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Abstract. Increasingly ubiquitous wireless technologies require novel localiza-
tion techniques to pinpoint the position of an uncooperative node, whether the
target be a malicious device engaging in a security exploit or a low-battery hand-
set in the middle of a critical emergency. Such scenarios necessitate that a radio
signal source be localized by other network nodes efficiently, using minimal in-
formation. We propose two new algorithms for estimating the position of an un-
cooperative transmitter, based on the received signal strength (RSS) of a single
target message at a set of receivers whose coordinates are known. As an extension
to the concept of centroid localization, our mechanisms weigh each receiver’s co-
ordinates based on the message’s relative RSS at that receiver, with respect to the
span of RSS values over all receivers. The weights may decrease from the highest
RSS receiver either linearly or exponentially. Our simulation results demonstrate
that for all but the most sparsely populated wireless networks, our exponentially
weighted mechanism localizes a target node within the regulations stipulated for
emergency services location accuracy.

1 Introduction

Given the pervasiveness of cellphones and other wireless devices, compounded with the
associated expectation of permanent connectivity, it is perhaps not surprising that the
abrupt dashing of such presumptions makes headline news. A recent spate of cases
in Canada have highlighted the tragic consequences of failing to locate the source
of an emergency 911 cellphone call. These events have spurred the Canadian Radio-
television Telecommunications Commission (CRTC) to regulate the same wireless En-
hanced 911 (E911) provisions [1] as the Federal Communications Commission (FCC)
in the U.S. [2] Under Phase II of the FCC and CRTC plans, network-based localization,
where other nodes (whether base stations or other handsets within range) estimate the
position of a device, must accurately reveal a target location within 100 meters 67% of
the time and within 300 meters in 95% of cases.

Self-localization achieved with handset-based localization techniques can produce
granular results. For example with the Global Positioning System (GPS), a precision
of ten meters may be achieved [3]. But self-localization is not feasible in all scenarios.
An uncooperative node is one that cannot be relied upon to determine its coordinates,



for example a defective sensor, a malicious device engaging in a security exploit or a
low-battery handset in a critical situation.

In a sufficiently densely populated wireless network, the source location of a given
message may be approximated from the coordinates of receiving devices, assuming an
omnidirectional propagation pattern. We propose two localization algorithms that es-
timate a transmitting node’s position as the weighted average of receiver coordinates,
assuming a single message is received from the target node. We describe a relative
span weighted localization (RWL) mechanism, where the concept of weighted mov-
ing average is adapted to provide a linear mapping between the weight assigned to a
receiver’s coordinates and the relative placement of its received signal strength (RSS)
value within the overall RSS span. We further propose an exponential variation of RWL,
dubbed relative span exponential weighted localization (REWL). This approach is con-
ceptually related to an exponential moving average and relies on an exponential weight
correspondence between a receiver’s coordinates and its relative situation within the
RSS span. We evaluate the RWL and REWL algorithms using simulated RSS reports
featuring a variety of node densities, number of receivers, and amount of signal shadow-
ing representative of environment-based RSS fluctuations. We also test our localization
mechanisms with RSS values harvested from an outdoor field experiment.

Section 2 provides an overview of existing work in centroid-based localization tech-
niques. Section 3 outlines the centroid localization schemes on which our new algo-
rithms are based. Section 4 describes our linearly and exponentially weighted location
estimation mechanisms. Section 5 evaluates the performance of both algorithms using
simulated and experimental RSS values. Section 6 concludes the paper.

2 Related Work

Centroid localization (CL) has been suggested as an efficient location estimation method
that never fails to produce a solution, unlike existing geometric and algebraic localiza-
tion approaches [4–6]. The original incarnation of CL is described by Bulusu et al. [7],
and localizes the transmitting source of a message to the (x, y) coordinates obtained
from averaging the coordinates all receiving devices within range. Weighted centroid
localization (WCL), as proposed by Blumenthal et al. [8], assigns a weight to each
of the receiver coordinates, as inversely proportional to either the known transmitter-
receiver (T-R) distance or the link quality indicator available in ZigBee/IEEE 802.15.4
sensor networks [9]. Behnke and Timmermann [10] extend the WCL mechanism for
use with normalized values of the link quality indicator. Schuhmann et al. [11] conduct
an indoor experiment to determine a set of fixed parameters for an exponential inverse
relation between T-R distances and the corresponding weights used with WCL. Orooji
and Abolhassani [12] suggest a T-R distance-weighted averaged coordinates scheme,
where each receiver’s coordinates are inversely weighted according to its distance from
the transmitter. But this approach assumes that the receivers are closely co-located and
that the T-R distance to at least one of the receivers is known a priori.



3 Centroid Localization

We outline the centroid localization approaches on which our novel algorithms are
based, and introduce the notation used throughout the description of our mechanisms.

Notation. The estimated coordinates of the transmitter we are striving to locate are
denoted as p̂ = (x̂, ŷ). Each receiver Ri is situated at a point of known coordinates
pi = (xi, yi). For the sake of simplicity in our algorithm descriptions, we depict oper-
ations on receiver points pi. In fact, two separate calculations occur. The approximated
x̂ coordinate is computed from all the receiver xi coordinates, and ŷ is calculated from
the yi coordinates.

Given a set of known points pi in a Euclidian space, for example a number of re-
ceivers within radio range of a target transmitter to be localized, Bulusu et al. [7] ap-
proximate the location p̂ of a node from the centroid of the known points pi as follows:

p̂ = (1/n)×
n∑

i=1

pi (1)

where n represents the number of points.
In the simple CL approach, all points are assumed to be equally near the target node.

Blumenthal et al. [8] argue that some points are more likely than others to be close to
target node. Their WCL scheme aims to improve localization accuracy by assigning
greater weight to those points which are estimated to be closer to the target and less
weight to the farther points. The weighted centroid is thus computed as:

p̂ =
n∑

i=1

(wi × pi)
/ n∑

i=1

wi (2)

with wi = (di)−g where di is the known distance between the target node and point
pi, and the exponent g influences the degree to which remote points participate in es-
timating the target location p̂. Values of g are determined manually, with Blumenthal
et al. and Schuhmann et al. [11] promoting different optimal values, depending on the
experimental setting.

4 Relative Span Weighted Localization

Assuming an uncooperative node, we cannot presume to know a priori the set of T-
R distances di or the optimal value of g in a given outdoor environment. Further, we
cannot estimate values of di from the log-normal shadowing model, as the transmitter
effective isotropic radiated power (EIRP) may not be known. We therefore introduce
the concept of relative span weighted localization in order to estimate the location of
a transmitter with minimal information available at a set of receivers. Our approach
adapts the concept of moving average from a weighting method over time and applies
it to WCL in the space domain. But rather than ascribing weights according to known
or approximated T-R distances, we weigh each receiver coordinates according to the
relative placement of its RSS value within the span of all RSS reports for a given trans-
mitted message. We assign greater weight to the receiver coordinates whose RSS value



is closer to the maximum of the RSS span and thus closer to the transmitter. Conversely,
lesser weight is ascribed to receivers with lower RSS values, as they are deemed farther
from the transmitter. The receiver coordinates may be weighted linearly or exponen-
tially.

Definition 1 Minimal/Maximal RSS. Let R be the set of all receivers within range of
a given message MT originating from an uncooperative transmitter T . Let Υ denote
the set of RSS values measured at each receiver Ri ∈ R for message MT , such that:
Υ = {υi : υi is the RSS value for message MT at Ri for all Ri ∈ R}

Then we define the minimal and maximal RSS values, Vmin and Vmax, for message
MT , as the smallest and largest RSS values in Υ , such that: Vmin = min{υi ∈ Υ}
and Vmax = max{υi ∈ Υ}.

Definition 2 RSS Span. Let the minimal and maximal RSS values for a message MT

be as stated in Definition 1. We define the RSS span V∆ for this message at a set of
receivers R as the maximal range in RSS values over all receivers, such that: V∆ =
Vmax − Vmin.

We describe two relative span weighted localization algorithms, both computing a
weighted centroid as defined in Equation (2), but with novel approaches for computing
the weights assigned to each receiver coordinates.

4.1 Linearly Weighted Localization

The RWL algorithm computes a centroid of receiver coordinates, each weighted linearly
according to the relative position of the receiver’s RSS value within the RSS span.

Algorithm 1 RWL Algorithm. The relative span weighted localization (RWL) algo-
rithm estimates a transmitter’s coordinates p̂ as the weighted centroid of all receiver
coordinates pi, as defined for WCL in Equation (2), but with a linearly increasing
weight assigned to each receiver according to its presumed proximity to the transmitter.
Given the RSS values in Υ , as found in Definition 1, and the RSS span V∆ determined
according to Definition 2, the weight wi of each receiver Ri is computed from the rela-
tive placement of its RSS value υi in the RSS span, as wi = (υi − Vmin)/V∆, for each
Ri ∈ R.

The relative span weighted centroid thus becomes:

p̂ =

n∑

i=1

[
(υi − Vmin)× pi

]

n∑

i=1

(υi − Vmin)

where n = |R| (3)

4.2 Exponentially Weighted Localization

Exponentially weighted moving averages (EMAs) have been used for a variety of fore-
casting applications, for example in Muir [13], to predict future values based on past



observations, with more weight exponentially ascribed to more recent data. A weighting
factor λ is used as a parameter to control the proportion of weight assigned to recent
observations with respect to past ones.

We adapt the EMA concept, as described by Roberts [14], from rating observations
over time for the purpose of weighting receiver coordinates over the space domain.
While EMA favors more recent observations in time with a weighting factor of λ, we
bolster receivers that are likely to be closer to a transmitter and thus feature higher RSS
values. In addition, rather than increasing the weighting factor exponent by one for
each observation in time, we correlate the exponent with the relative position of each
receiver’s RSS value within the RSS span.

Algorithm 2 REWL Algorithm. The relative span exponentially weighted localization
(REWL) algorithm estimates a transmitter’s coordinates p̂ as the weighted centroid of
all receiver coordinates pi, as defined for WCL in Equation (2), but with exponential
weight assigned to each receiver according to a weighting factor λ. Given the RSS
values in Υ as found in Definition 1, the weight wi of each receiver Ri is computed from
the relative placement of its RSS value υi in the RSS span, as wi = (1 − λ)(Vmax−υi),
for each Ri ∈ R.

The relative span exponentially weighted centroid thus becomes:

p̂ =

n∑

i=1

[
(1− λ)(Vmax−υi) × pi

]

n∑

i=1

(1− λ)(Vmax−υi)

where n = |R| (4)

5 Performance Evaluation

We evaluate the performance of the RWL and REWL algorithms using simulated RSS
values and experimental ones harvested from an outdoor field experiment.

5.1 Simulation Results

We ran the RWL and REWL mechanisms on simulations featuring a variety of node
densities and number of receivers. For each of 10 000 executions, we generate a ran-
dom transmitter position within a 1000 × 1000 m2 simulation grid. We define our
node densities as the number of nodes per 100 × 100 m2. For every node density d ∈
{0.25, 0.50, 0.75, 1.00, 2.00, 3.00, 4.00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00}, we position
d nodes per 100×100 m2 in uniformly distributed positions on our simulation grid. For
each node, we compute a RSS value based on the log-normal shadowing model [15],
with a random amount of signal shadowing generated along a log-normal probabil-
ity distribution. We assume two different radio propagation environments with path
loss constants obtained from outdoor experiments. For the 2.4 GHz WiFi/802.11g fre-
quency, we use propagation values measured by Liechty et al. [16, 17], where a signal
shadowing standard deviation is measured at nearly σ = 6 dBm. For the 5.8 GHz fre-
quency, licensed for vehicular networks [18], we make use of the constants determined



by Durgin et al. [19], with a signal shadowing standard deviation close to σ = 8 dBm.
Similar experiments by Schwengler and Gilbert corroborate the amount of signal shad-
owing commonly experienced at this frequency [20]. Our setup allows us to gauge the
performance of relative span weighted localization based on propagation environments
featuring different amounts of signal fluctuations. Once our simulated nodes are posi-
tioned, we determine which ones can be used as receivers. We set all receiver sensitivity
to -90 dBm, and the nodes that feature a RSS value above the sensitivity are deemed
within range of the transmitter and thus become receivers. The non-receiver nodes are
subsequently ignored as out of range.

For each execution, we use the known coordinates of all receivers to compute a
possible position for the transmitter, according to four algorithms: the maximum RSS
receiver method, where a transmitter is assumed to be at exactly the receiver position
with the highest RSS value; the CL approach, as set out by Bulusu et al. in Equation (1);
the RWL algorithm using Equation (3); and the REWL algorithm as set forth in Equa-
tion (4), given three different values for the weighting factor λ ∈ {0.10, 0.15, 0.20}. We
assess the performance of each mechanism according to its location accuracy, computed
as the Euclidian distance between the estimated position p̂ and the actual transmitter lo-
cation, averaged over all executions. Our results are deemed accurate within ±3 meters
in a 95% confidence interval.

Figure 1 plots the average location error for each tested algorithm, given all de-
fined node densities, for frequency 2.4 GHz. The corresponding results at the 5.8 GHz
frequency may be found in [21]. We find that while higher densities consistently yield
greater location accuracy, a larger amount of signal shadowing results in higher location
errors. For example, for all densities, the REWL algorithm, with the 2.4 GHz frequency
and σ = 6 dBm, yields a location error consistently less than 75 meters, while the same
mechanism at the 5.8 GHz frequency and σ = 8 dBm reaches an error of 105 meters. In
general, we find an error increase of roughly 50% for every 2 dBm of additional signal
shadowing standard deviation. For both frequencies and all node densities, the REWL
algorithm with weighting factor of 15% (λ = 0.15) achieves optimal results.

We assessed the performance of each algorithm, and in particular the REWL (λ =
0.15) mechanism, when compared to the E911 regulations for location accuracy. While
every method evaluated meets the E911 requirements at 2.4 GHz with moderate signal
shadowing (σ = 6 dBm), none of the mechanisms succeed with 5.8 GHz and a larger
amount of shadowing (σ = 8 dBm) [21]. However, even in the latter case, the REWL
approach is nearly adequate. Given the smaller amount of signal shadowing found at 2.4
GHz, the REWL (λ = 0.15) algorithm meets the E911 location accuracy requirements
for every node density, as seen in Figure 2. For larger amounts of shadowing at 5.8
GHz, only the smallest node density of 0.25 per 100 × 100 m2 fails to meet the E911
standard, as shown in Figure 3. Even in a heavily shadowed environment, higher node
densities can accurately localize a transmitter within 100 meters 67% of the time and
within 300 meters in 95% of cases.

Orooji et al. [12] simulate a cluster of seven cells, each featuring a base station with
a one kilometer radius, in order to compute the location of a mobile station. A very
small amount of signal shadowing σ ∈ {1, 2} dBm is taken into account. Even though
their proposed T-R distance-weighted method assumes a known distance to one of the
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Fig. 1. Algorithm Location Error by Node Density for 2.4 GHz

base stations, the mean location error is 48 meters, with 95% of executions resulting in a
location error less than 103 meters. Our RWL and REWL (λ = 0.15) algorithms for 2.4
GHz with eight receivers yield an average 37 and 34 meter location error respectively.
RWL locates a transmitter within 100 meters 98% of the time, while REWL does so
in 99% of cases. Thus over a similarly sized simulation grid, our RWL and REWL
mechanisms consistently yield more accurate results.

5.2 Experimental Results

We conducted an outdoor field experiment with four desktop receivers statically ar-
ranged in the corners of a rectangular area 80× 110 m2 in size. Each receiver collected
the RSS values of packets transmitted by a laptop from each of ten separate locations.
Only the messages simultaneously received by the four desktops were retained. The
localization algorithms were executed on each message, and the location error for each
algorithm averaged over all transmitter locations can be found in Table 1. We find that
the RWL and REWL mechanisms perform far better than the maximum RSS receiver
and CL approaches, with a gain in location accuracy of up to 40%. On average, the
RWL, REWL with λ = 0.15, and REWL with λ = 0.20 mechanisms perform equally
well, with no algorithm emerging as clearly superior to the others. This may be due to
our small experimental data set (approximately 400 messages), when compared to sim-
ulation results obtained over 10 000 executions. While our simulations also found con-
sistently similar results between the RWL and REWL mechanisms, the larger amount
of simulated data allows us to draw more fine-tuned conclusions.
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Table 1. Average Location Error for All Experimental Transmitter Locations

Algorithm Max RSS CL RWL REWL
λ = 0.10 λ = 0.15 λ = 0.20

Average Location Error (meters) 40 46 28 33 29 28

6 Conclusion

We propose a wireless network-based localization mechanism for estimating the po-
sition of an uncooperative transmitting device, whether it be a malfunctioning sensor,
an attacker engaging in a security exploit or a low-battery cellphone in a critical emer-
gency. We extend the concept of weighted centroid localization and describe two addi-
tional receiver coordinate weighting mechanisms, one linear and the other exponential,
that assume no knowledge of the T-R distances nor of the transmitter EIRP. We adapt
the concept of moving averages based on observations over time to the space domain.
We ascribe linear and exponential weights to each receiver coordinates, based on the
relative positioning of the receiver’s RSS value within the RSS span of all receivers.

We tested our relative span weighted localization algorithms with simulated and
experimental RSS values, using two frequencies featuring different amounts of signal
shadowing. We found that our algorithms yield lower location errors than the exist-
ing centroid localization method. As expected, the location accuracy increases as more
nodes participate in the localization effort. For example with REWL (λ = 0.15) at 2.4
GHz, one node per 100 × 100 m2 localizes a transmitter within 44 meters, while ten
nodes per 100 × 100 m2 do so in less than ten meters. Yet the location accuracy de-
creases as the amount of signal shadowing between different receivers increases, with
an average decrease of approximately 50% for every 2 dBm of additional signal shad-
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owing standard deviation. We conclude that the exponential variation of our relative
span weighted localization algorithm achieves a location accuracy that meets the FCC
regulations for Enhanced 911, for all densities with moderate amounts of signal shad-
owing and for all but the smallest node densities with extensive shadowing.
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