
 QEX – November/December 2010 1

Michael Barbeau, VE3EMB

School of Computer Science, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario, Canada K1S 5B6; barbeau@scs.carleton.ca

Programming the AD7476
Analog to Digital Converter on

the Linux/BF537 Platform

1Notes appear on page 00.

Use Linux to get the most from a powerful, flexible analog/digital
converter for software defined radio.

The Blackfin 537 (BF537) is a single-
board computer that has the capability to
run the Linux operating system. The Analog
Devices 74761 (AD7476) is a small per-
ipheral board that plugs into the BF537. It
converts analog data to digital data. It can
perform conversion at a rate up to 1 million
Samples Per Second (SPS). Each sample is
represented as 12-bit value.

The Linux-BF537-AD7476 combination
has been introduced in Ray Mack’s QEX
SDR: Simplified2 column as a platform for
experimenting software defined radio prin-
ciples. See Figure 1.

In this article I’ll introduce in detail
AD7476 programming in the Linux-BF537
environment. I will describe software that
runs in Linux user space on the BF537. In the
Linux environment, the AD7476 is presented
to the programmer as a Serial Peripheral
Interface (SPI) device abstraction in the file
system space. This is an interesting feature
of Linux. Hardware peripherals are repre-
sented as file abstractions hence most of the
operations defined on files apply to periph-
erals. This achieves a degree of interface
uniformity.

Firstly, let’s review the SPI. Then, we’ll
walk through a program that illustrates the
constraints and capabilities of the AD7476
in the Linux-BF537 environment. Source
code is provided and made available online
together with additional information about
the installation on the BF537 of an appro-
priate Linux kernel.3 Please also look at
the series of articles presented in the SDR:

Simplified column. You will find a lot of use-
ful additional information.

Serial Peripheral Interface
The AD7476 accepts analog input. It

is connected to the BF537 according to
an interface specification called the Serial
Peripheral Interface (SPI). See Figure 2. The
SPI defines a number of interconnection
lines and the format of the signals flowing

on these lines. The three key interconnec-
tion lines are the serial clock (SCK), chip
select (CS) and serial data (SDATA) lines.
The SCK line carries clock signals from the
BF537 the AD7476. The CS line triggers the
conversion of a signal from analog to digital.
The SDATA line carries the digital samples
from the AD7476 to the BF537.

The relationships between the SCK,
CS and SDATA signals are illustrated in

Figure 1 -- The BF537 with the AD7476 plugged in. On the right side, a RS-232 connector
linking the BF537 to a PC with a terminal emulation software proving a console to the single

board computer. Using an SMB connector, the AD7476 is connected to a signal generator
for testing purposes.

xxx
Sticky Note
Marked set by xxx

xxx
Sticky Note
Unmarked set by xxx

xxx
Sticky Note
Unmarked set by xxx

xxx
Sticky Note
Marked set by xxx

2 QEX – November/December 2010

Figure 3. The falling edge of the CS signal
triggers an analog to digital conversion. The
CS line is maintained low while the conver-
sion is in progress. The AD7476 generates 12
bits of data for every sample, but 16 bits are
sent. Four zero bits are sent first. Then the 12
data bits are sent, from the most significant
to the least significant. The BF537 receives
the bits one by one and stores them into a
16-bit word in memory. Taking into account
the CS signal, each conversion requires 17
SCK cycles.

The SPI in Linux
A Linux system with a kernel 2.6.22, or

above, is needed to run a user level program
that uses the SPI interface. The BF537 board
had been delivered with kernel 2.6.19. You
may determine the current version of the
Linux kernel on your system by issuing the
following command:

root:/> uname -a
It returns a text message similar to the

following:
Linux blackfin 2.6.22.19-ADI-

2008R1.5-svn
The existence of the SPI device abstrac-

tion is confirmed by entering the following
command:

root:/> ls /dev/spi
that prints:
/dev/spi
You can find a 2.6.22 kernel image on my

Web page. You will have to install a TFTP
server on your PC for uploading the image
on your board. The best option I found (no
cost) so far is from Weird Solutions.4 Don’t
forget to disable all firewalls on your com-
puter (including the Windows firewall and
any other firewall that may come with your
security software). I also put on my Web
page a complete kernel loading and boot
example. Note that this is non destructive.
The old image remains on the BF537. You
can return to it, any time after a board reset.

Sampling Rate Configuration
Let’s discuss the calculation of the data

rate of the output serial data stream on the
SDATA line of the AD7476. First, however,
an understanding of the data stream format
is required.

The sampling rate of the AD7476 is a
variable, denoted as s. According to the data

sheet, the maximum sampling rate is 1 mil-
lion SPS. The minimum is zero, because
the AD7476 can be kept idle. The sam-
pling rate is determined programmatically,
but indirectly and according to an equation
that is described hereafter. Two parameters
entering in the equation are the system clock
frequency and a calculated baud count. The
system clock frequency, denoted as f, is a
fixed value extracted programmatically using
the system call:

ioctl(fd, CMD_SPI_GET_
SYSTEMCLOCK, &f);

The function ioctl() can be invoked to
get or set various system variables. The sys-
tem clock frequency is one of the variables
that can be accessed. The call to ioctl()
is parameterized with three arguments. The
first argument is a reference to the AD7476
device. The second argument is a constant
that indicates the kind of access and name of

system variable. The third argument is a ref-
erence to a user variable in which the result
is stored when ioctl() returns. On the
BF537, ioctl() returns 100 MHz. Note
that the value of the system clock frequency
is high compared to the sampling rate.

	The baud count, denoted as b, is a 16-bit
value ranging from 1 to 65,535 bauds. The
exact value is chosen such that the calculated
sampling rate matches as close as possible
to a desired sampling rate. First, the system
clock frequency, together with the baud rate,
determines the serial clock frequency, i.e.,
sck, according to the equation:

�

sck =
f

2b
	 Eq. 1

Every system clock cycle consists of two
pulses, a low value pulse and a high value
pulse. In other words, it consists of two
bauds. The divisor 2b specifies the number

Figure 4 -- Plotted samples in the MATLAB environment.

Figure 2 -- Serial peripheral interface.

Figure 3 -- Data flow on the SPI. The programmer has to determine the frequency of the SCK
signal, which divided by 17, defines the sampling rate.

 QEX – November/December 2010 3

of times the system clock must tick before the serial clock ticks. The
serial clock ticks every 2b bauds of the system clock. The system call
ioctl() is used to set the serial clock frequency as follows:

ioctl(fd, CMD_SPI_SET_BAUDRATE, f/(2*b))
	Each analog to digital conversion requires 17 serial clock cycles.

The corresponding sampling rate, in SPS, is defined as:

�

s =
sck

17
	 Eq. 2

The remaining issue is the calculation of b such that the resulting
sampling rate matches as much as possible a required sampling rate.
If we substitute in Eq. 2 the symbol sck by Eq. 1, we obtain the fol-
lowing relationship:

�

s =
f

34b
Since f is fixed, it may not be possible to pick a b such that the

resulting sampling rate matches exactly a required sampling rate s’.
The baud count can be picked as the smallest integer such the follow-
ing relationship is satisfied:

�

s'≤
f

34b
This can be rewritten as:

�

b ≤
f

34s'
The equation is satisfied if we pick b as:

�

b =
f

34s'


 


 

The f loor operator is used. The floor of x, denoted as

�

x , returns
the integer part of x. In the C programming language, this is coded as
(assuming all variables are integers):

b = f/(34*s);

Example 1: Let f be equal to 100 MHz and s’ be equal to 1 MSPS.
The expression

�

b = f 34s'  is equal to 2. The resulting sampling
rate is

�

s = f 34b or 1,470,588 SPS.
Example 2: Let f be equal to 100 MHz and s’ be equal to

900 KSPS. The expression

�

b = f 34s'  is equal to 3. The serial
clock frequency is

�

sck = f 2 × 3()=16,666,666 Hz. The resulting
sampling rate is

�

s = f 34b or 980,392 SPS.
According to Example 1, if we pick a b equal to 2, the AD7576

is over clocked and the results may not be correct. Example 2 tells us
that b has to be at least 3 and that, by design, the maximum achiev-
able sampling rate obtainable with the BF537-AD7476 combination
is 980,392 SPS.

The core of the AD7476 board is a small IC also named AD7476.
The IC has an input voltage labelled Vdd. This voltage has a double
role. It powers the IC. It also serves as a reference voltage. The min-
imum value for a sample, zero, is produced when the level of the input
analog signal is zero. The maximum value of a sample (2 power 12
minus 1 or 4095) is produced when the level of the signal matches
Vdd. On the AD7476 board, this voltage is set to 4.11 V.

Program
We discuss hereafter in detail a C program that reads data from the

AD7476 in the Linux environment. The example is written accord-
ing to an example provided on the Web.5 A structure, called Data, is

defined to represent information related to the AD7476.
typedef struct {

unsigned short mode;
unsigned int s;
int fd;
unsigned short *samples;
unsigned int nsamples;

} Data;
The AD7476 can operate either in AC mode or DC mode. The

mode refers to the kind of analog signal on the input line of the
AD7476. The field mode keeps track of the programmer’s selection.
The required sampling rate is stored in field s. According to Linux,
each hardware peripheral, e.g., hard disk or network card, is repre-
sented in the system by a device abstraction. Each such device has
a name. All available devices can be viewed by listing the directory
/dev. The AD7476 appears as a device named /dev/spi. Within a
program, the name has to be mapped to a numerical value called a file
descriptor. The field fd stores that reference. The programmer has to
allocate areas of memory to store the samples that are received from
the AD7476. The field samples stores a pointer to such an area. It
is defined in C as a pointer to a buffer of unsigned short integers, i.e.,
16-bit unsigned values. The length, in bytes, of that buffer is stored
in the field nsamples. This structure is defined in a .h file included
in the main program. We are now ready to look at the main program:

int main () {
Data data;
data.mode = AC;
data.s = 980392;
data.nsamples = NSAMPLES;
AllocateMemory(&data);
Sample(&data);
PrintSamples(&data);

}
First, a variable named data of type Data is declared. In this

example, the AC input mode is selected. The sampling rate is set
to 980,392 SPS. The length of the buffer of samples is defined as
NSAMPLES. The actual buffer area is allocated dynamically by the
function AllocateMemory(). It takes an argument pointer to the
variable data. The function allocates the space and stores a pointer to
it in field samples of variable data. Next, the function Sample(),
parameterized with a pointer to variable data, implements the read
access to the AD7476. Finally, the function PrintSamples()
dumps the values in a format compatible with the tools Octave and
MATLAB. It is worth looking at the code of function Sample().

void Sample(Data * data) {
	data->fd = open(“/dev/spi”, O_RDWR);
	setSckFreq(data->fd, data->s);
read(data->fd, data->samples,
   data->nsamples+2) * 2);
close (data->fd);

}
It reads the samples from the AD7476. For the sake of simplicity,

error verification and handling are omitted. The first step consists of
an invocation of the open() system call. The call is parameterized
with the Linux name of the AD7476 device abstraction. It returns a
numerical reference to the opened device, which is used in the follow-
ing to access the device. The function setSckFreq() is invoked
to set the serial clock frequency of the AD7476 device, first argu-
ment, and the required sampling rate, second argument. The function
setSckFreq() implements the algorithm discussed in paragraph
entitled sampling rate configuration. The call to the system function
read() gets the samples from the AD7476. It is parameterized with
the numerical reference to the device, a pointer to buffer area and
length of buffer area in bytes. Note that space for one more sample

4 QEX – November/December 2010

than the required number of samples has been allocated. For some
reason, the first sample is inconsistent, read but ignored in the sequel.
See Sidebar 1 for the complete code.

Plotting the Samples
Sidebar 2 contains MATLAB code for plotting the sample values.

The output is pictured in Figure 4. The upper part plots the values
of 1000 samples. The values range from 0 to 4095. This range cor-
responds to a 12-bit resolution. The frequency of the input signal
is 13 kHz, produced by a sine function generator. At 980,392 SPS,
this corresponds to an interval of approximately one millisecond of
sampling or 13.5 cycles. The file samples.m defines two variables,
namely, samples and voltages, which are two vectors of values that
must be loaded in the MATLAB workspace. The file plotsamples.m
contains the plotting code.

Michel Barbeau holds a Canadian Amateur Radio Operator’s certifi-

Sidebar 1

C Listings

File spiadc.h
#define CMD_SPI_SET_BAUDRATE 2

#define CMD_SPI_GET_SYSTEMCLOCK 25

#define CMD_SPI_SET_WRITECONTINUOUS 26

File myamradio.h
/*

 * Structure representing the data related to the AD7476.

 */

typedef struct {

	 unsigned short mode;	 // AC or DC

	 unsigned int s;		 // Sampling rate

	 int fd;			 // Ref. to the AD7476 device

	 unsigned short *samples;	// Buffer of samples

	 unsigned int nsamples;	 // Number of samples

} Data;

File adc.h
enum { AC, DC };

#define ADC_RESOLUTION 4096	 // 12-Bit (2^12)

#define REF_VOLTAGE 4.11 		 // Volts

#define MAX_SAMPLERATE 1000000	 // 1M SPS
File myamradio.c
/* Read samples from the AD7476 card.

 */

#include <string.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/poll.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

cate and an Amateur Digital Radio Operator’s certificate. He received
Bachelor, Masters and PhD degrees, all in Computer Science, from the
Universite de Sherbrooke in undergraduate studies and the Universite
de Montreal in graduate studies. He has been a professor of Computer
Science since 1991. Michel is currently working at Carleton University
where he teaches and conducts research in wireless communications.

Michel is a member of the Ottawa Valley Mobile Radio Club, Radio
Amateurs of Canada and the ARRL. His preferred modes of operation
are CW, packet, PSK31, RTTY and SSB. He is also interested in amateur
applications for software defined radios.

Notes
1Analog Devices, AD7476/AD7477/AD7478, www.analog.com, 2009.
2Mack, Ray, SDR: Simplified, QEX, Jan/Feb 2009 – Jan/Feb 2010.
3 http://people.scs.carleton.ca/~barbeau/SDR/
4 http://corporate.weird-solutions.com/products/tftp-turbo
5 http://docs.blackfin.uclinux.org/doku.php

(continued)

 QEX – November/December 2010 5

#include <sys/ioctl.h>

#ifdef TM_IN_SYS_TIME

#include <sys/time.h>

#else

#include <time.h>

#endif

#include “spiadc.h”

#include “myamradio.h”

#include “adc.h”

// Number of samples

#define NSAMPLES 1000

// Debugging mode

#define DEBUG

/*

 * Allocate memory space for samples.

 */

void AllocateMemory (Data * data) {

	 data->samples = malloc((data->nsamples+2) * 2);

	 if (data->samples == NULL) {

		 fprintf(stderr, “ failed to allocate memory!\n”);

		 exit(1);

 	 }

}

/*

 * Convert sample values to voltage levels.

 */

float SampleToVoltage (unsigned short value, Data * data) {

	 if (data->mode)

		 // DC case

		 return ((float)value/(float)ADC_RESOLUTION) * REF_VOLTAGE;

	 else

		 // AC case

		 return (((float)value-

((float)ADC_RESOLUTION/2.0))/

(float)ADC_RESOLUTION) *

REF_VOLTAGE;

}

/*

 * Compute and set the freq. of serial clock (SCK) of the

 * SPI between the BF537 and AD7476.

 * f: reference to the AD7476 device

 * s: desired sampling rate (in SPS)

 */

void setSckFreq(int fd, unsigned int s) {

	 unsigned int f;		 // Sys clock freq. (in Hz)

	 unsigned int b;		 // Baud count

	 // Get the system clock frequency

	 ioctl(fd, CMD_SPI_GET_SYSTEMCLOCK, &f);

	 // Compute the baud count

	 b = f/(34*s);

	 // Verify the sampling rate

		 if (MAX_SAMPLERATE < f/(34*b)) {

(continued)

6 QEX – November/December 2010

		 fprintf(stderr, “Sampling rate is too high\n”);

		 exit(1);

 	 }

	 // Set the serial clock frequency

	 if (ioctl(fd, CMD_SPI_SET_BAUDRATE, f/(2*b)) < 0) {fprintf(stderr,

“Sck cannot be more than 33.25MHz\n”);

		 exit(1);

 	 }

}

/*

 * Read the samples.

 */

void Sample(Data * data) {

	 int code;	 // return code

	 // Open the device representing the AD7476

	 data->fd = open(“/dev/spi”, O_RDWR);

	 if ((code=data->fd) < 0) {

		 fprintf(stderr,

“Sample: failed to open /dev/spi: %d\n”, code);

		 exit(1);

 	 }

	 // Set the serial clock frequency on the SPI

	 setSckFreq(data->fd, data->s);

	 // Read samples

	 if (code=read(data->fd, data->samples,

(data->nsamples+2) * 2) < 0) {

		 fprintf(stderr,

“Sample: failed to read samples: %d\n”, code);

		 exit(1);

 	 }

	 // Close the device

	 close (data->fd);

}

/*

 * Print the samples.

 */

void PrintSamples(Data * data) {

	 int i;	// loop index

// Output file descriptor

 FILE *fp;

 // open the output file: MATLAB M-file

 if ((fp = fopen(“samples.m”, “w”)) == NULL) {

 fprintf(stderr,

“PrintSamples: can’t open output file\n”);

 exit(1);

 }

	 // MATLAB array declarations

	 // Print sample values (skip the first)

	 fprintf(fp, “samples=[“);

	 for (i = 1; i < data->nsamples - 1;i++) {

		 fprintf(fp, “%d, “, data->samples[i]);

	 }

(continued)

 QEX – November/December 2010 7

Sidebar 2

MATLAB Listing

File samples.m
samples=[1099, 1044, 990,…];

voltages=[-0.952244, -1.007432, -1.061616,…;

File plotsamples.m
% Plot sample and voltage values

%%% Samples

subplot(2,1,1);

plot(samples);

xlabel(‘Sample’);

ylabel(‘Sample value’);

%%% Voltages

subplot(2,1,2);

plot(voltages);

xlabel(‘Sample’);

ylabel(‘Voltage’);

	 fprintf (fp, “%d];\n”, data->samples[i]);

	 // Print voltage values (skip the first)

	 fprintf(fp, “voltages=[“);

	 for (i = 1; i < data->nsamples - 1;i++) {fprintf(fp, “%f, “,

SampleToVoltage(data->samples[i], data));

	 }

	 fprintf(fp, “%f];\n”,

SampleToVoltage(data->samples[i], data));

	 // close the output file

 fclose(fp);

}

/*

 * Main program.

 */

int main () {

	 // Info about the AD7476

	 Data data;

	 // Input mode (AC or DC)

	 data.mode = AC;

	 // Sampling rate

	 data.s = 980392;

	 // Initialization of variables

	 data.nsamples = NSAMPLES;

	 // Allocate the memory

	 AllocateMemory(&data);

	 // Sampling

	 Sample(&data);

	 // Print the samples

	 PrintSamples(&data);

	 exit(0);

}

(continued)

