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Abstract Geolocalization of nodes in a wireless sen-
sor network is a process that allows location-unaware
nodes to discover their spatial coordinates. This process
requires the cooperation of all the nodes in the system.
Ensuring the correctness of the process, especially in
the presence of misbehaving nodes, is crucial for ensur-
ing the integrity of the system. We analyze the problem
of location-unaware nodes determining their location
in the presence of misbehaving neighboring nodes that
provide false data during the execution of the process.
We divide and present potential misbehaving nodes in
four different adversary models, based on their capac-
ities. We provide algorithms that enable the location-
unaware nodes to determine their coordinates in the
presence of these adversaries. The algorithms always
work for a given number of neighbors provided that the
number of misbehaving nodes is below a certain thresh-
old, which is determined for each adversary model.
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1 Introduction

Wireless sensor networks (WSNs) are a specific kind
of ad hoc networks, highly decentralized, and without
infrastructure. They are build up by deploying multiple
micro-transceivers, also called sensor nodes, that allow
end users to gather and transmit environmental data
from areas which might be inaccessible or hostile to
human beings. The transmission of data is done inde-
pendently by each node, using a wireless medium. The
energy of each node is limited to the capacity of its
battery. The consumption of energy for both communi-
cation and information processing must be minimized.
Deployment of nodes in a WSN can be planned or
it can be done at random. In planned deployments,
sensors are placed into pre-determined locations where
the data is collected. In random setups, sensors are
deployed into the geographical area and they work to-
gether in order to determine their mutual coordinates.
We assume a random deployment of wireless sensor
nodes.

Geolocalization of nodes is a mechanism that allows
location-unaware sensors to discover their spatial coor-
dinates in the network. Several approaches in the lit-
erature address the design of localization mechanisms.
Different assumptions, regarding the energy and com-
putational capabilities of sensors, arise. Energy accu-
racy and efficiency of geolocalization mechanisms have
been addressed, for example, in [2, 21]. The correctness
of the geolocalization process in random deployments
is very critical and it must be secured in order to ensure



Ann. Telecommun.

the integrity of the WSN and its associated services.
Firstly, the process must guarantee that all nodes suc-
cessfully set up the necessary parameters to establish
paths that lead their data towards end users [1]. Sec-
ondly, when the relative locations of all the nodes in
the system are known, they can be used to enforce the
protection of the routing services. The knowledge of
their location is also an essential prerequisite for the
final application that processes the data collected by
sensors, i.e., the user needs to know the origin of col-
lected data. Finally, the end users might want to query
some nodes by sending the location where information
needs to be collected. The geolocalization process is
therefore crucial.

Concerns about the security of the geolocalization
process have been arisen only recently (e.g., [5, 15]).
Most of the approaches are based on the use of trust
models, where a few dedicated anchor nodes that are
aware of their location (e.g., especial nodes equipped
with GPS receivers or nodes that have been manually
configured with their location), provide information to
regular sensors (unaware of their initial coordinates).
Then, the localization process uses the information re-
ported by these special nodes to discover the position of
location-unaware nodes (e.g., by applying trilateration
of the radio signals of GPS equipped nodes [3]). These
special nodes may in fact be defective. Trusted but de-
fective nodes must be detected and isolated. Otherwise,
they can lead to the calculation of false locations and
distances. A malicious node can provide wrong rout-
ing paths to sensors in order to exhaust their battery
life [18]. It may lead to reporting false information
on the geography of the phenomenon studied by the
sensors nodes.

Security mechanisms to validate the authentication
of trusted nodes is often too expensive and not always
realistic. Firstly, the deployment of these nodes must
be established a priori, to ensure full coverage of the
whole network. Since the cost of these special trusted
nodes is considerably higher than the cost of regular
sensor nodes, their representation in the network is
likely to be inferior. It is thus fair to assume that an at-
tacker can easily locate and compromise their security
to mislead, for instance, the geolocalization process. On
the other hand, current approaches to deploy trust on
WSNs may require cryptographic operations supported
by sensors. This has impact on their battery life, which
can degrade their performance. Finally, too much trust
may reduce the autonomy of the network, since trusted
nodes must be monitored to ensure their integrity. This
can specially be a real problem for applications in hos-
tile environments where the localization phase must be
managed by sensors without any external intervention.

We analyze in this paper the problem of location-
unaware nodes determining their position in the pres-
ence of misbehaving neighboring nodes that provide
wrong information during the execution of the geolo-
calization process. We divide and present potential
misbehaving nodes in four different adversary models,
based on their capacities. These misbehaving nodes are
either controlled by a malicious adversary or simply
nodes that fail providing the appropriate information
due. In the first case, we assume that malicious nodes
controlled by an adversary aim at leading unaware
nodes to the calculation of false positions and dis-
tances. In the second case, we assume honest nodes
that unintentionally provide wrong distances or posi-
tions due, for instance, to physical obstacles or any
other unexpected circumstances. We then provide a set
of algorithms that enable the location-unaware nodes
to determine their coordinates in the presence of the
adversary models defined in our work. The whole set
of algorithms that we present guarantee that location-
unaware regular nodes in the WSN always obtain their
position provided that the number of liars in the neigh-
borhood of each regular node is below a certain thresh-
old value, which we determine for each algorithm. The
purpose of our algorithms is to provide a formal process
that allows the location-unaware nodes to identify and
isolate nodes that are providing false information about
their position. Our algorithms are resistant to attacks
provided that the thresholds that we define are sat-
isfied. They also guarantee a small exchange of data
between nodes, minimizing in this manner the impact
that the geolocalization process has in terms of energy
and battery life of the sensor nodes.

This is an expanded and revised version of a paper
[10] that appeared in the proceedings of the 7th An-
nual Communication Networks and Services Research
Conference, May 2009, pages 86–93.

Organization of the paper Section 2 establishes the
prerequisites for our approach and the adversary mod-
els. Sections 3 presents our set of algorithms and their
bounds. Section 4 presents results obtained from the
simulations of our algorithms. Section 5 points out to
some related works.

2 Geolocalization in the presence of liars

We assume that the geolocalization process is based
on trilateration [3]. Let us consider a point A =
(ax, ay), such that (ax, ay) = F (B1, B2, and B3) for
any three points B1, B2, and B3, and where func-
tion F returns the point obtained as the intersection
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of the three circles that are centered at B1, B2, and B3

and with radii d(A, B1), d(A, B2), and d(A, B3),
respectively (cf. Fig. 1). F (B1, B2, and B3) is a
unique and well-defined point when the points
A, B1, B2, and B3 are in general positions. If points
are sensors, function F is calculated by sensor A
when it receives the coordinates B1 = (b 1x, b xy), B2 =
(b 2x, b 2y), and B3 = (b 3x, b 3y). It measures, in fact,
the distances d(A, B1), d(A, B2), and d(A, B3) using
radiolocation techniques, such as [2]. The unknown
coordinates of A = (ax, ay) is obtained as the unique
solution of the following system of equations:

(b 1x − ax)
2 + (b 1y − ay)

2 = d(A, B1)
2 (1)

(b 2x − ax)
2 + (b 2y − ay)

2 = d(A, B2)
2 (2)

(b 3x − ax)
2 + (b 3y − ay)

2 = d(A, B3)
2. (3)

Consider now that sensor A may receive radiolo-
cation signals from misbehaving nodes that lie by an-
nouncing incorrect locations or distances to A (cf.
Fig. 2). Let N1(A) be the set of sensor nodes at distance
one hop away from A and let � (where � ≤ #N1(A))
be the number of malicious nodes that lie to A. Can A
detect the lie, exclude the incorrect locations, report the
liars, and still determine its location?

A 
d(A,B3) 

B2 

B1 

B3 
d(A,B2) 

d(A,B1) 

Fig. 1 Sensor A wants to determine its location. It receives
radiolocation signals from three nodes B1, B2, and B3 that
are located in its distance one neighborhood. A determines its
location by processing the three signals

A 

Fig. 2 Sensor A is receiving its radiolocation signals from two
types of sensors in its distance one neighborhood: liars (gray
circles) and truth-tellers (blank circles)

2.1 Definitions and assumptions

We define a liar as any node announcing erroneous
information (either distances or coordinates) to a target
node. The intent can be malicious (i.e., to mislead the
target node into the wrong calculation of its location)
or unintentional in the sense that obstacles or other
physical circumstances (e.g., multi-path interference)
prevent a sensor from announcing its correct location.
We assume the use of a two dimension space and
euclidean distances without estimation errors. There-
fore, given two locations (x, y), (x′, y′) a node can deter-
mine whether or not they are equal, thus rejecting one
of the two. The following assumptions also apply: (1)
communication channels are bidirectional, i.e., if node
A can hear node B, then node B can hear node A;
(2) truth-tellers agree on a fixed communication range
(e.g., all truth-tellers emit using the same signal power);
(3) there are sufficient density conditions (e.g., > 10
one-hop neighbors per node) in the system; and (4)
nodes can only hold a single identity (i.e., we do not
address Sybil attacks [9]) and are in general positions
(i.e., no three sensors are collinear).

2.2 Adversary models

We define the capabilities of the adversaries as follow:

– EV2: Eavesdropping communications between a
target A and, at least, two truth-tellers B1 and B2,
to forge the coordinates of a position A′ (that is
consistent with A, B1, and B2).
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– EV1: Eavesdropping communications between a
target A and, at least, one truth-teller B, to forge
the coordinates of a position X (that is consistent
with A and B).

– PT: Position Tampering whereby an adversary lies
about its position.

– DT: Distance Tampering whereby an adversary lies
about its distance.

– CL: Construction of a covert channel and collu-
sion, whereby two or more adversaries collude to
exchange system data and supply the victim node
with wrong information.

Based on these definitions, we classify in the sequel
four main categories of liars.

2.2.1 Model 1 (unconstrained liars)

A liar node in this model is assumed to be capable of
performing EV2 + PT + DT + CL, i.e., it is capable of
eavesdropping the communications of a target victim
and two truth-tellers (to forge a position that is con-
sistent with the three of them), capable of tampering
consistent positions and distances (only one is enough),
and capable of building up a covert channel to collude
with other liars.

Example depicted by Fig. 3 shows that if a liar node
in this model can eavesdrop the communications be-

A' 

A 

d2 

d1 

B2 

B1 

B'3 

d'3 

B3 d3 

Truth Teller Liar Target False 

Fig. 3 Example of adversary model 1

tween, at least, two truth-tellers and the target node,
it can then tamper its position and distance, to success-
fully steal the coordinates of a legitimate position A′. In
this sense, we can see first that liar node B3 eavesdrops
the communications between truth-teller B1 and target
A, and computes distance d1. Secondly, liar node B3

eavesdrops the communications between truth-teller
node B2 and target node A, and computes distance d2.
Using this information, liar node B3, that is located at a
distance d3 from target A, computes distance d′

2 (where
d′

3 �= d3) and position B′
3 (where B′

3 �= B3).
Figure 4 shows that by only tampering its position

(cf. Fig. 4a or its distance Fig. 4b), node B3 can also steal
the coordinates of a node to later lead the target need
to conclude that its location is A′ instead of A. Finally,
we can see in the example depicted by Fig. 4c that when
multiple liar nodes applying this first adversary model
in the system successfully collude, e.g., by means of a
covert-channel, they can lie consistently to target the
node A and lead it to the calculation of its position as
A′ instead of A.

2.2.2 Model 2 (partially constrained liars)

A liar node in this model is assumed to be capable
of performing EV1 + PT + DT + CL, i.e., it can
eavesdrop the communications of a target victim and
one truth-teller (to forge a position that is consistent
with the two of them), tamper consistent positions and
distances (only one is enough), and build up a covert-
channel to collude with other liars. The example de-
picted by Fig. 4d shows that when multiple liar nodes
in the system may perform the previous actions, they
can eventually collude to lie consistently in order to
target A and lead it to the calculation of its position
as X instead of A.

2.2.3 Model 3 (fully constrained liars)

A liar in this third model is not assumed to be capable of
eavesdropping the communications between the target
A and any of the truth-tellers in its neighborhood. It is
only assumed to be capable of performing PT + DT +
CL, i.e., it can tamper its position or distance (only
one is enough), and collude with other liars (by means
of a covert-channel) to lie consistently about a unique
bogus position. Example depicted by Fig. 5a shows an
example where multiple liar nodes applying this model
in the system can eventually collude to lie consistently
to target A and lead it to the calculation of its position
as X instead of A.
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(a) (b)

(c) (d)

Fig. 4 Examples for adversary models 1 and 2

2.2.4 Model 4 (unintentional liars)

A liar in this model is not assumed to be capable of
eavesdropping the communications between a target
victim and any of the truth-tellers in its neighborhood.

It is not assumed either to collude with other liars. A
liar here is only capable of, probably unintentionally,
performing PT + DT, i.e., capable of tampering its
position, its distance to the target, or both. Example
depicted by Fig. 5b shows three liar nodes that are
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(a) (b)

Fig. 5 Examples for adversary models 3 and 4

unintentionally announcing false distances and coor-
dinates to target node A. They do not collude. The
positions derived by A using these three unintentional
liars intersects in at most one point (if any).

3 Algorithms and upper bounds

We present algorithms that solve the problem of de-
termining the proper location of nodes in the presence
of liars according to the adversary models defined in
Section 2.2. The algorithms aim not only at determining
the proper location but also at excluding the incorrect
locations and at isolating the liars. We assume the
case where A knows a priori the upper bound � of
sensor nodes lying in the geographical area where it has
been deployed. Our algorithms always work for a given
number of neighbors provided that the number of liars
is below a certain threshold value, while minimizing the

necessary number of neighbors that location-unaware
sensor nodes must trust.

Section 3.1 presents three algorithms that consist
of the following approach. Sensor A, after receiving
the radiolocation signals from its one hop neighbors,
calculates its position using the localization technique
discussed in Section 2.1 (cf. Fig. 1), and uses either a
majority decision rule (cf. Algorithms 1 and 2) or a
most frequent decision rule (cf. Algorithm 3) to derive
the position. We provide the conditions for the validity
of these three algorithms in the presence of liars ap-
plying the adversary models presented in Section 2.2.
We present the upper bounds for each case, all of
them depending on the number of one hop neighbors
and liars among them. Section 3.2 relaxes the initial
hypotheses and assumes that a victim may always trust
one of the nodes in its distance one neighborhood. We
present algorithms, and their bounds, for this second
scenario.
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3.1 Geolocalization without trusted nodes

Algorithm 1 enables a location-unaware node to deter-
mine its position in presence of neighbors applying any
adversary model. Following is the analysis.

Algorithm 1 Majority-ThreeNeighborSignals
1: Sensor A requests the location of its neighbors.
2: Every sensor in N1(A) sends its location to A.
3: For each triple t of neighbors Bi, B j, andBk ∈

N1(A), A computes (xt, yt).
// (xt, yt) is the point of intersection of the three circles
// centered at Bi, B j, andBk and with radii d(A, Bi),
// d(A, B j), and d(A, Bk).

4: A accepts the majority as its location, and reports
the nodes lying about the resulting position.
// if there is no consensus, then A aborts the process,
// and declares that it fails compute its location.

Theorem 1 Let n be the number of distance one neigh-
bors nodes of a location-unaware sensor A, the execu-
tion of the majority rule in Algorithm 1 by A always
gives its correct position in the presence of � liars if
inequality n3 − 3(2� + 1)n2 + 2(3�2 + 6� + 1)n − (2�3 +
6�2 + 4�) > 0 is satisf ied.

Proof Given n one hop neighbors and the presence of �

liars applying any of the models defined in Section 2.2,
consider all possible triples of sensors such that at least
one of the sensors in the triple is a liar. Such a triple can
have in each case either1

1. all three sensor liars, which gives a total of
(
�

3

)

triples of liars,
2. exactly two sensor liars (and the other one truth-

teller), which gives a total of
(n−�

1

) · (
�

2

)
triples of

liars, or
3. exactly one sensor liar (and the other ones truth-

tellers), which gives a total of
(n−�

2

) · (
�

1

)
triples of

liars.

A location that is determined by A is correct if it is
provided by three truth-tellers; otherwise it is (possibly)
incorrect. The majority rule in Algorithm 2 succeeds
if the number of correct locations is bigger that the
number of incorrect locations. This amounts to having
the inequality.

(
n
3

)
−

(
�

3

)
−

(
n − �

1

)
·
(

�

2

)
−

(
n − �

2

)
·
(

�

1

)
>

1We use the standard convention for binomial coefficients that(s
t

) = 0 when s < t.

(
�

3

)
+

(
n − �

1

)
·
(

�

2

)
+

(
n − �

2

)
·
(

�

1

)
,

from which we derive

(
n
3

)
> 2

[(
�

3

)
+

(
n − �

1

)
·
(

�

2

)
+

(
n − �

2

)
·
(

�

1

)]
(4)

as a necessary and sufficient condition for the majority
rule decision to succeed at A.

Table 1 depicts the minimum number of neighbors
for a given number of liars. The table can be derived
as follows. If � = 1 then

(
�

3

) = (
�

2

) = 0 and inequality 4
is simplified to n > 6, then A can determine a correct
location in the presence of a liar if it has at least 7
neighbors. If � = 2 then

(
�

3

) = 0,
(
�

2

) = 1 and inequality 4
can be simplified to n(n − 1)/6 > 2(1 + (n − 3)), which
in turn is equivalent to n > 13+√

73
2 . This means that

A can determine a correct location in the presence
of two liars if it has at least eleven neighbors. When
� ≥ 3, cumbersome but elementary calculations show
that inequality 4 can be simplified to the following
inequality:

n3−3(2�+1)n2+2
(
3�2+6�+1

)
n−(

2�3+6�2+4�
)
>0.

(5)

Plotting inequality 5 we can obtain the rest of values
depicted in Table 1. Figure 6 shows the minimum num-
ber of neighbors for � = 3 and � = 4.

We can, therefore, affirm that inequality 5 gives the
necessary and sufficient upper bound on the number
n of neighbors of a location-unaware node so that it
can compute a correct and unique position despite the
presence of � liars of any model call in its neighborhood.

�	

Table 1 Minimum number of location-aware neighbor nodes
required for a location-unaware node to determine a correct pair
of locations (using Algorithm 1) in the presence of � liars applying
any of the adversary models defined in Section 2.2

Number of liars (�) Min number of neighbors (n)

1 7
2 11
3 16
4 21
5 26
10 31
15 74
20 98
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Fig. 6 Plotting the minimum neighborhood size n as a function
of the number of liars � so as to guarantee that inequality 5 is true
for � = 3 (left diagram) and � = 4 (right diagram)

3.1.1 Improving the previous approach

Algorithm 2 describes a process in which a sensor A
uses only the radiolocation signals of two neighbors
to derive its position. The correct location is one of
the two points of intersection of two circles centered
at these two neighbors. To handle the existence of
neighboring liars, sensor A computes for every two
neighbors Bi, B j ∈ N1(A) a pair of locations {X, X ′}.
The pair {X, X ′} of locations is obtained from the
intersection of the two circles centered at Bi, B j, with
radii d(A, Bi), d(A, B j), respectively. As depicted in
Fig. 7, the correct location of sensor A is either X or
X ′. A uses the majority rule to determine the most
plausible position and to report nodes that lied about
their location or distances.

Theorem 2 The execution of the majority rule in Al-
gorithm 2 by a location-unaware sensor node always
gives the correct position in the presence of any � liars
if the number of its distance one neighbors exceeds
4�+1+√

8�2+17
2 .

Algorithm 2 Majority-TwoNeighborSignals
1: Sensor A requests the location of its neighbors.
2: Every sensor neighbor of A sends its location to A.
3: For each pair, p of neighbors Bi, B j ∈ N1(A), A

computes (xp, yp), (x′
p, y′

p).
// The locations computed are the two points of
// intersection of the two circles centered at Bi, B j

// with radii d(A, Bi) and d(A, B j), respectively.
4: A calculates the frequencies of occurrence of each

position and accepts the position that has major-
ity. It reports the nodes lying about the resulting
position.
// If there is no consensus, then A aborts the process,
and
// declares that it fails to compute its location.

Fig. 7 Sensor A applying Algorithm 2

Proof In the presence of � liars applying any of the
adversary models defined in Section 2.2, and given n
one-hop neighbors, the majority rule in Algorithm 2
succeeds if the number of correct pairs of locations is
bigger than the number of incorrect pairs of locations.
We assume the strongest adversary model (i.e., Uncon-
strained Liars), in which liars can eavesdrop the com-
munications from, at least, two truth-tellers—say nodes
B1 and B2. Therefore, a pair of locations is correct if
it is determined by any two truth-tellers other than B1

and B2; otherwise, it is (possibly) incorrect. Consider
all pairs of (possibly) incorrect locations. Such pairs can
have either

1. exactly the two sensor nodes whose communica-
tions were eavesdropped, or

2. both sensors are liars, for a total of
(
�

2

)
pairs, or

3. exactly one sensor is a liar, for a total of
(n−�

1

) · (
�

1

)

pairs.

The majority rule in Algorithm 2 therefore succeeds
if the following inequality is satisfied
(

n
2

)
> 2

[
1 +

(
�

2

)
+

(
n − �

1

)
·
(

�

1

)]
(6)

Table 2 depicts the required minimum number of
neighbors for a given number of any � liars. The table
is derived as follows. If � = 1 then

(
�

2

) = 0 and inequal-
ity 6 becomes n > 5, which means A can determine a
correct pair of locations if it has at least 6 neighbors. If
� = 2 then

(
�

2

) = 1 and inequality 6 becomes n > 9+√
49

2 .
More generally, when � ≥ 3 then inequality 6 can be
simplified as the following inequality

n2 − (4� + 1)n + 2�2 + 2� − 4 > 0.
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Table 2 Minimum number of location-aware neighbor nodes
required for a location-unaware node to determine a correct pair
of locations (using Algorithm 2) in the presence of � liars applying
any of the adversary models defined in Section 2.2

Number of liars (�) Min number of neighbors (n)

1 6
2 9
3 12
4 15
5 18
10 35
15 52
20 69

Solving the corresponding quadratic equation, we see
that

n >
4� + 1 + √

8�2 + 17

2
(7)

is a necessary and sufficient condition on the number
n of neighbors of A so that it can compute a correct
pair of locations despite the presence of � liars in its
neighborhood. �	

Theorem 3 A location-unaware sensor node always de-
rives a unique position from the execution of Algo-
rithm 2 in the presence of � liars if the number of its
distance one neighbors exceeds 2� + 2.

Proof Assume that A knows there is exactly one liar
among its n neighbors. Assuming that n = 5, we can use
Algorithm 2 to determine a correct pair of locations, say
{X, X ′}. Then, the next step is to identify the correct
location which must be either X or X ′. Since A has
exactly 5 neighbors, in which only one is a liar, the
remaining four must be truth-tellers. However, already
two sensors contributed to the correct pair {X, X ′}. Let
us assume that they are the first and second nodes,
i.e., nodes B1 and B2. This leaves us the three sen-
sors B3, B4, B5, out of which a liar must be excluded
(cf. Fig. 8). Among these three sensors only one is a
liar, while the other two point to the correct answer.
Therefore using a majority rule among the remaining
sensors we can exclude the liar’s location and identify
the correct location of sensor A among X and X ′.

A similar argument would work for any number �

of liars provided that the number of A’s neighbors
is sufficiently high. The previous argument indicates
that sensor A can resolve the ambiguity and exclude

Fig. 8 Resolving the ambiguity in the pair of locations computed
by Algorithm 2

the liars by adding the following steps at the end of
Algorithm 2:

5: A selects any two sensors that give a correct pair of
locations in Step 4.

6: A identifies its correct location using the majority
rule among the sensors remaining after removing
the two correct neighbors identified in Step 5.

7: A reports the nodes that did not correlate the
proper location.

It is easy to show the correctness of the procedure.
Indeed, sensor A identifies a pair of sensors among the
ones that give the correct pair of locations after the
execution of Algorithm 2. After removing these two
neighbors, A is left with the remaining n − 2. Clearly,
the � liars must be among these n − 2 sensors. There-
fore, if there is majority of truth-tellers among these
n − 2 nodes, then the majority rule identifies the correct
location for A between X and X ′, i.e., if

n − 2 > 2�. (8)

However, if n satisfies inequality 7 then it must also
satisfy inequality 8. The reason is that

4� + 1 + √
8�2 + 17

2
> 2� + 2

�	
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3.1.2 Using a most frequent rule

Based on our previous result (cf. inequality 8), and
assuming the use of a most frequent rule instead of the
majority rule, we present in Algorithm 3 an alternative
process that allows a location-unaware node A to find
its correct position with a weaker constraint between
the number of neighbors and the number of liars nodes.

Table 3 compares the minimum number of neighbors
and number of liars to satisfy the most frequent rule
in Algorithm 3 for each adversary model. The sequel
provides sufficient conditions to derive the values con-
tained in the table.

Algorithm 3 MostFrequent-TwoNeighborSignals
1: Sensor A requests the location of its neighbors.
2: Every sensor neighbor of A sends its location to A.
3: For each pair p of neighbors Bi, B j ∈ N1(A), A

computes (xp, yp), (x′
p, y′

p).
// The locations computed are the two points of
// intersection of the two circles centered at Bi, B j

// with radii d(A, Bi) and d(A, B j), respectively.
4: A calculates the frequencies of occurrence of each

position, accepts as correct the most frequently
occurring value, and reports the nodes lying
about it.
// If there is no any position whose frequency of
// occurrence is, at least, twice the frequency of
// occurrence of the second most frequent position,
// then A aborts the process, and declares failure to
// compute its location.

Theorem 4 The execution of the most frequent rule in
Algorithm 3 by a location-unaware sensor node always
gives the correct position in the presence of � liars apply-
ing the f irst model (Unconstrained Liars) if the number
of its distance one neighbors exceeds 2� + 2.

Table 3 Comparison of minimum number of neighbors required
for a node to determine a correct location (using the most
frequent rule defined in Algorithm 3) in the presence of � liars
applying the set of adversary models defined in Section 2.2

Number of Min no. of neighbors

liars (�) Model 1 (n) Model 2 (n) Model 3 (n) Model 4 (n)

1 5 4 4 4
2 7 6 6 5
3 9 8 7 6
4 11 10 9 7
5 13 12 11 8
10 23 22 21 13
15 33 32 31 18
20 43 42 41 23

Proof In the presence of � liars applying the first model
(Unconstrained Liars), the most frequent rule in Algo-
rithm 3 succeeds if the number of pairs pointing to the
correct location (i.e., the

(n−�

2

)
pairs where both nodes

are truth-tellers) is bigger than the number of incorrect
pairs pointing to the most frequent false position. The
most frequent false position can be derived from those
pairs that have either

1. exactly the two truth-tellers whose communications
are eavesdropped by the � liars, for a total of one
pair, or

2. exactly one liar and one of the two truth-tellers
whose communications are eavesdropped, for a to-
tal of 2� pairs, or

3. exactly two liars, for a total of
(
�

2

)
pairs.

This amounts to having
(

n − �

2

)
> 1 + 2� +

(
�

2

)

as a necessary and sufficient condition for the most
frequent rule to succeed at A. Solving the correspond-
ing quadratic equation, the previous inequality can be
simplified as

n >
2� + 1 +

√
(2� + 3)2

2
= 2� + 2

as a necessary and sufficient condition for the most
frequent rule to succeed at the correct position. �	

Theorem 5 The execution of the most frequent rule in
Algorithm 3 by a location-unaware sensor node always
gives the correct position in the presence of � liars apply-
ing the second adversary model (Partially Constrained
Liars) if the number of its distance one neighbors ex-
ceeds 2� + 1.

Proof In the presence of � liars applying the second
model (Partially Constrained Liars), the most frequent
rule in Algorithm 3 succeeds if the number of correct
pairs of locations (i.e., the

(n−�

2

)
pairs where both nodes

are truth-tellers) is bigger than the pairs that have
either

1. exactly one liar and the truth-teller whose commu-
nications are eavesdropped, which gives a total of �

pairs, or
2. both sensors liars, which gives a total of

(
�

2

)
pairs.

Algorithm 3, therefore, succeeds if
(

n − �

2

)
> � +

(
�

2

)
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is satisfied. It can be simplified as

n >
2� + 1 +

√
(2� + 1)2

2
= 2� + 1

as a necessary and sufficient condition for the most
frequent rule to succeed at the correct position. �	

Theorem 6 Given n one hop neighbors and � liars ap-
plying the third adversary model (Fully Constrained
Liars). The execution of the most frequent rule in Algo-
rithm 3 by a location-unaware sensor requires n > � + 2
distance one hop neighbors when � = 1; and n > 2�

distance one neighbors when � > 1.

Proof In the presence of � liars applying the third
model, the most frequent rule in Algorithm 3 succeeds
if the number of correct pairs is bigger than the number
of incorrect pairs where exactly both nodes are liars,
i.e., if the following inequality is satisfied
(

n − �

2

)
>

(
�

2

)
(9)

The case of � = 1, and so
(
�

2

) = 0 represents an excep-
tion, since even in the case of a single liar, the number
of correct pairs must bigger than one. In this case, we
assume that inequality 9 must be replaced by
(

n − �

2

)
> 1

which can be simplified as

n >
2� + 1 + √

9

2
= � + 2

as a necessary and sufficient condition for the most
frequent rule to succeed at the correct position when
� = 1.

Otherwise, when � > 1, inequality 9 is just simplified
as

n >
2� + 1 +

√
(2� − 1)2

2
= 2�

as a necessary and sufficient condition for the most
frequent rule to succeed at the correct position. �	

Theorem 7 The execution of the most frequent rule in
Algorithm 3 by a location-unaware sensor node always
gives the correct position in the presence of � liars ac-
cording to the fourth adversary model (Unintentional
Liars) if the number of its distance one neighbors ex-
ceeds � + 2.

Proof In the presence of � liars applying the fourth
model (Unintentional Liars), the most frequent rule in
Algorithm 3 always succeeds in computing the correct
location if the number of correct pairs is, at least,
twice the frequency of occurrence of the second most
frequent position. Since liars modeling this last case sce-
nario do not collude, it suffices to satisfy the following
inequality:
(

n − �

2

)
> 1

Solving the corresponding quadratic equation, the
previous inequality can be simplified as

n >
2� + 1 + √

9

2
= � + 2

as a necessary and sufficient condition for the most
frequent rule to succeed at the correct position. �	

3.2 Geolocalization with one trusted node

We relax now our initial hypotheses. We suppose, in
addition to the assumptions defined in Section 2.1, that
any target A in the system may always trust exactly one
of the nodes in its distance one neighborhood, say node
B1. We adapt Algorithms 1, 2, and 3 to the positioning
processes defined in Algorithms 4, 5, and 6. Following
is the analysis.

Algorithm 4 Majority-ThreeNeighborSignals-plus-
One-Trusted-Neighbor

1: Sensor A requests the location of its neighbors.
2: Every neighbor of A sends its location to A.

// This algorithm is executed by all the neighbors of A.
3: For each triple t of neighbors B1, Bi, B j ∈ N1(A),

A computes (xt, yt).
// (xt, yt) is the point of intersection of the three circles
// centered at B1, Bi, B j and with radii d(A, B1),
// d(A, Bi), and d(A, B j).

4: A accepts the majority as its location, and reports
the nodes lying about the resulting position.
// if there is no consensus, then A aborts the process,
// and declares that it fails compute its location.

3.2.1 Majority rule plus one trusted node

Algorithms 4 and 5 define the use of a majority rule
to enable location-unaware nodes to determine their
position in presence of liars. The upper bounds of these
two algorithms for all the adversary models is analyzed
in the sequel.
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Algorithm 5 Majority-TwoNeighborSignals-plus-One-
Trusted-Neighbor

1: Sensor A requests the location of its neighbors.
2: Every neighbor of A sends its location to A.

// This algorithm is executed by all the neighbors of A.
3: For every neighbor Bi other than B1, A computes

the pair of points {X, X ′}.
// The locations computed are the two points of
// intersection of the two circles centered at B1, Bi

// with radii d(A, B1) and d(A, Bi), respectively.
4: A calculates the frequencies of occurrence of each

position, accepts as correct the position that has
majority, and reports the nodes that did not
correlate such a position.
// If there is no consensus, then A aborts the process,
// and declares that it fails to compute its location.

Theorem 8 The execution of the majority rule in Al-
gorithm 4 by a location-unaware sensor node always
gives the correct position in the presence of any � liars
if the number of its distance one neighbors exceeds
4�+3+√

8�2+1
2 .

Proof Given n one hop neighbors and the presence
of � liars applying any adversary model, consider from
all possible triples of sensors for every two neighbors
Bi, B j plus the trusted node B1 (i.e., a total of

(n−1
2

)

triples) such that at least one of the sensors in the triple
is a liar. Such a triple can have in each case either

1. exactly two liars, which gives a total of
(
�

2

)
triples, or

2. exactly one liar (and the other two, say B1 plus Bi

are truth-tellers), which gives a total of
(n−1−�

1

) · (
�

1

)

triples.

Algorithm 6 MostFrequent-TwoNeighborSignals-plus-
One-Trusted-Neighbor

1: Sensor A requests the location of its neighbors.
2: Every neighbor of A sends its location to A.

// This algorithm is executed by all the neighbors of A.
3: For every neighbor Bi other than B1, A computes

the pair of points {X, X ′}.
// The locations computed are the two points of
// intersection of the two circles centered at B1, Bi

// with radii d(A, B1)and d(A, Bi), respectively.
4: A calculates the frequencies of occurrence of each

position, accepts as correct the most frequently
occurring value, and reports the nodes that did
not correlate such a position.
// If there is no any position whose frequency of
// occurrence is, at least, twice the frequency of
// occurrence of the second most frequent position,
// then A aborts the process, and declares failure
// to compute its location.

A location that is determined by A is correct if it is
provided by three truth-tellers; otherwise it is (possibly)
incorrect. The majority rule in Algorithm 4, hence,
succeeds if
(

n − 1

2

)
> 2

[(
�

2

)
+

(
n − 1 − �

1

)
·
(

�

1

)]
(10)

Inequality 10 can be simplified as the following in-
equality

n2 − (3 + 4�)n + 2�2 + 6� + 2 > 0.

Solving the corresponding quadratic equation, we
see that

n >
4� + 3 + √

8�2 + 1

2
(11)

is a necessary and sufficient condition on the number of
neighbors of A so that it can compute a correct location
despite the presence of any � liars in its neighborhood.

�	

Theorem 9 The execution of the majority rule in Algo-
rithm 5 by a location-unaware sensor node always gives
the correct position in the presence of � liars applying
any adversary model if the number of its distance one
neighbors exceeds 2� + 3.

Proof Algorithm 5 only computes one pair of positions
for every neighbor Bi other than the trusted node
B1. This amounts to having

(n−1
1

)
pairs of locations,

from which
(
�

1

)
, are (possibly) incorrect. Algorithm 5

succeeds at A if
(

n − 1

1

)
−

(
�

1

)
>

(
�

1

)

from which we derive
(

n − 1

1

)
> 2

[(
�

1

)]
(12)

Inequality 12 can be simplified as

n > 2� + 1

Notice, however, that this upper bound is inferior
to the bound obtained in Section 3.1, Theorem 4, in
which we proved that in the worst case scenario of liars
applying the adversary model 1, there are exactly 2� + 2
potential false positions. We should, therefore, consider
here again that liars are capable of eavesdropping the
communications from B1 and, at least, another truth-
teller, say B2. In this case, from all

(n−1
1

)
pairs of posi-

tions, we must also discard the pair containing nodes B1
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and B2. If so, the majority rule in Algorithm 5 therefore
succeeds if

(
n − 1

1

)
− 1 −

(
�

1

)
> 1 +

(
�

1

)

from which we derive

n > 2� + 3

as a necessary and sufficient condition for the majority
rule decision to succeed at A. �	

3.2.2 Most frequent rule plus one trusted node

Algorithm 6 defines the use of a most frequent rule
to enable location-unaware nodes to determine their
position in presence of liars. The upper bounds for each
adversary model differ. Following is the analysis.

Theorem 10 The execution of the most frequent rule
in Algorithm 6 by a location-unaware sensor node al-
ways gives the correct position in the presence of � liars
applying in the system adversary models 1, 2, 3, and
4, if the number of its distance one neighbors exceeds,
respectively, 2� + 2, 2� + 1, � + 2, and � + 2.

Proof The most frequent rule in Algorithm 6 always
succeeds in the first adversary model (Unconstrained
Liars) if the number of correct pairs of locations (i.e.,
n − 1 − �) is greater than the number of incorrect pairs
of locations. We assume in this adversary model that
liars are capable of eavesdropping the communications
between the trusted node B1 and, at least, another
truth-teller, say node B2. They can, therefore, collude
to lead A to compute � + 1 incorrect, but consistent,
pairs of locations: the false position is contained, at
least, in the pair {B1, B2}; and in the � pairs composed
by B1 and each of the � liars. We can, therefore, derive
the following upper bound

n − 1 − � > � + 1

which can be simplified as n > 2� + 2.
In the second adversary model (Partially Con-

strained), liars can only eavesdrop, at most, the com-
munications between the trusted node and the target.
Liars colluding can only successfully lead A to compute
� times a false position that is, however, consistent with
node B1. The most frequent rule in Algorithm 6 always
succeeds in these two cases if inequality n − 1 − � > �,
i.e., n > 2� + 1, is satisfied.

Liars applying the third adversary model (Fully
Constrained Liars) cannot eavesdrop communications.
They cannot collude either, since no two liars can now
appear together in any pair of positions. Therefore, the
upper bound of Algorithm 6 in the presence of liars
applying the third model is equivalent to the upper
bound of Algorithm 6 in the presence of liars applying
the fourth model (Unintentional Liars), i.e., liars that
neither collude nor eavesdrop the communications with
the trusted node. The most frequent rule in these two
cases succeeds if n − 1 − � > 1, i.e., if n > � + 2 �	

3.3 Comparison of results

The scenario presented in Section 3.2 only improves
the bounds for satisfying the majority rule in Algo-
rithms 4 and 5 that, compared with the ones of Al-
gorithms 1 and 2, get lower. Table 4 compares the
minimum number of neighbors to satisfy the majority
rule in Algorithms 1, 2, 4, and 5 to succeed in the
presence of � liars applying any of the adversary models
defined in Section 2.2. Notice, however, that the rest of
bounds for satisfying the most frequent rule in Algo-
rithm 6 remain exactly the same as that for Algorithm 3.
Only the case of the third adversary model (Fully
Constrained Liars) changes. In fact, liars applying the
third adversary model in this new scenario lose their
capability of colluding with other liars, and their upper
bound gets reduced to the same limit that also applies to
the fourth adversary model (Unconditional Liars). We
show in Table 5 a comparison between the minimum
number of neighbors to satisfy the most frequent rule
in Algorithms 3 and 6 to succeed in the presence of �

liars applying any of the adversary models defined in
Section 2.2.

Table 4 Comparison of the minimum number of neighbors re-
quired for the majority rule in Algorithms 1, 2, 4, and 5 to succeed
in the presence of � liars applying any of the adversary models
defined in Section 2.2

Number of liars (�) Min no. of neighbors

Alg. 1 (n) Alg. 4 (n) Alg. 2 (n) Alg. 5 (n)

Majority rule in Algorithms. 1, 2, 4, and 5
1 7 6 6 6
2 11 9 9 8
3 16 12 12 10
4 21 16 15 12
5 26 19 18 14

10 31 36 35 24
15 74 53 52 34
20 98 70 69 44
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Table 5 Comparison of minimum number of neighbors re-
quired for a node to determine a correct location (using Algo-
rithms 3 and 6) in the presence of � liars

Number of Min no. of neighbors

liars (�) Model 1 (n) Model 2 (n) Model 3 (n) Model 4 (n)

Most frequent rule in Algorithm 3
1 5 4 4 4
2 7 6 6 5
3 9 8 7 6
4 11 10 9 7
5 13 12 11 8

10 23 22 21 13
15 33 32 31 18
20 43 42 41 23

Most frequent rule in Algorithm 6
1 5 4 4 4
2 7 6 5 5
3 9 8 6 6
4 11 10 7 7
5 13 12 8 8

10 23 22 13 13
15 33 32 18 18
20 43 42 23 23

4 Simulations

We conducted simulations to confirm that our algo-
rithms increase the percentage of nodes that can derive
their location in an arbitrary WSN under the pres-
ence of liars. We assume that m sensors are located
in a random setting whereby they were distributed
randomly and uniformly within a unit square. We also
assume that the communication range of each sensor
is a circle centered at its position and of radius r =√

ln m+k ln ln m+ln(k!)+c
mπ

as proposed in [3]. Parameter m de-
termines the number of nodes in the network. Parame-
ter k determines the network connectivity. A network
is k + 1-connected if it remains connected when at most
k nodes are deleted (i.e., connected corresponds to k =
0). The constant c determines the probability that the
network is k + 1-connected with probability depending
on c (cf. [3] and citations thereof). The network is
therefore (k + 1)-connected for any integer k ≥ 0 and
real number constant c. Our simulations assume that
both k and c are set to value 1.

We run two sets of simulations. The first set rep-
resents 50- to 250-sensor WSNs, where an average of
30% of the sensor nodes are GPS equipped and can de-
termine their position independently of other sensors.
From these 30% sensor nodes, a 3% lie. The remainder
sensors, which are unaware of their position, indepen-
dently execute on each experiment the set of algorithms
defined in Section 3 to derive their positions. For each

generated WSN, location-unaware nodes request the
locations of their neighbors and apply, depending on
each specific simulation, Algorithms 1 to 6. For each
simulation, if an unaware nodes fails at deriving its
location, it holds its execution, and repeats the same
algorithm later, expecting that the number of neighbors
aware of their location increases. This process runs
for 100 times for each network size. Figures 9(a)—(d)
picture the average results and the 95% confidence
intervals of executing Algorithms 1— 6 in this first
round of experiments. Each Algorithm is identified
in the figures by their corresponding boundaries for
handling the different adversary models. Table 6 recalls
the upper bounds of each algorithm to handle the set
of adversary models. The variable n is the number of
distance one hop neighbors, and � the number of liars,
where � > 2.

The results plotted in Figs. 9a–d are presented by or-
dering the curves in decreasing order of sensors aware
of their position after running the algorithms. Notice
that the execution of all six algorithms significantly
increases the number of sensors aware of their position
in this first round of simulations. The execution of the
most frequent rule in Algorithms 3 and 6 presents the
most relevant results: approximately a 75% of location
aware nodes in the 100-sensor networks; more than
80% in the 150- to 200-sensor networks; and almost
90% in the 250-sensor networks. The differences be-
tween these results and those obtained by executing the
majority rules of Algorithms 1, 2, 4, and 5 are, however,
quite low. The execution of the majority rule in all four
algorithms results in, approximately, a 70% of location
aware nodes in the 100-sensor networks; about 75% in
the 150- to 200-sensor networks; and almost 80% in the
250-sensor networks. This low improvement, of about
5%, when executing the majority or the most frequent
rule is due to the low percentage of liars in the neigh-
borhood. The low ratio of liars explains, moreover, the
low benefits of using trusted nodes in the neighborhood
while comparing the results of Algorithms 1, 2 with
those of Algorithms 4 and 5.

In the second set of simulations, the same layout of
GPS equipped nodes (i.e., approximately a 30% for
each network) applies. The number of liars increases
to a 15%. Figures 9e–h pictures the average results and
the 95% confidence intervals. The result are presented
by ordering the curves in decreasing order of sensors
aware of their position after running the algorithms.
Notice that the differences between the application of
the majority rule in Algorithms 1, 2, 4, and 5, compared
with the application of the most frequent rule in Algo-
rithms 3 and 6, are quite important. While the use of the
most frequent argument results in more than 45% of
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Fig. 9 Evaluation of the upper bounds
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Table 6 Summary of boundaries for each algorithm vs. adversary
models

Algorithm Adv. model Upper bound

1 1–4 n3 − 3(2� + 1)n2 + 2(3�2 + 6� + 1)

n − (2�3 + 6�2 + 4�) > 0
2 1–4 n > (4� + (8�2 + 17)1/2 + 1)/2
3 and 6 1 n > 2� + 2

2 n > 2� + 1
4 n > � + 2

3 3 n > 2�

4 1–4 n > (4� + (8�2 + 1)1/2 + 3)/2
5 1–4 n > 2� + 3
6 3 n > � + 2

location aware nodes in the 100-sensor networks, and
between 50% to 60% in the remainder networks; the
use of the majority argument almost remains stable be-
tween 35% to 40% for the same setups. And the use of
one trusted node in the neighborhood does not seem to
provide a very representative increment. By looking at
the boundaries shown in Table 6 for Algorithms 3 and 6
we can observe, moreover, that the use of one trusted
node in the neighborhood does never have a significant
improvement in the use of the most frequent argument.
We, therefore, conclude that the use of frequencies of
occurrence by Algorithm 3 always provides the best
possible results.

5 Related work

Research in the field of security of WSNs is very ac-
tive at this moment. The research can be structured
according to the following themes: (1) security of net-
work services; (2) reliability and fault tolerance; (3)
security of infrastructure; (4) distribution and exchange
of keys; and (5) aggregation of data. The contribu-
tions presented in this paper are related to the theme
security of network services and, particularly, to the
issues of routing, positioning and synchronization of
WSN nodes. The problem of geolocalization, in the ab-
sence of measurement errors and adversaries, has been
studied in [3, 11, 21]. Most of the solutions base the
discovery process on the use of classical geolocalization
techniques, such as received signal strength and time of
f light [2]. Recent approaches propose solutions to the
problem of secure geolocalization of nodes in the pres-
ence of measurement errors and malicious adversaries.
The set of algorithms presented in this paper is in this
second category.

Solutions addressing secure geolocalization propose
the detection and isolation of malicious adversaries

prior to the execution of the geolocalization process.
These solutions rely on the existence of a trust model,
i.e., it is assumed that there are almost always nodes
trusted by the location-unaware sensors. For exam-
ple, the authors in [20] propose eliminating malicious
data in the geolocalization process by dropping loca-
tion references that are inconsistent with references
provided by a trusted set of anchors. Similarly, the
mechanisms proposed in [12, 17] compute the rela-
tive distances between a suspicious anchor and one
or more trusted verifiers, in order to eliminate incon-
sistent claims. Other similar work [16] proposes the
use of special detector nodes in charge of detecting
malicious adversaries. These detector nodes dissemi-
nate their findings to advise location-unaware nodes to
drop malicious claims. The use of strong authentication
and third trusted parties, such as the ones proposed
in [4, 6], can be used to allow authenticated distance
estimation, authenticated distance bounding, verifiable
trilateration, and verifiable time difference of arrival to
secure localization.

Note that the aforementioned requirements for au-
thentication and third trusted parties are expensive
and not always realistic. Firstly, the deployment of
trusted nodes, such as verifiers or detectors, must be
established a priori, to ensure coverage of the whole
network. Since the cost of special trusted nodes is con-
siderably higher than the cost of regular sensor nodes,
their number in a network is likely to be inferior. It is
thus fair to assume that an attacker can easily locate
and compromise their security to mislead, for instance,
the geolocalization process. On the other hand, de-
ployment of trust in WSNs may require cryptographic
operations support by sensors. This has impact on their
battery life, which can degrade their performance. Fi-
nally, trusted nodes may in fact be defective. Therefore,
trusted but defective nodes can definitively lead to the
calculation of false positions and distances. Moreover,
the use of trust strategies tends to reduce the autonomy
of WSNs, since trusted nodes must be permanently
monitored to ensure integrity. This can be a problem
in hostile environments where the geolocalization of
nodes must be achieved autonomously.

Solutions such as [7, 8, 13–15, 19] propose the use of
estimation mechanisms, e.g., cooperative construction
of a global view of the system, to reduce measurement
errors and dependence of location-unaware nodes on
anchors that might misbehave. The goal is to minimize
the impact of inconsistent or erroneous data during the
geolocalization process. The approach in [19] reduces
dependence on anchors by estimating the global layout
of the system by disseminating local data among neigh-
bors. The construction of a global layout can benefit
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from the use of optimization techniques to refine and
relax the initial layout. For instance, the approach in
[8] mitigates measurement errors using connectivity
constraints and convex optimization. The most impor-
tant drawbacks include the inherent complexity of the
algorithms to be executed by location-unaware nodes
[13], high quantity of messages to exchange [7], and
necessity of special hardware and equipment [14, 15].
Moreover, and compared with our results, most of
these approaches fail to address the geolocalization
process under the existence of colluding malicious
adversaries.

The algorithms that we present in this paper deal
with both measurement errors and presence of ma-
licious adversaries. They address detection and isola-
tion of inconsistent information, as well as reduction
of the impact that erroneous data might have during
the geolocalization process. All six algorithms can be
run by location-unaware nodes to determine their geo-
graphic location using position reports from neighbors
and geographic location techniques [2]. We define mal-
functioning or malicious nodes as liars. Four different
categories of liars are identified, depending on their
capabilities. The algorithms detect all four categories
of liars by applying majority rules, as long as the num-
ber of liars is below a certain threshold. This thresh-
old is determined for each category. Our algorithms
minimize the communication overhead and necessity
of trust.

6 Conclusions

We presented six algorithms that handle the geolocal-
ization process of location-unaware nodes in the pres-
ence of liars. The algorithms guarantee the exclusion
of incorrect locations, as well as the detection and
isolation of the nodes that are lying, if a given threshold
of neighbors and liars is met. Otherwise, the algorithms
abort the process of deriving the location, wait, and
repeat the process again when such parameters can be
guaranteed. The three first algorithms allow the local-
ization process without the necessity of a trusted model
between sensors. The three last algorithms relax the
initial hypothesis, requesting location-unaware nodes
to trust one of the nodes in their one hop neighborhood.
Just the boundaries of the algorithms based on the
majority rule slightly improve the results by assuming
the presence of the trustee node. The boundaries of
the algorithms based on the most frequent rule remain
stable and provide the best results.
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