3

Fig. 6. Example of Intersecting Annuli for T4

Figure 7 represents the candidate area computed by HPB
for the same example scenario as in Figure 6. The intersection
of all hyperbolic areas constructed with Theorem 2 yields a
candidate area consisting of only 17% of the experimental
grid. In this case, the HPB area size is approximately 40%
of the annuli candidate area shown in Figure 6, illustrating a
clear improvement over the annuli method when a range of
EIRP is used.

Overall, for each of the four confidence levels, Figure 8
depicts a success rate for the annuli method significantly
lower than for HPB. This phenomenon is due to the close
proximity of transmitters T4 and T5 to receivers R3 and R4

respectively. In those instances, even a small over-estimation
of the minimum T-R distance places the transmitter outside
the annuli, resulting a poorer success rate than with the other
transmitter locations.

Figure 9 illustrates the magnitude of the candidate areas
computed with both the annuli method and HPB, for confi-
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dence levels C = {0.95, 0.90}. While the HPB candidate area
size for C = 0.95 averages 28% of the experimental grid, the
corresponding annuli method candidate area size is 66% of
the grid, more than twice the size obtained with HPB. Our
experimental results thus confirm the limited usability of the
annuli method in localizing a rogue transmitter.

E. HPB Experimental vs. Simulation Results

Figure 10 compares the HPB experimental and simulation
success rates for the four confidence levels. The experimental
results yield a higher success rate in every case.

Experimental and simulation candidate area sizes for C =
{0.95, 0.90} are depicted in Figure 11. Inter-receiver distances
for the experimental results are much shorter than for the
simulation results, so fine-grained comparisons are difficult.
However, within the central range, the average experimental
candidate area size for C = 0.95 is nearly identical to the
simulation results, at 28% and 27% of the total grid for the
experimental and simulation results respectively. For C = 0.90,
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the candidate area sizes are 23% and 21%; for C = 0.85, they
are 19% and 16%; and for C = 0.80, they are 16% and 12%.

The performance of HPB along the success rate and can-
didate area size metrics yields consistent results in an experi-
mental setting for T-R distances below 100 m, when compared
with prior simulation results over longer distances.

V. MOBILE TRANSMITTER TRACKING

Figure 12 illustrates an example set of HPB candidate
areas computed from experimental RSS values, with each area
associated with a rogue transmitter location T1 to T5, for
C = 0.95. The areas are staggered over time along the Z-axis
to simulate mobility along a path from T1 to T5.

Given the size and central positioning of the T1 to T3 can-
didate areas, tracking a mobile transmitter from one of these
areas to the next presents a significant challenge. However, as
the transmitter moves away from the center of the experimental
grid to positions T4 and T5, the corresponding candidate
areas decrease in size. The shape and positioning of the T4

and T5 candidate areas, and the fact that they feature little
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overlap, unambiguously reveal the direction in which the rogue
transmitter has traveled from one location to the next. In this
manner, HPB can provide a rudimentary means for tracking a
mobile device broadcasting attack messages, especially when
the candidate areas are small. It is expected that the inclusion
of additional receivers computing more hyperbolic areas can
further reduce the candidate area size and enable HPB to
provide even finer-grained tracking capability.

VI. CONCLUSION

We described an outdoor experiment for evaluating the
hyperbolic position bounding of a mobile transmitting laptop
emulating a malicious insider node in a WiFi/802.11 network,
using RSS values harvested at four desktop receivers. This
experiment provides a proof of concept scenario for the HPB
algorithm in a practical setting, where a transmitter position
is localized to a candidate area with a degree of confidence.
The performance of HPB using experimental RSS values
is assessed against simulation results obtained in previous
research.



We found that the experimental results closely match the
simulations along two tested metrics: the success rate in
bounding a transmitter position to a candidate area, and the
candidate area size. The success rate for the experimental
results is found to be close to 100% and thus superior to
that of the simulation results, especially in the experimental
grid areas where the least signal reflection occurs. In terms of
candidate area size, the experimental and simulation results
average a candidate area of 27-28% of the total grid for
confidence level C = 0.95, and 21-23% for confidence level
C = 0.90. We also found that HPB can provide a coarse-
grained tracking mechanism for a mobile transmitter as the
computed candidate areas shift over time and space. The
achievable level of tracking granularity is dependent upon the
computation of sufficiently small candidate areas.

The experiment confirms the findings of prior simulation
results. The HPB mechanism succeeds in pinpointing the
location of a rogue transmitter using an unknown EIRP, with a
high success rate and a candidate area size of nearly a quarter
of the experimental grid with the highest confidence level.
Further experiments are required to test the HPB mechanism
for T-R distances greater than 100 m. Higher numbers of
transmitter locations in a setting with fewer large buildings
affecting reception is also planned for future work. Experi-
ments with additional receivers are also envisioned, as these
can assist in reducing the HPB candidate area size and thus
provide for finer-grained tracking capability in mitigating
mobile attackers.
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