Planning Control Rules for Reactive Agents*

F. Kabanza, M. Barbeau, and R. St-Denis
{KABANZA, BARBEAU, STDENIS}@DMI.USHERB.CA
Université de Sherbrooke, Dépt. de math. et info.
Sherbrooke, Québec J1K 2R1 Canada

Abstract

A traditional approach for planning is to evaluate goal statements over state trajecto-
ries modeling predicted behaviors of an agent. This paper describes a powerful extension of
this approach for handling complex goals for reactive agents. We describe goals by using a
modal temporal logic that can express quite complex time, safety, and liveness constraints.
Our method is based on an incremental planner algorithm that generates a reactive plan
by computing a sequence of partially satisfactory reactive plans converging to a completely
satisfactory one. Partial satisfaction means that an agent controlled by the plan accom-
plishes its goal only for some environment events. Complete satisfaction means that the
agent accomplishes its goal whatever environment events occur during the execution of
the plan. As such, our planner can be stopped at any time to yield a useful plan. An
implemented prototype is used to evaluate our planner on empirical problems.

Keywords: Planning, control, reactive agents, temporal goals.

1. Introduction

The key characteristic of reactive agents is that they maintain an ongoing interaction with
their environment to accomplish given goals. Such agents play an increasingly important
role in many computer applications. A reactive agent can be a physical device (e.g., a robot)
or a software process (e.g., a process scheduling system). Its executions are controlled by
using a reactive program that invokes the action to be executed at each instant, depending
on the concurrent situation.

The specification of a reactive program is called a reactive plan. It can be described
by a mapping from situations to actions (Dean, Kaelbling, Kerman, & Nicholson, 1995) or
a state transition system (Ramadge & Wonham, 1989). An important distinction between
reactive plans and traditional plans in artificial intelligence is that a reactive plan has no
predetermined sequence for executing its actions. Rather, the order in which the actions are
executed depends on the situation sensed by the agent at the moment of execution. This
makes reactive plans more practical in unpredictable environments.

A reactive plan can be compared to a strategy for an agent playing a game (like chess)
against an environment. Such an agent chooses the move to make at every instant according
to a game strategy (i.e., a reactive plan) that takes into account the moves played by the
environment. However, for most of the applications we are interested in, the agent and
the environment do not politely take turns as do players in a game. In contrast, the time

* This work was supported in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC) and the Fonds pour la formation de chercheurs et ’aide & la recherche (FCAR).

instants at which the environment actions occur are generally unpredictable. The goal
might also be more complex than simply reaching a winning state.

Our planning method is geared towards discrete-event reactive systems. Discrete-event
means that the behaviors of the agent in a given environment can be modeled by a state
transition system. Goals are described by using modal temporal logic formulas that can
express various types of constraints including time, safety, and liveness requirements. A
reactive plan is computed from an input specification describing the primitive behaviors
of the agent and a goal. Specifically, the planner checks the goal incrementally over state
sequences modeling the behaviors of the agent, producing a sequence of partially satisfactory
plans that converges to a completely satisfactory one.

Partially satisfactory means that the goal might not be satisfied in some cases depending
on the action executed by the environment. Completely satisfactory means that an agent
executing the plan satisfies the goal whatever the action executed by the environment. In
general, the longer the planner has been running, the better the obtained reactive plan is.
This incremental capability is useful in real-time applications because the planner can be
stopped prematurely to obtain a reaction for a critical situation.

The remainder of this paper is organized as follows. The next section recalls reactive
plan synthesis approaches that are closely related to ours. Section 3 outlines our method
and contributions. Section 4 discusses the specification of primitive behaviors for a reactive
agent. Section 5 presents the logic that we use to specify goal statements. Section 6 describes
the plan representation. Section 7 describes the planner algorithm. Section 8 discusses the
evaluation of the planner on simulated problems. Section 9 discusses related work from a
more technical point of view. Finally, we conclude in Section 10.

2. Related Work

A great deal of research in the areas of artificial intelligence (Dean et al., 1995; Barbeau,
Kabanza, & St-Denis, 1995; Drummond & Bresina, 1990), control theory (Ramadge &
Wonham, 1989), and program synthesis (Abadi, Lamport, & Wolper, 1989; Pnueli & Rosner,
1989) focuses on the problem of automatically generating reactive plans for discrete-event
reactive systems.

Usually, the behaviors of a reactive agent are described by a state transition system.
The purpose of a reactive plan is to select the agent’s actions that must be executed in
each situation that can likely occur during the execution in order to satisfy a given goal.
The planning problem is to compute such a reactive plan, given a goal specification and a
description of primitive behaviors of a reactive agent. The description of primitive behaviors
takes into account environment events that may interfere with the actions executed by the
agent, causing nondeterministic effects.

One planning approach is to perform a forward-chaining search, enumerating the possible
state sequences starting from a given initial state and checking the goal to enable actions
that are on satisfactory sequences. Of course, there must be mechanisms for controlling the
explosion of the search space in order to implement a planner that is reasonably efficient.
One way is to use heuristics. For example, transition probabilities can be exploited to
enumerate only the states that are most likely to occur during the execution (Drummond &

Bresina, 1990). Partial-order search techniques have also been proposed to limit the state
explosion due to interleaving independent actions (Godefroid & Kabanza, 1991).

Backward-chaining search is also used to generate reactive plans. Its main advantage is
that it automatically avoids exploring the part of the state space that is irrelevant to the
goal (Schoppers, 1987). This is, however, applicable only to goals of reaching a final state,
for which relevance of actions is determined by comparing their effects to propositions in
the goal or in the preconditions of actions that are already proven relevant.

Reactive plans can also be computed by applying the theory of Markov decision pro-
cesses (Dean et al., 1995). By associating probabilities to transitions, a nondeterministic
state transition system becomes a stochastic automaton. A goal is expressed by specifying
a reward for each state, that is, a real value expressing the desirability of being in the state.
The planning problem is to find a policy (i.e., a reactive plan) that maps states to actions
in order to maximize the expected future rewards. It is computed by defining a system
of linear equations that relates state transition probabilities to state rewards and then by
applying a dynamic programming algorithm to the linear equations. Simple achievement
and maintenance goals are handled by using appropriate reward functions.

Another planning approach is to use a fixpoint calculation algorithm that was originally
proposed in the area of control theory (Ramadge & Wonham, 1989). A transition system
describing primitive behaviors is seen as a generator for a language of all strings that denote
possible sequences of events. A goal is also represented by a state transition system that
defines legal sequences of events. A reactive plan (also called a controller or supervisor) is
represented by a state transition system and a feedback function that disables undesired
events in some states. A language is said to be controllable if it is closed under environment
executions, that is, whatever uncontrollable event is concatenated to a string in the lan-
guage, one obtains another string in the language. The planning problem is to determine
the largest controllable language satisfying the goal. This language is characterized by the
largest fixpoint of an operator over languages, which is the cornerstone for an algorithm
that computes controllers.

The last approach that we discuss is generating a reactive plan with theorem proving
techniques (Pnueli & Rosner, 1989). In this context, a reactive plan (also called a reactive
module) is modeled as a tree of states, that is, states that may be reached by a nondetermin-
istic execution of a reactive module. Given a temporal logic formula expressing the desired
behaviors for a reactive system, one constructs a tree-automaton that accepts trees that are
models of the formula. Then, a reactive module is obtained from the tree-automaton. The
approach of Abadi et al. (Abadi et al., 1989) is quite similar, but the input specification is
a state transition system instead of a temporal formula.

Each of the above approaches has its limitations, virtues, and applications. For in-
stance, the fixpoint calculation algorithm is limited by the fact that it requires the entire
state transition system to reside in memory. In contrast, a search-based approach facili-
tates the expansion of states on the fly, without having to memorize the entire state space.
The theorem proving approach is limited by the fact that it does not keep separate the
information about actions and states in the synthesis process, which is impractical for de-
bugging the specification and for controlling the state explosion problem. The decision
theoretic approach can cope with the state explosion problem by using transition probabil-

ities and iterative refinement techniques, yet is limited to simple goals of achievement and
maintenance.

3. Our Planning Method

We model the dynamics of a reactive agent in an environment by using a nondeterministic
state transition system. A goal is specified by using a modal temporal logic formula. A
reactive plan is described by a set of situation control rules (Drummond, 1989). Each
situation control rule specifies an action to be executed in a corresponding situation. In
addition, it specifies the possible successors.

A reactive plan is computed from a nondeterministic state transition system describing
the behaviors of a reactive agent and a goal, by incrementally enumerating state sequences
and checking the goal to obtain actions that guide the agent along satisfactory sequences.
The approach is similar in spirit to the anytime synthetic projection algorithm of Drummond
and Bresina (Drummond & Bresina, 1990), but our planner handles much more complex
goals and deals with infinite behaviors. The manner in which goals are checked over state
sequences is essentially model checking.

Model checking is widely used in the verification of temporal properties (Courcoubetis,
Vardi, Wolper, & Yannakakis, 1992; Wolper, 1989). It has also been applied to synchronize
reactive plans (Kabanza, 1995; Rao & Georgeff, 1993) and to control search in a classical
planner (Bacchus & Kabanza, 1995). To check goals over state sequences, our planner
generalizes the approach of Bacchus and Kabanza by defining mechanisms for handling
uncontrollable actions, liveness goals, and time constraints.

A preliminary version of our method was published in (Barbeau et al., 1995). Herein, we
detail the procedure for handling liveness goals, present an incremental planning algorithm,
and evaluate the planner on a number of empirical problems. We believe that our method
brings at least three contributions to the reactive plan synthesis problem.

e First, we describe an extension of the search-based planning approach to deal with
complex goals for reactive agents. The ability of handling complex temporal goals
is desirable for autonomous agents as long as they are expected to accomplish really
useful tasks.

e Second, we describe an incremental planner algorithm for such goals. In Al planning
terminology, our planner can be characterized as an anytime planner in the sense that
it can be stopped at any time to yield a useful plan.

e Finally, our planning method contributes to a deeper understanding of the relations
between the research fields outlined above by integrating the concepts of controllabil-
ity, safety, and liveness, and the concern of handling complex goals.

Designing a planner algorithm requires formalisms for describing primitive behaviors,
specifying goals, and representing reactive plans. It also requires a technique for computing
reactive plans from a specification of primitive behaviors and a goal. These issues are
addressed in this paper.

4. Specifying Primitive Behaviors

Primitive behaviors are described recursively by an initial world state wy and a transition
function succ between world states. The function succ returns a list of actions that are
executable in each world state, their corresponding duration, and successors. More specif-
ically, succ(w) returns a list ((a1,d1, W1),...,(an,dn, Wy)), where a; is an action that is
executable in w, d; is a strictly positive real number denoting the duration of a; in state w,
and W; the set of nondeterministic successors resulting from the execution of a; in w.

Intuitively, the pair (wp,succ) describes the dynamics of a reactive agent in a given
environment in the sense that, by applying succ, we can obtain all states the agent could
be in at any time when executing its own actions under the influence of actions executed
by other agents in the environment, which are implicitly represented via nondeterministic
transitions. When a; is executed in w, the interference with concurrent environment actions
cause uncertainty about the outcome, which can be any state among those in W;.

Example 1 Figure 1 shows a partial description of a nondeterministic transition system
that describes the behaviors of a reactive agent (some transitions are not shown due to space
limitations). In this example, the reactive agent is a scheduler s that allocates a resource
r to two processes p1 and ps that compose the environment for s. FEach state describes a
set of propositions true in the corresponding situation. For instance, requesting(pi,r) is
interpreted as “process pi is requesting resource r.” FEach action lasts one time unit. The
initial state has an empty set of propositions. A process can request the use of the resource
at any time, provided that it is not already requesting or using it. Each time the scheduler
has deallocated the resource, it enters a busy state in which the only possible action is to
wait. A process using a resource never releases it unless the scheduler explicitly deallocates
the resource.

In reality, most interesting reactive scheduling problems involve much more than simply
two processes and one resource. The interactions between processes and the scheduler may
also be very complex. For instance, in a distributed computing application, the scheduler
many denote a process that allocates the right to execute mutually exclusive code to other
processes by changing appropriately shared variables. A scheduler may also denote a process
that allocates peripheral devices (e.g., printers) to other processes. In a robotics application,
a scheduler may denote a robot that fetches and delivers objects to different consumer
processes, which may be other robots. For the sake of clarity, we discuss our planning
method by using the above simple example, but Section 8 presents more complex problems.

For most of the part, the execution of a reactive agent has no definite ending point. For
instance, it may be difficult to determine when a scheduler must stop monitoring requests
and allocating resources. Thus, we view the execution of a reactive agent as a never ter-
minating one, involving endless sensing and reaction to environment events. Accordingly,
the execution of reactive plan by a reactive agent produces an infinite sequence of states.
Nonetheless, finite executions can be simulated by using a terminal state in which the agent
continually executes a wait action. The wait action is executable in all states that can be
reached by executing other actions.

In practice, succ can be defined via some action representation formalism that allows
succinct specifications. For example, our own implementation defines succ by a set of ADL

wait(s)

wait(s) wait(s)

wait(s) wait(s) wait(s) wait(s)

- wait(s) requesting(p1,T) wait(s)
requesting(p1, r) requesting(ps,r) requesting(p2,r)
allocate(s,r,p1) / allocate(s, r, p2) \
using(p1,7) requesting(p1,r)

1 i wait(s
requesting(p2,) using(p2,) () using(pa, r)

deallocate(s, T, p2)

deallocate(s, r, p1)
wait(s) requesting(pz,) requesting(p1,r) wait(s)
busy(s) busy(s)

wait(s)

wait(s) wait(s)

allocate(s, r, p2) \ /allocate(s, r,p1)

using(p1,r)
using(pa, r)

Figure 1: Partial description of a state transition system for a scheduler and two processes

operators.! Each operator describes the precondition, effects, duration, and controllability
status for a schema of actions. Given a world state w, the planner computes succ(w) by
instantiating the operators to find enabled actions, which are instances of the operators.
Obtained actions are then composed to take into account their possible simultaneous execu-
tion. The parallel composition of actions is achieved by interleaving them and then hiding
uncontrollable actions to obtain nondeterministic transitions. The procedure for composing
parallel actions is quite simple; its details are omitted due to space limitations.

Given a pair (wg, succ) that describes primitive behaviors for a reactive agent, one can
specify a goal stating a particular desired behavior. Then, the role of a planner is to compute
a reactive plan that selects, for each state, one action to be executed by the agent among the
many possible primitive ones, in order to satisfy the given goal, whatever nondeterministic
transitions are caused by environment actions. For example, in the scheduling domain, a
goal would state that each time a process requests the resource, it must obtain the grant to
use it within four time units. Then, a planner would automatically determine a particular
strategy (i.e., reactive plan) for allocating resources that comply with this goal.

Roughly, our planning method is to view the pair (wg,succ) that describes primitive
behaviors as a generator of many different reactive plans — possibly infinitely many — in
the sense that, for any state w, succ(w) represents different possible selections of actions.
Each choice leads to a different reactive plan. From this perspective, the planning problem
is essentially to determine the choices that satisfy a given goal. To solve it, one must first
choose a goal language and a formal notion of goal satisfaction.

1 ADL (Action Description Language) is an extension of STRIPS operators (Pednault, 1989).

5. Specifying Goals

Modal temporal logics have been proven useful for specifying temporal properties in the ver-
ification of reactive systems (Manna & Pnueli, 1991). Formulas in such logics are interpreted
over models that are infinite sequences of states. Thus, they are appropriate for specifying
goals to our planner. To fix a context, we chose a particular modal temporal logic that can
express time constraints. Specifically, we use Metric Temporal Logic (MTL) (Koymans,
1990). In MTL, goals of achievement are conveyed by the eventually and until modalities,
whereas goals of maintenance are conveyed by the always and until modalities. Note that
the until modality conveys both achievement and maintenance constraints.

5.1 Syntax

MTYL formulas are constructed from an enumerable collection of propositions; the Boolean
connectives A (and) and — (not); and the temporal connectives O.; (next), O.; (always),
and U~; (until), where ~ denotes either <, <, >, or >, and ¢ is a positive real number.
The formula formation rules are:

e every proposition p is a formula and
e if f; and fy are formulas, then so are = f1, f1 A fa, Ot f1, Ot f1 and f1 Ut fo.

In addition to these basic rules, we use the standard abbreviations f; V fo = —(=f1 A = f2)
(fror fa), fi—=fo = -f1V fo (f1 implies f5), and Oy f = trueU~; f (eventually f). As
usual, the language contains two atomic propositions true and false: true denotes valid
statements (true = p V —p), while false denotes inconsistent statements (false = p A —p).

The intuitive meaning of MTL formulas is captured by using the natural language
interpretation for logical connectives and by noting that, when a time constraint “~ ¢”
is associated to a modal connective, the modal formula must hold within a time period
satisfying the relation “~ ¢”. For example, fi — f is read as “f; implies f2,” O<; f as “the
next state is in the closed time interval [0,¢] and satisfies f,” O<; f as “always f on the
closed time interval [0,t],” C<; f as “eventually f within ¢ time units,” or, equivalently,
“eventually f on the closed time interval [0,t],” and fi Us¢ fo as “fi until fo on the semi-
open time interval [, 00).”

It is interesting to note that, when time is discrete, the ordering relations “< ¢” and
“> 1" can be used to define “< t” and “> t.” For example, if time values are natural
numbers, (< t) = (<t—1) and (> t) = (> ¢+ 1). It must also be noted that, although we
assume real numbers for time constraints, models of formulas are discrete because they are
sequences of states. In fact, the only advantage of using real numbers is that we can allow
actions having durations that are real numbers. But, time values for goal constraints will
be sampled only at discrete points that correspond to states.

5.2 Semantics
MTL formulas are interpreted over models of the form M = (W, w, D), where

e W is an infinite sequence of world states wows .. .;

e 7 is a binary function that evaluates propositions in a world state: m(p,w) returns
true if proposition p holds in world state w; and

e D is a time transition function: D(wj;, w;+1) returns a strictly positive real number,
which is the time duration for the transition (w;, w;+1). In fact, D(w;, w;11) denotes
the duration taken by the action that causes state w;+1 from w;.

As usual, we write (M, w) |= f if state w in model M satisfies formula f. When the
model is understood, we simply write w = f. In addition to the standard rules for Boolean
connectives, we have the following rules for temporal connectives. We only give the semantic
definitions for temporal connectives with the time constraints < and >. The definitions for
< and > are similar. For a state w; in a model M with d; = D(w;, wi+1), a proposition p,
formulas f; and fo:

e w; Ep iff 7(p, w;) returns true;

o w; = Ocy f1, iff d; <t and w1 F fr;

o w; = Oy f1, iff di >t and w11 = f1;

o w; = O« fr, iff

di <tand w; = f1 and wi11 | O<(y_gy) f1; Or
d; >t and w; = f1;

o w; = O f1, iff

di <t and wit1 | Os;_g;) f1; or
d; >tand ¢t # 0 and w1 = O>q fi; or
t =0 and w;y IZ fl and Wi41 |: DZO fl;

o w; = f1U<y fa, iff

d; <t and (w; |: fa or (w; IZ f1 and w4 IZ fi U<(t—d;) f2)); or
d; >t and w; IZ fz;

o w; = f1Ust fa, iff

d; <tand wiy1 E fi U>(t—d;) fa; or
d; >tand t # 0 and w1 = fi Uso fo2; or
t =0 and (w; = f2 or (w; = f1 and wiy1 = f1 Uso f2))-

Finally, we say that model M (or sequence W) satisfies a formula f if wy = f.

Example 2

1. The formula $>9O05qp states that p must eventually be made true and then main-
tained true thereafter.

2. The formula O<19O<oop states that p must be made true within 10 time units and
then maintained true for at least 20 time units.

3. The formula

O>o(—(using(p1,r) A using(pa,r)) A (1)
(requesting(p1,r) — <4 using(p1,r)) A (2)
(requesting (pa,T) — $<4 using(p2,T))) (3)

states that p; and p; must never use resource r at the same time (subformula 1) and
each process requesting resource r must obtain the right to use it within four time units
(subformulas 2 and 3).

A goal of the form O>q(q— O<;p) is satisfied by an agent that continuously senses
the current world state, checking if ¢ holds, to execute actions making p true within ¢ time
units. There is no single final state in which we can consider that the goal has been satisfied.
Instead, the execution eventually leads to cycles representing infinite behaviors that satisfy
the goal.

5.3 Safety and Liveness Constraints

Any temporal goal can be seen as conveying a safety constraint and a liveness constraint.
A safety constraint states that something bad must never happen during the execution,
while a liveness constraint states that something good must eventually happen. Another
way to understand this is that a safety constraint prohibits transitions to bad states, while
a liveness constraint specifies transitions that must be eventually traversed.

Safety constraints are conveyed by MTL formulas of the form O.; f;, O f1, for any
ordering relation ~, fi U< f2, and f1 U< fo. Liveness constraints are conveyed by formulas
of the form f; Us¢ f2 or f1 Us¢ fo. However, a negated always conveys a liveness constraint,
while a negated until conveys a safety constraint, as indicated by the following equivalences:

(Ot f) = Cuf (4)
(fiUct f2) = (Ouifo) V(mfoUni(=f1 A= f2)) (5)

for ~ denoting any of the four ordering relations. This characterization of safety and liveness
constraints is important in the description of our planning method. In fact, the difficult part
of this method deals with the management of formulas that express liveness constraints.

5.4 Negative Normal Form

In general, a formula can involve different types of temporal connectives to convey both
safety and liveness constraints. It is possible to check that any formula does not convey
liveness constraints by first transforming it into an equivalent in negative normal form, that
is, a form in which only propositions are negated. Then, one scans the formula to determine
whether or not it contains a subformula of the form fi Us¢ fo or fi1 Us¢ fo.

Any MTL formula can be transformed into an equivalent in negative normal form by
propagating the negation connective inwards: negated temporal connectives are transformed
by using Equation 4, Equation 5, and the equation = O_; f = (O~ f) V O, true, where
~ denotes the converse of the ordering relation ~. Negated classical connectives (A and V)
are transformed with standard distributive and De Morgan laws.

6. Reactive Plans

A reactive plan is represented by a set of situation control rules (SCR) (Drummond, 1989).
In the original definition, an SCR simply maps a world state to a set of actions that can
be executed simultaneously. Herein, only one reactive agent executes controllable actions
in reaction to actions executed by environment agents. Hence, there is only one action for
each SCR. Our representation extends the original definition of SCRs by defining plan states
that are labeled by world states and a transition relation between plan states to allow the
interpretation process to be biased by the recommendation from the previously executed
SCR. This extension was initially proposed in (Kabanza, 1992). Other authors experimented
with it in telescope control applications (Drummond, Swanson, & Bresina, 1994).

6.1 The Representation of Reactive Plans

A reactive plan is represented by a set of SCRs, where an SCR is a tuple of the form
(n,w,a, N), such that:
e 1 is a number denoting a plan state;

e w is the world state labeling the plan state n and describing the situation in which
the SCR is applicable;

e ¢ is the action to be executed when w holds; and

N is a set of integers denoting plan states that are nondeterministic successors of n
when a is executed.

(STATE 0 WORLD nil ACTION (wait s) SUCCESSORS (0 1 4 10))

(sTATE 1 WORLD ((requesting p2 r1)) ACTION (allocate s rl p2) SUCCESSORS (2 9))

(STATE 2 WORLD ((using p2 rl)) ACTION (deallocate s rl p2) SUCCESSORS (3 7))

(sTATE 3 WORLD ((busy s)) ACTION (wait s) SUCCESSORS (0 1 4 10))

(STATE 4 WORLD ((requesting pl rl1)) AcTiON (allocate s r1 pl) SUCCESSORS (5 8))

(STATE 5 WORLD ((using pl rl)) ACTION (deallocate s rl pl) SUCCESSORS (3 6))

(STATE 6 WORLD ((busy s) (requesting p2 rl)) ACTION (wait s) SUCCESSORS (1 11))

(STATE 7 WORLD ((busy s) (requesting pl rl)) ACTION (wait s) SUCCESSORS (4 10))

(sTATE 8 WORLD ((requesting p2 rl) (using pl rl)) AcTiON (deallocate s rl pl) SUCCESSORS (6))
(STATE 9 WORLD ((requesting pl rl) (using p2 rl)) AcTION (deallocate s rl p2) SUCCESSORS (7))
(STATE 10 WORLD ((requesting pl rl) (requesting p2 rl)) ACTION (allocate s rl pl) SUCCESSORS (8))
(sTATE 11 WORLD ((requesting pl rl) (requesting p2 r1)) ACTION (allocate s rl p2) SUCCESSORS (9))

Figure 2: A reactive plan for a process scheduler

Example 3 Figure 2 shows a reactive plan for the scheduler partially represented in Fig-
ure 1 and a goal of eventually allocating resource r to each process requesting it. The formula
expressing this goal is like goal 3 in Example 2, but time constraints for the eventually con-
nectives are of the form “> 0.” Propositions and action names are written in a Lisp-like
notation.

10

A plan can contain different SCRs with the same world state. In particular, this is the
case with the SCr for states 10 and 11. Intuitively, the possibility of having different plan
states labeled with the same world state amounts to extending the original world state
space. Such an extension is necessary for many goals expressed by temporal formulas. For
instance, without extending the original state space of Figure 1, it is not possible to write
a reactive plan satisfying the goal of eventually allocating resource r to each requesting
process. As a reactive plan is essentially a mapping from states to actions, it would allocate
the resource to the same process in the world state (requesting(p,r), requesting(ps,r)),
causing the other process to never use the resource.

6.2 Executing a Reactive Plan

An agent executes a reactive plan by first fetching the SCR corresponding to the initial
world state. By convention, this is the SCR with plan state 0. The corresponding world
state describes the current situation before the agent executes any action. At any time,
given the current SCR (n,w,a,N), the action a is executed and the SCR matching the
resulting situation is determined from the successor plan states in N by getting an SCR
(n',w',a’, N') such that n’ is in N and w' holds in the new situation. Then, o’ is executed.
The execution continues on endlessly by fetching an SCR matching the current situation
based on the successor states given by the previously executed SCR. As finite executions
are simulated by using a terminal state in which the agent performs a wait action endlessly,
an SCR corresponding to such a state w has the form (n,w, wait, (n)).

6.3 Satisfactory Reactive Plans

Since nondeterministic transitions represent interference between an action executed by an
agent and those performed by external processes in the environment, an agent executing a
reactive plan cannot predict which nondeterministic successor will result from the current
action. Hence, the sequence of states that will be generated by executing a reactive plan
cannot be predicted either.

A reactive plan is deemed completely satisfactory if each sequence of states that may be
generated by executing it satisfies the goal, whatever nondeterministic successor is selected
for each action. In other words, as far as the environment executes its actions as predicted
in the specified nondeterministic model of primitive behaviors, the execution of the reactive
plan will satisfy the goal.

On the other hand, a reactive plan is said to be partially satisfactory if, by executing it,
it may be possible to generate a sequence of states that does not satisfy the goal. In other
words, the environment may execute an action diverting the execution to bad situations.
It is often desirable to characterize the likelihood of such bad executions by associating
nondeterministic transitions with probabilities. Such an extension is beyond the scope of
the present paper, but the conclusion discusses some ideas about our future work in that
direction.

11

7. Planner

Our planning approach is to view an initial world state wy and the function succ as a
generator of graphs representing reactive plans. The planner searches for sequences of states
satisfying the goal while taking into account nondeterministic transitions to obtain such a
graph. The process for checking goals deals with sequences individually, but the overall
planning process deals with graphs representing reactive plans. From a search process
point of view, the violation of a safety constraint by a sequence of states always occurs on
a finite prefix of the sequence. Thus, such a violation leads to dead ends during the search
process of the planner. In contrast, a liveness constraint can only be violated by an infinite
sequence of states. Such a violation leads to bad cycles during search. We start by sketching
a planner algorithm for goals that only express safety constraints. Then, building on it, we
describe a more general planner algorithm that handles any arbitrary MTL goal formula.

7.1 Planning for Safety Constraints

The process we use to check goal formulas is called goal progression to stress the fact that
this process consists in progressing the goal formula forward over state sequences generated
by succ. The main idea is to label each state with a formula that must be satisfied by each
sequence starting from this state. The initial state is labeled with the input goal. Then,
given any current state and its label, the label of a successor produced by succ is obtained
by applying the algorithm described in Figure 3.

The input of the goal progression algorithm is an MTL formula f, a state w, a real
number d denoting the duration of the transition from w to a successor w’, and a function
7 that evaluates propositions in states. The output is a formula expressing the constraint
that would have to be satisfied by a sequence from w’ in order that the entire sequence from
w satisfies f. As with the semantic definition of MTL, we give only the cases corresponding
to temporal connectives with the time constraints < and >. The cases for < and > are
similar. It can be easily shown that the algorithm satisfies the following theorem (a proof
is given in Appendix A.1 and it is based on the observation that Progress-goal is merely a
rewriting of the MTL interpretation rules given in Section 5.2).

Theorem 1 Let wyw; ... denote any infinite sequence of world states, d; the duration of the
transition from w; to wiy1, and w a function that evaluates propositions in states. Then, for
any state w; and MTL formula f, w; = f if and only if w;11 | Progress-goal(f,w;,d;,).

The phrasing of this theorem intentionally makes the satisfaction of f at w; depend
purely on the satisfaction of the progressed formula at w;y;. This simply reflects the
MTL interpretation rules which are also defined recursively. In order to effectively check a
formula over a sequence of states, we must combine Progress-goal with a mechanism that
systematically detects points where safety constraints of the progressed goal are violated and
a mechanism that detects points where liveness constraints are violated. In this subsection,
we discuss the case of safety constraints. Then, the next subsection generalizes to the case
of liveness constraints.

For safety constraints, the violation of a maintenance requirement conveyed by always
and until connectives is detected when evaluating propositions (case 2 in the progression
algorithm). The violation of a deadline for eventually achieving a subgoal conveyed by the

12

Progress-goal(f,w,d,m)
1. case f
2. p (p a proposition): if w(p,w) then true else false;
- f1 : ~Progress-goal(f1,w,d, 7);
fi A fa: Progress-goal(fi1,w,d, n) A Progress-goal(f2,w,d, m);
f1V fa: Progress-goal(fi,w,d,)V Progress-goal(f2,w,d, m);
O«y f1: if d <t then fi else false;
Oy f1: if d >t then fi else false;
O« f1: if d <t then Progress-goal(fi,w,d,m) A D<_gy f1
else Progress-goal(fi,w,d, r);

9. DZt f1: if d <t then DZ(t—d) fl

else if t = 0 then Progress-goal(fi,w,d, m) A O>o f1;

else Oxq f1;
10. f1 U< fo: if d <t then Progress-goal(fz2, w,d, 7)V
(Progress-goal(fi,w,d, ®)A fi1 U<(t—ay f2)
else Progress-goal(fa2,w,d,);
11. fi U>t for if d <t then f; U>(t-a) fo
else if ¢ = 0 then Progress-goal(f2,w,d,)V
(Progress-goal(f1,w,d,) A f1 Uso f2)
else f1 Uso f2

® NS ok W

Figure 3: Goal progression algorithm

until connective is detected when the time bound decreases to 0 before the eventuality is
satisfied (case 10 in the progression algorithm). This can be illustrated by a simple case in
which the current state is labeled with f1 U<; f2, where f3 contains no temporal connectives.

As long as f5 is not satisfied, the goal is progressed by decreasing the time bound by the
action duration. Should f; be violated or the time bound reach 0, the progression returns
false. Since the time bound is decreased by the action duration in each state, the goal of a
current state differs from that of its descendants. Thus, if we do not expand states labeled
false, a cycle cannot be formed unless f- is satisfied. When f5 is satisfied, the progression
returns true, so that we could obtain a goal equal to that of an ancestor. This is the only
way a cycle can be formed. This means that any infinite sequence unwound from a path
terminated by a cycle satisfies a goal that involves only safety constraints.? A reactive plan
is obtained from a graph composed of such paths.

Given a goal formula f that does not involve liveness constraints, a simple planner
algorithm is:

1. Generate a graph of states labeled with goal formulas by starting from a state sy that
is wo labeled with f. Then, for every state s that is w labeled with f # false, for every
(a,d, W) € succs(w), and for every w' in W, create a successor s’ of s that consists of
w' labeled with a formula f’ given by the equation f' = Progress-goal(f,w,d, n); the
transition (s, s') is labeled a.

2 Later, we give proofs for more general results that involve both safety and liveness constraints (Theo-
rems 2 and 3). The particular case of safety constraints can be easily derived from these proofs.

13

2. A reactive plan is easily read from the graph obtained by the previous step.

In Step 1, states labeled false are not expanded because, according to Theorem 1, any
sequence containing such a state cannot satisfy the goal. Step 2 is more thoroughly explained
later when we generalize the planner algorithm to liveness constraints. In fact, we will
further see that the two steps can be carried on simultaneously by extracting the plan on
the fly to obtain an incremental planner algorithm.

wait(s)

wait(s)

fo

fo . requesting(p1,r)
requesting(ps,r) requesting(pa, r)
s allocate(s, r,p1) f1 allocate(s, r,p1)
- using(p1,r)
using(p1,) requesting(pz, r)
wait(s} deallocate(s,r,p1) | deallocate(s,r,p1) b allocate(s, r, p2)
0

wait(s)

requesting(p2,r) using(p1,r)
busy(s) using(p2, r)

wait(s) f3 false viwait(s)
requesting(p1,r) irusing(pl ,7) ';
requesting(pa2,r) L using(p2,r) |
allocate(s, r, p2) wait(s) allocate(s,r,p1)
fa Jfa fa

requesting(p1,r)| |requesting(pi,r)| |using(p1,r)

using(p2,r) requesting(p2,r)| | requesting(pz,r)

fs jdeallocate(s, T, p2) i

requesting(p1,r) False 3 False 3

busy(s) cTTTTT tooeees N [toeeees \

fr deallocate(s, 7, p1) g, wait(s) (SR : (S :

using(p1,r) requesting(p1,T)

T allocate(s,r,p1)

Goals:
fo = Dol ~(using(p1,) A using(p2, 1)A
(requesting(p1, 1) — O <4 using(p1,7))A
(requesting(p2, 1) — O <4 using(p2,1)))
f1 = fo A O<zusing(p1,r) A O<zusing(ps,r)
fa = fo AN O<ausing(p2,r) fa = fo A O<1using(p2,)
fa = fo A O<susing(p1,r) A O<ousing(pa,r)
f5 = fo A O<ausing(pr,r) fo = fo A O<1using(pi,r)
fr = fo A O<ousing(pr,r) fes = fo A O<susing(pi,r)

Figure 4: A partial description of a graph obtained by progressing a goal

Example 4 Figure 4 shows a partial description of the graph obtained by progressing Goal 3
in Example 2 for the function succ graphically represented by Figure 1. The initial state

14

has an empty set of propositions and that all actions have a duration of one time unit. The
goal is noted fy and labels the initial state. The goals labeling the other states are obtained
as follows: for each transition (w,w'), the goal f' labeling w' is obtained from f labeling
w by the equation f' = Progress-goal(f,w,1,7). The progression of fo through the state
(using(p1,T), using(pa,r)) yields false because the subformula —(using(pi,r) A using(pz,r))
is violated. The progression of f1 through (requesting(pi,r),requesting(p2,r)) also yields
false because the time bound for O<q using(pa,r) is 0, but using(pa,r) is not satisfied. For
the same reason, the progression of fy through (using(pi,r), requesting(ps,r)) yields false,
for any action. It can be easily checked that any infinite sequence unwound from a path
terminated by a cycle satisfies fy.

If a goal involves liveness constraints, then cycles that do not satisfy it can be formed.
This is because liveness constraints are conveyed by an unbounded-time until (i.e., a formula
of the form fi Us¢ f2 or fi Us¢ f2). With such a formula, the progression process sooner or
later reaches a state at which ¢ is decreased to 0. From that point, if f; is not violated and
fo is not satisfied, the progressed goal never changes. Hence, the progression process may
reach a previous state with the same goal to form a cycle, but the cycle may not contain a
state satisfying f5.3

Example 5 Figure 5 shows progressions for a goal similar to that in the previous exam-
ple, except that the time constraint for the eventualities is “> 0.” Clearly, many infinite
sequences unwound from paths terminated by cycles do not satisfy fo. For example, the
leftmost cycle involves two states labeled fo = fo A O>o using(pz,r), but no state along this
cycle satisfies the proposition using(pa,T).

7.2 Handling Liveness Constraints

The goal progression process fails to detect the violation of liveness constraints because such
constraints can only be violated by infinite sequences or cycles. This problem is tackled by
keeping track of unbounded-time until formulas to check that they are eventually satisfied
along cycles.* As the characterization of safety and liveness constraints with respect to
temporal connectives depends on whether or not the connectives are in the scope of the
negation connective, we simplify the planner algorithm by transforming the input goal into
an equivalent in negative normal form. Thereafter, the goal progression process preserves
this form because the function Progress-goal never introduces a negative connective symbol.

7.2.1 DECOMPOSING GOALS INTO DISJUNCTIVE NORMAL FORM

In order to check liveness constraints, we need to transform every progressed goal into
disjunctive normal form, that is, an equivalent formula of the form ¢g; V --- V g, such that

3 Such a situation would not occur with a constraint of the form “< ¢’ or “< ¢” because, in this case, ¢ is
decremented by the action duration for every traversed transition, as long as f> is not satisfied. Hence, a
previously encountered formula cannot be met again on the same path unless f> is satisfied in-between.

4 An alternative and simpler approach for handling liveness constraints would be to approximate infinite
sequences by sufficiently long finite sequences. This can be done by associating states with time stamps.
In this case, since time never decreases, cycles cannot be formed. However, it may be difficult to determine
a sufficient length for sequences of timed states. Moreover, the association of states with time stamps
may increase the size of the state space by introducing many states that differ only in time stamps.

15

wait(s)

fo

fo wait(s)

requesting(p1,r)

requesting(pa,)

allocate(s, r,p1) allocate(s, r, p2)

f1 f1

using(p1,r) requesting(p1,r)

deallocate(s, 7, p1) fo

allocate(s,r,p1)

requesting(pz,r)

requesting(pz2,r)

requesting(p2,r)
busy(s)

wait(s) fa

requesting(p1,r)

using(pz,7)

requesting(p1,)
busy(s)

fs wait(s)

requesting(p1,r)

requesting(pz,r)

fs deallocate(s, r, p2)

allocate(s, r, p2)

Goals:
fo = Ozo(~(using(ps,) A using(ps, 1)A
(requesting(p1, 1) — O >0 using(p1,7))A
(requesting(p2, 1) — O >0 using(p2,7)))
f1 = fo A Oxo using(p1,7) A O3>0 using(pz,)
f2 = fo ANOsousing(p2,7) fa = fo A Oxousing(pi,r)

Figure 5: A tentative expansion of states with liveness goals

each g; is a conjunction of the form Ay A -+ A hy,;, where each h; is a literal or a formula
whose main connective is O, O, or /. Any MTL formula in negative normal form can be
transformed into an equivalent in disjunctive normal form by using standard distributive
laws between the connectives A and V. As further explained below, this transformation
allows us to label states with goals that are conjunctions of formulas so that we can easily
determine the eventualities that must be progressed.

Let s be a current state during search, w the corresponding world state, and f the
corresponding goal. If we followed the planner algorithm sketched in Section 7.1, given a
successor w' of w, we would generate a successor s’ of s whose world state is w' and goal
is f' = Progress-goal(f,w,d,). This time, instead of proceeding in this way, we transform
/! into an equivalent formula f” in disjunctive normal form and then check the satisfaction
of each disjunct of f” separately. This is done by creating as many copies of w’ as we have
disjuncts of f”, each copy being labeled with a different disjunct. All these copies become
nondeterministic successors of s.

To be more specific, we introduce the notion of an extended state, that is, as a world
state labeled with a goal formula and a set of unbounded-time until formulas. By convention,
we denote world states by the letter w, possibly with a subscript, and extended states by
the letter s, also possibly with a subscript. Given an extended state s, its corresponding

16

world state is noted s.world, the goal s.goal, and the set of unbounded-time until formulas
s.eventualities, because it represents formulas that must be eventually satisfied.

Given an initial world state wg, a transition function succ, a goal formula f, and a
function 7 for interpreting propositions, we have several initial extended states that are
obtained as follows. The input formula f is transformed into an equivalent formula f’ in
negative normal form. Then, f’ is transformed into an equivalent formula f” = fiV---Vf, in
disjunctive normal form. This gives n initial states s;, such that s;.world = wy, s;.goal = f;,
and s;.eventualities = ().

The algorithm for generating successors of extended states is called Expand (see Fig-
ure 6). Its input is an extended state s, a transition function succ for world states, and a
function 7 that evaluates propositions in world states. It generates transitions from state s
by applying succ to s.world to obtain successor world states, Progress-goal to obtain their
respective goal labels, and Progress-eventualities to obtain their set of eventualities labels.
Step 2 handles the nondeterminism conveyed by succ. Step 4 handles goal decomposition
by introducing an additional level of nondeterminism.

Expand(s, succ,) {
1. for each (a,d, W) in succ(s.world) {

2 g = Progress-goal(s.goal, s.world, d, 7);

3 for each disjunct f in disjunctive-normal-form(g)

4. for each w in W {

5. s’ := create-new-state(); s'.world := w;

6 s'.goal := f; s'.eventualities := Progress-eventualities(s, s',d, r);
7 generate-transition(s, a, s');}}}

Figure 6: Algorithm for expanding a state

Figure 7 illustrates graphically the expansion of a state s. Part (a) shows the successors
of s.world that would be obtained by applying succ(s.world). Part (b) shows the successors
of s that would be created by Expand(s). Each successor of s obtained by applying an
action a; is labeled by a goal f;;, where j corresponds to the jth disjunct of the disjunctive
normal form of Progress-goal(s.goal, s.world,d;,), given d; the duration of the transition
corresponding to a;. The sets E;; contain eventualities that are progressed from s. The
other annotations in the figure explain the interpretation for each level of nondeterminism.
They are discussed further later when defining the planner algorithm.

7.2.2 PROGRESSING EVENTUALITIES

By construction, for any extended state s, s.goal is a conjunction of the form fiA---Af. A
subformula is required to hold in a state s only if it is a conjunct f; of s.goal. Eventualities
are progressed only if they are conjuncts of goals labeling states. For example, let us
consider a state s with s.goal = O>¢(p — O>0 q), where p and ¢ are propositions. Although
>0 ¢ is a subformula of s.goal, it would not be progressed in a set of eventualities because

5 We use the symbol @) to represent the empty set.

17

and
World choice by the environment

Action choice by the agent

link

link
Expansion of s

(b)
Figure 7: Expansion of an extended state s (s.world = w, s.goal = f, s.eventualities = E)

it is not a conjunct of s.goal. This is coherent with the fact that s.goal only requires
that ©>¢q must hold only on sequences rooted from states satisfying p, which is not the
case for s. If there is a descendant s’ of s that satisfies p, then, since Oso(p — O>0¢) is
progressed through all descendants of s, any state s” that is a successor of s’ must be such
that s”.goal = ¢>0gAO>0(p— O>0¢). The conjunct Oxg g reflects the fact that, this time
g must eventually hold on sequences rooted from s”. Hence, > ¢ will be progressed in the
set of eventualities.

Progress-eventualities(s, ', d,)

1. if s.eventualities is empty, then return the set of formulas f of the form f' Usq f” or f' Uso f" that
are conjuncts of s.goal (i.e., if we note s.goal = fi A+ A fm then f must be one of the f;), such that
Locally-entailed(Progress-goal(f" , s.world, d,), s') returns false;

2. otherwise, return the set of formulas obtained from s.eventualities by removing formulas of the form
' Uso f"” or fi Uso f2 such that Locally-entailed(Progress-goal(f”, s.world,d,), s") returns true;

Figure 8: Eventuality progression algorithm

This is the image. In reality, we do not need to check new eventualities at every step.
As described in Figure 8, we progress a set of eventualities from a state s to a successor
s' by removing formulas f' Uso f” and f' Uso f” such that Progress-goal(f”, s.world,d,)
is locally entailed by s' (Step 2). Only when we reach a state with an empty set of even-
tualities, do we compute a new set of eventualities (Step 1). The formula returned by

18

Progress-goal(f", s.world, d,) expresses the requirement that would have to be satisfied
by the sequence from s’ in order to have the entire sequence from s satisfy f”.

The local entailment of a formula f by an extended state s is a restricted form of the
logical entailment of f by s.goal. A formula f is locally entailed by an extended state s if
the interpretation of f yields true, assuming that a literal holds if it is a conjunct of s.goal,
and a modal formula g holds if there is a modal formula ¢’ that is a conjunct of s.goal and
differs with g at most by the time constraint of their main temporal connective; the time
constraints must be such that ¢’ implies g (see Figure 9).

For a next or until connective, the implication relation between time constraints is noted
by interval-implies-next-until. For an always connective, it is noted by interval-implies-
always. The definition of these relations follows trivially from the semantic definition of
MTL formulas, by observing that time constraints actually denote time interval over which
the corresponding modalities must hold. Thus, interval-implies-next-until(< t', < t) returns
true if ¢’ < ¢ and interval-implies-next-until(< t', < t) returns true if ¢’ < ¢, while interval-
implies-always(< t', < t) returns true if ¢’ > ¢ and interval-implies-always(< t', < t) returns
true if ' > t. The other cases are similar.

When Progress-goal(f”, s.world,d,) is locally entailed by s', this means that any se-
quence from s going through s’ that violates f” also violates s'.goal. As the progression
of s'.goal would lead to a state having the goal false whenever f” is violated, we do not
have to progress f' Uso f" or f'Uso f" from §'.eventualities to s.eventualities. Our notion
of local entailment is clearly weaker than logical entailment: when Locally-entailed(f, s)
returns true, this means that f is a logical consequence of s.goal, but the converse is not
necessarily true. As will be proven later, this poses no problem with the completeness of our
planner algorithm because progressed eventualities are derived from progressed goals and
the goal progression process keeps intact subformulas that are relevant to the evaluation of
local entailment.

Locally-entailed(f,s)
1. case f
2. p (p a proposition): p = true or p is a conjunct of s.goal;
—f1 : —~Locally-entailed(f1, s);
fi A fa: Locally-entailed(f1,s) A Locally-entailed(f2, s);
f1V fa: Locally-entailed(f1, s) V Locally-entailed(f, s);
Ot fi: Oxp f1 is a conjunct of s.goal
for some =~ t’ such that interval-implies-next-until(~t', ~ t) returns true;
7 Ot fi: Oge f1 is a conjunct of s.goal
for some ~ t' such that interval-implies-always(~ t', ~ t) returns true;
8. fiU~t foi f1Uxw f2 is a conjunct of s.goal
for some =~ #’ such that interval-implies-next-until(~t', ~ t) returns true.

S ok W

Figure 9: Local entailment algorithm

19

Example 6 Given the formulas fi = —ps, fo = (p1 A (O>0p2) Ap3U<sps), and f =
f1Uso fa, let us consider a state s such that s.eventualities = {f}, and s.goal = p1 A
U>0p2 Ap3 U<z Pa.

Formula fo is locally entailed by s because all its conjuncts are locally entailed by s.
Specifically, p1 is a conjunct of s.goal; O ps is a conjunct of s.goal; and p3 U<2ps 15 a
conjunct of s.goal, which entails the local entailment of p3 U<s psa. Hence, for any successor
s' of s, s'.eventualities must be s.eventualities minus {f}, that is, the empty set. This
does not mean that f is effectively satisfied by all sequences rooted from s'. Actually, we
cannot be sure of that since, when s' is created during search, it is not expanded yet, that
is, we do not know yet what the sequences from s' are. Rather, this means that since s.goal
is a conjunction of formulas including p1, O>q p2, and p3 U<z p4, then if f were violated by
a sequence from s, the goal progression process eventually causes a state to be labeled false.

From the definition of Progress-goal and Expand one can see that, for any state s on a
path obtained by applying Expand, the conjuncts forming s.goal include eventualities that
have occurred in ancestor states and that have not been satisfied meanwhile. As will be
discussed in Section 7.3, from this observation, it can be shown that when a cycle contains
an empty set of eventualities but no state with the goal false, then the infinite sequence
obtained by unwinding a path terminated by the cycle satisfies the goal labeling the root
of this path.

Example 7 Figure 10 shows a partial description of the graph produced by Expand, for
the transition function succ represented by Figure 1 and goal f. Again, we assume that all
actions last one time unit and that the initial state has an empty set of propositions. As
the main connective of fo is O>q, there is only one disjunct, hence only one initial state.
Moreover, for this particular example, the disjunctive normal form of any goal progressed
thereafter is the goal itself, for any state. Hence, there is no goal decomposition. The
difference between this ezample and the previous attempt in Figure 5 is that the new graph
is equipped with a mechanism for determining satisfactory cycles.

Example 8 We previously explained the generation of the graph in Figure 4 without taking
into account eventualities and without decomposing goals. Actually, Expand would generate
the same graph because there is no goal decomposition for this erample. However, the
subformula in the scope of the always connective would be in negative normal form. In
addition, each state would be labeled with an empty set of eventualities.

Example 9 Figure 11 shows an example with a goal formula causing nondeterministic
decompositions, for an artificial domain.

Nondeterministic goal decompositions occur only for formulas that convey nondeter-
minism about the different strategies to satisfy them. This is the case with Example 9.
Another more familiar example, is the goal of reaching a state satisfying p and then main-
taining true thereafter. Such a goal is expressed by the formula <o O p. The progression
of this formula through a state that does not satisfy p yields the same formula. But, in
a state satisfying p, it yields O>gp V O>9UOsgp. This would cause two different states:

20

wait(s)
fo Eo

wait(s)

fo Eo

requesting(p1,r)

requesting(pa,)

allocate(s, r,p2)
f1 Eo

requesting(p1,r)
using(pz,)

fs E2 deallocate(s, r, p2)

allocate(s,r,p1)
f1 Eo

using(p1,r)
requesting(p2, 1)

deallocate(s, r, p1) fo Er

requesting(p2, 1)

deallocate(s, r,p1)

busy(s)

wait(s) fo By

requesting(p1, 1)

requesting(p1, r)

busy(s)

fs Ea wait(s)

requesting(p1,r)

deallocate(s, r, p2)

requesting(pz,r) requesting(pz,r)

allocate(s, r, p2)
f1 E2

requesting(pi, 7‘)%

using(p2,)

allocate(s,r,p1)
f1 Eax

using(p1,r)
requesting(pa, r)

allocate(s, r, p2) allocate(s,r,p1)

fl Ey f1 E>

requesting(p1,r)
using(p2,)

using(p1,r)
requesting(pa, r)

deallocate(s, r,p2) | f;3 Eq fo Eqo |deallocate(s, r,p1)
requesting(p1,r) requesting(p2, r)
busy(s) busy(s)

wait(s)

Goals:
f = 0x0(~(using(p1,r) A using(pz,r))A
(requesting(p1, 1) — O >0 using(p1,r))A
(requesting(pz2,r) — O >0 using(p2,1)))

fo = disjunctive normal form of f

fi = fo A Oxo using(p1,7) A Oxo using(p2,r) f2 = fo A Osousing(p2,r) fz = fo A O>o using(p1,r)
Eventuality sets:

Eo=0 Ey={Osousing(p2,7)} Ez={O>0using(p1,r)}

Figure 10: An expansion of states with liveness goals

one labeled by O>q p, the other by $>0 0> p. Intuitively, the disjunct O>q p accounts for
the possibility that henceforth p cannot be falsified by the environment (therefore we must
maintain p forever), while the other disjunct accounts for the possibility that p might be
later falsified by the environment (hence, we must keep on progressing the eventuality to
re-establish p after it has been falsified).

7.3 Properties of Sequences Generated by Expand

For every sequence of extended states sgs; ... produced by Expand, we have a corresponding
sequence of world states wqws ..., where w; = s;.world, for + > 0. We extend the interpre-
tation of MTL formulas to sequences of extended states produced by Expand as follows:

21

fo Eo
f1 Eo a1 a1 ... JoE1
P1,p2
fsBs, ~ 02 3 Bo, a2 az . fo En
L P
foBy, o Fo By, a8 fy By, s 05 _fo
{P1,P3 {p1,p P1,p3 |
,,,,,,,,, 'y
true Eg a4 f2 Bp | 04 L aa
P17
P.bs
@, a4
a4
Goals:

fo=p1U>0(O>0p2 A O>o0p3)
fi=C50p2ACx0p3
f2=C50p2 fa=C>0p3
Eo=0 Ei={fo}

E; = {O>0p2} E3z3={0»0ps3}

Figure 11: A path of world states and a corresponding graph of extended states

we say that a sequence of extended states sgs; ... satisfies a formula f (noted sy = f) if
the corresponding sequence of world states wow; ... satisfies f (i.e., wo = f). We have the
following theorem (a proof is given in Appendix A.2).

Theorem 2 For any path terminated by a cycle spsy...sj...s; and produced by Expand,
if for all 1 > 0, s;.goal # false, and there exists k > j such that sy.eventualities = (), then
for any state s; on the infinite sequence obtained from the path by unwinding the cycle, we
have s; = s;.goal.

The premises given by Theorem 2 are sufficient for satisfying the goal formula, but not
necessary. For example, in Figure 11, any infinite sequence starting from p; in the graph of
extended states satisfies fy, but the paths drawn in dashed lines are terminated by cycles
that do not contain a state with an empty set of eventualities. In other words, these paths
satisfy the conclusion of Theorem 2, but not its premises. Nonetheless, as stated by the
following theorem, the graph generated by Expand must contain at least one path satisfying
both the conclusion and the premises of Theorem 2. In Figure 11, this is the path drawn
in solid lines. A proof of this theorem is given in Appendix A.3.

Theorem 3 For any path terminated by a cycle wowy ... w;...w;, and produced by succ,
the infinite sequence obtained by unwinding the cycle satisfies an MTL formula f if and only
if the graph produced by Expand contains a path terminated by a cycle sos1...5;...5; such

22

that (a) for all i > 0, s;.goal # false; (b) there exists k > j such that si.eventualities = (;
and (c) so.world = wy and, for any sy and w;, if sy.world = w;, then sy q.world = wiy1.

7.4 Extracting a Reactive Plan

Formalizing a process for extracting a reactive plan from such paths requires some defini-
tions.

Definition 1 (Splits and Links) A split for a given action and world state is the set of
transitions from an extended state, corresponding to the same action and leading to extended
states composed of this world state but with different goals. A link is the set of all splits for
a given action.

Definition 2 (Bad State, Safe Action) An extended state is bad if it is labeled false or
has no enabled action that is safe. An action is safe in a given state if its corresponding
link has at least one good (non-bad) state for each split.

Definition 3 (Realization) A realization is a finite subgraph of the graph generated by
Expand that satisfies the following conditions: 1) no state is bad, 2) each simple cycle
(i.e., a cycle not containing any two equal states) contains at least one state labeled with an
empty set of eventualities, 8) each state is left by only one link, and 4) each split in the link
contains a state with a successor in the subgraph.

A split represents or nondeterminism related to the satisfaction of goals, while a link
represents and nondeterminism related to the uncontrollability of environment choices (see
Figure 7). The notion of bad state captures safety and controllability: a state is bad if it is
labeled false (i.e., a safety constraint is violated) or for each action enabled from this state,
there is a nondeterministic path leading to a state labeled false (i.e., it is impossible to avoid
reaching a bad state). The notion of realization takes into account safety (Condition 1),
liveness (Condition 2), and controllability (Conditions 3 and 4).

A completely satisfactory reactive plan is obtained from a realization by simply replacing
extended states with integers that denote plan states. Specifically, an integer is associated
with each extended state; this integer represents the plan state corresponding to the ex-
tended state. The world state labeling the plan state is that of the extended state. Then,
an SCR is constructed to map each plan state to the action labeling the link leaving the
corresponding extended state in the realization. The successors are those of the link in the
realization. We have the following theorem (a proof is given in Appendix A.4).

Theorem 4 Given an initial world state wy, a transition function succ for world states, a
function w that evaluates propositions, and a formula f, there ezists a reactive plan satisfying
f if and only if the graph generated by Expand contains a realization.

Example 10 The plan in Figure 2 is derived from a realization partially represented by
Figure 10 after some trivial simplifications automatically made by the planner to reduce the
size of SCRs. The plan before simplification contains 28 states.

23

7.5 Detailed Planner Algorithm

A reactive plan is computed by searching for a realization in the graph generated by Expand.
The input of the planner algorithm is an initial world state wy, a transition function succ
for world states, a goal formula f, and a function = that evaluates propositions in world
states (see Figure 12). The operations of the planner are first to put the goal formula into
negative normal form. Then, the obtained formula is decomposed into disjunctive normal
form. Finally, the search process is called for each initial state so created by considering
a disjunct. The planner stops once a reactive plan is found without examining the graphs
starting from the remaining initial states. The search process computes a reactive plan by
putting its SCRs into some global variable that is not explicitly shown in algorithms, so that
Step 8 of the planner algorithm can check that a completely satisfactory reactive plan has
been completed in order to stop searching.

Planner (wo, succ, f,) {
let f' the negative normal form of f;
let f” the disjunctive normal form of f’;
let Goals the list formed of disjuncts of f”;
for each formula g in Goals {
create an initial extended state so;
so.world := wo; so.goal := g; so.eventualities := (;
Search(so, succ,r);
if a reactive plan is found, then exit}}

PN oW

Figure 12: Planner algorithm

A naive approach for defining a search algorithm is to generate a graph representing the
entire space of extended states by applying the function Expand, and then to search for a
realization in the obtained graph. We describe a more efficient approach that computes a
reactive plan on the fly, without exploring the entire state space. This reduces the size of the
examined state space on average, while allowing computation of finite reactive plans from
infinite graphs. The main idea is to detect satisfactory cycles on the fly while generating
SCRs incrementally. Roughly, for each current state w, the search process guesses at a tuple
(a,d, W) of succ(w) that must be used as SCR for w. Then, it expands states of W to check
that they are on satisfactory sequences. Should this prove not to be the case, the search
process backtracks to examine alternative tuples of succ(w), that is, alternative SCRs for w.

Again, a look at Figure 7 would be helpful in understanding how the search process
proceeds. It should be seen as performing an and-or depth-first exploration of the state
space generated by Expand, trying to find a realization. For each state, the search process
tries to find a link such that, for every split in the link, there is a path terminated by a
satisfactory cycle. A link represents an and-branch in the sense that all its splits must be
successful. In contrast, a split represents an or-branch in the sense that only one of its
states must be succesful. A choice between different links from a state also represents an
or-branch, since only one link must be found for a given state.

24

When a state contains many different satisfactory SCRs, only one of them needs be
produced. Ideally, it should be the optimal one, but our search process presently selects
any of them. For instance, in Figure 7(b), if an SCR specifies that the agent must execute
action a; in w (1 <4 < m), then there must exist an SCR for each nondeterministic successor
of a;. No SCR is required for successors of actions other than a; that are possible in the
current state. All nondeterministic successors of a; must be covered because the environment
decides which of them occurs as a result of the action. The agent has no control over this
choice, but it can sense to observe which of them occurs. In return, whatever state w;;
(1 < j < n;) results in the execution of a;, the agent has the freedom to select the goal to
satisfy among the fir (1 <k <1I;).

The search algorithm is described in Figure 13. Its input consists of an initial state, a
successor function succ, and an evaluation function 7. A stack is used to record the path
currently being examined. Each state s on the stack is associated with three pointers: a
pointer to the current link and corresponding to the sCR for s, a pointer to the current split
in this link, and a pointer to the current successor s’ of s in this split.

Search(s, succ, w) {
1. initialize a stack containing s;
2. while not(empty(stack)) do
3. if member(top(stack),rest(stack)) then
if satisfactory(stack) then Backtrack(FALSE);
else Backtrack(TRUE);
else if top(stack).goal=false then Backtrack(TRUE)
else { Expand(top(stack),succ,r);
move the current link pointer of top(stack) to
the first link outgoing from top(stack);
9. move the current split pointer of top(stack) to
the first split in the current link for top(stack);
10. move the current successor pointer of top(stack) to
the first state of the current split of top(stack);
11. generate an SCR for the current link of top(stack);
12. push the current successor of top(stack) on the stack;}}

® N ok

Figure 13: An incremental search algorithm

A cycle is completed when the state on the top of the stack is equal to another in the rest
of the stack (line 3). If the cycle contains a state labeled with an empty set of eventualities,
this means that it is satisfactory (tested by the function satisfactory, line 4). Whenever a
satisfactory cycle is completed, the planner backtracks to pop the stack; the current split
is not considered further. If the completed cycle is unsatisfactory (line 5) or if a bad state
is encountered (line 6), the planner backtracks and considers the next state in the current
split. If all the states of the current split have been exhausted, the planner considers the
first split in the next link. Finally, if the state on the top of the stack neither completes a
cycle nor is bad, it is then expanded (lines 7 to 12); that is, outgoing links and splits are
calculated and considered.

25

The function Backtrack is described in Figure 14. Its argument is a flag (BAD) indicating
whether backtracking is due to a bad state (TRUE), a nonsatisfactory cycle (TRUE), or a
satisfactory cycle (FALSE). The variable stack initialized in the function Search is global to
Backtrack. The function Backtrack removes states from the stack (by the while loop) until
reaching a state with splits or links to inspect. If no such state is found, the while loop
terminates with an empty stack.

Backtracking(BAD)

1. while not(empty(stack)) do {

2 pop the stack;

3. if BAD then

4 if the current split for top(stack) is not exhausted

5 then {move the current successor pointer of top(stack) to
the next state in the current split of top(stack);

6. push the current successor of top(stack) on the stack; exit;}
7. else { /* the current link is unsafe */
8. remove an SCR matching top(stack);
9. if the links outgoing from top(stack) are not exhausted
10. then { move the current link pointer of top(stack) to
the next link of top(stack);
11. move the current split pointer of top(stack) to
the first split in the current link of top(stack);
12. move the current successor pointer of top(stack) to
the first state in the current split of top(stack);
13. generate an SCR for the current link of top(stack);
14. push the current successor of top(stack) on the stack; exit;}
15. else if the current splits are not exhausted
16. then move the current split pointer of top(stack) to
the next split in the current link of top(stack);
17. move the current successor pointer of top(stack) to
the first state in the current split of top(stack);
18. push the current successor of top(stack) on the stack; exit;}

Figure 14: Backtracking algorithm

More specifically, the stack is poped (line 2) and then the flag BAD is tested (line 3).
If BAD is TRUE, then backtracking was invoked because the state just removed from the
stack either completes an unsatisfactory cycle or is labeled false. If the current split is not
exhausted, its next state is pushed onto the stack (lines 5-6). If the states in the current
split are exhausted, the current link becomes unsafe because it contains a split for which
no state is on a satisfactory path; thus, this link must not be considered further. As a
consequence, the control rule that was previously generated for the state on the top of the
stack is removed in order to avoid accessibility to the link (line 8). If the links outgoing
from the state on the top of the stack are not exhausted, the next one is examined by
changing the pointers appropriately, putting the first state in its first split on the stack,
and generating an SCR for the new link (lines 10-14). If all links have been considered, the

26

state becomes bad: in the algorithm Backtrack, this means that we do nothing (i.e., there
is no else part for the if in line 9), so that current state will be poped at the next iteration
of the while loop.

On the other hand, if the flag is not BAD (line 15), backtracking was invoked because the
state just removed from the stack completes a satisfactory cycle. If the splits in the current
link are not exhausted, the current split pointer is updated to point to the next split, and
the first state in the new current split is pushed onto the stack (lines 16-18). Otherwise, if
all the splits have been inspected, the current link is satisfactory and does not need further
consideration: in the algorithm Backtrack, this means that we do nothing (i.e., there is no
else part for the if in line 15), so that the current state will be poped at the next iteration
of the while loop.

The planner succeeds whenever the stack becomes empty following a backtracking phase
during which the flag BAD was false. In this case, the set of SCRs is not empty and one
is applicable to the initial state. The planner fails whenever the stack becomes empty
following a backtracking phase during which the flag BAD was true. In this case, no SCR is
applicable to the initial state. However, the set of SCRs might not be empty; it might contain
satisfactory SCRs matching states that are accessible from the initial state but only along
paths with nondeterministic transitions to bad states. In other words, the SCRs correspond
to a realization that is not safely reachable from the initial state.

In fact, the search process above is an enumeration of possible finite reactive plans. Thus,
if the state space is finite and a finite reactive plan exists, it would be found sooner or later.
If the state space is infinite, but contains a finite reactive plan, then such a plan can still
be found by using an iterative deepening strategy (Rich & Knight, 1991), which consists in
applying the search algorithm several times, by fixing the depth at each step and increasing
it at the subsequent steps until a solution is found. It can be proved that the sequence
of partially satisfactory plans computed by the search process converges to a completely
satisfactory one, whenever one exists. Of course, the convergence is not monotonic since
SCRs can be removed and added until a solution is obtained. While theoretically true, in
practice, the search process may be limited by the available CPU and memory resources in
problems with large state spaces. This follows from Theorem 4 and the observation that
the above search algorithm is simply a depth-first search for a realization in the state space
generated by Expand, combined with an extraction of SCRs on the fly. However, the proof
is ommitted due to space limitations.

7.6 Complexity

An extended state consists of a world state, a goal, and a set of eventualities. Hence, the
size for extended state space is |W| x |F| x |E|, where |W| is the number of possible world
states, |F| is the number of different possible subgoals, and |E| is the number of different
unbounded-time eventualities. By abstracting over the action durations, the number of
different subgoals that can be produced for a goal f using goal progression is 2lctesure(f)],
where closure(f) is the set of subformulas of f. It can be easily checked that |closure(f)| <
2 x N (with N the number of Boolean and temporal connectives).

In order to take action durations into account, let T' be the maximum of the different
constants that occur in a time constraint associated with a temporal connective, d the

27

minimum of the different action durations, and C' the maximum of 1 and T'/d. It can be
shown that there can be at most C different time arguments for the formula progression
algorithm. Hence, |closure(f)] <2 x N x C. The number of different conjuncts that can
be formed is O(2V*¢). Since |E| < |F|, we have that the worst-case space complexity for
the planner is O(2V*¢) for a fixed number of world states. The worst-case time complexity
is double exponential since the planner searches for cycles in an exponential state space.

This complexity analysis concerns, however, the worst case. In fact, it has been proven
that the time complexity for verifying many interesting temporal formulas over concurrent
systems is polynomial and sometimes linear (Emerson, Sadler, & Srinivasan, 1989). This
suggests that the average complexity of our planner algorithm is much better than the
worst case, as confirmed by the experiments discussed in the next section. This can also
be justified by a number of observations about the planner algorithm. In fact, many goal
combinations are mutually inconsistent, so that they are never generated by the planner, or
are inconsistent with some world states, so that their progressions yield false, which causes
a pruning of the state space. This is illustrated by the states labeled false in Figure 4.
Also, many goal types never cause the goal combinatorial explosion assumed by the worst
case analysis. This is the case, for example, with the goals in Figures 4 and 10: each goal
decomposition yields only one disjunct. Another explanation for the search efficiency in
practice is that the planner explores an and-or state space. Thus, it can find a solution
plan without exploring many of the or-branches, which can be anticipated if the planner
is properly guided by heuristics or search control strategies. Furthermore, the planner is
incremental, so that it can be stopped with an approximate plan obtained from a small part
of the state space.

8. Evaluation

We implemented the incremental planner algorithm in Common Lisp, which was used to
validate the previous examples. For instance, the plan of Figure 2 was obtained after 0.21
seconds and an expansion of 34 states. More complex problems were experimented in the
traditional robot domain. All the experiments reported on in this paper were run on a SUN
SPARCstation LX in a Lucid Common Lisp environment.

8.1 Robot Domain

The robot domain consists of connected rooms, objects in the rooms, and a robot that
moves objects to indicated rooms (see Figure 15). The objects are labeled from a to e; the
robot is labeled r. In the figure, the robot is holding object a. Rooms are indicated by the
letter r followed by a number. There is also a corridor; doors between rooms are indicated
by shaded regions.

The primitive actions for the robot are to grasp an object in the same room, release
an object being grasped, open a door, close a door, and move from a room to an adjacent
one when the connecting door is opened. There also exogenous actions performed by three
processes that are not explicitly shown in the figure.

The first process represents a kid that moves between rooms to close doors randomly.
Only doors specified as kid-doors are affected by this process. The second process is a
producer that generates objects in given rooms at any time. Objects that can be generated

28

.
[[] mh

corridor

[
2] A
rl % . T2 ﬂ T3

Figure 15: A simulated factory delivery domain

by the producer are specified as producer objects; the rooms in which they are produced are
specified as producer rooms. The number of different producible objects is finite. An object
cannot be produced when there is already an object with the same label in the domain.
The last process is a consumer that removes every object released in a consumer room. An
object removed by the consumer can later be regenerated by the producer. This causes
infinite behaviors that are represented by cycles in the state transition system.

In each current situation, any process can either wait or perform an action that is
possible, which causes nondeterminism in the state transition system. The robot’s primitive
actions and the process exogenous actions are specified by ADL operators using an action
package borrowed from the TLPLAN system (Bacchus & Kabanza, 1995). As mentioned in
Section 4, parallel composition is used to compute the state transitions on the fly.

8.2 Search Control Strategies

The state explosion is controlled by using search control formulas, which are temporal logic
formulas that do not express legal behaviors per se. Rather, they express properties satisfied
by sequences that involve relevant actions and that are efficient. The planner progresses
them as if they were safety formulas to prune sequences that violate them. However, they
are not involved in the state equality test: the planner progresses them separately. In fact,
we use the TLPLAN formula progressor by Bacchus and Kabanza to handle quantified search
control formulas (Bacchus & Kabanza, 1995). This requires a slight adaptation of the first-
order temporal formulas progressor to express relevance of sequences with respect to MTL
goals.
The following search control formulas are used in the experiments reported herein:

Formula 1 states that the planner must only expand actions that make the robot grasp
relevant objects, keep the object being held by the robot until it is in the required
room, keep doors opened whenever possible, and open doors only if relevant.

29

Formula 2 is Formula 1 conjoined with a subformula stating that the planner must avoid
expanding move actions leading to a previously occupied room without having grasped
or released an object.

Formula 3 is Formula 2 conjoined with a subformula stating that the planner must expand
an action of moving into a room each time it has just expanded an action of opening
a door connected to the room.

A detailed specification of these formulas is given in Appendix B.

Formula 1 prunes state sequences that are irrelevant to the goal, such as when the robot
tries to move an object not involved in the goal. Formula 2 also prunes move actions that
are relevant to the goal but executed at a bad time. Specifically, these are actions that move
the robot from a room to one it has occupied previously, without having accomplished any
other action than moving. This produces a more efficient plan than Formula 1. In addition,
Formula 3 prunes actions that open a door without immediately moving the robot into
the corresponding room. This produces reactive plans that are more efficient than those
obtained with Formula 2.

(sTATE 0 world ((in a rl) (in b rl) (in ¢ r1) (in d r4) (in e r4) (in robot co))

ACTION ((open robot d6c)) SUCCESSORS (1))

(sTATE 1 world ((opened d6c) (in arl) (in b rl) (in ¢ r1) (in d r4) (in e r4) (in robot co))
ACTION ((move robot co r6)) SUCCESSORS (2 6))

(STATE 2 world ((in a rl) (in b rl) (in ¢ rl) (in d r4) (in e r4) (in robot r6))

ACTION (
(sTATE 3 world
ACTION (
(STATE 4 world
ACTION (

open robot d67)) SUCCESSORS (3))

(opened d67) (in arl) (in brl) (in ¢ rl) (in d r4) (in e r4) (in robot r6))
move robot r6 r7)) SUCCESSORS (4))

(opened d67) (in arl) (in brl) (in c rl) (in d r4) (in e r4) (in robot r7))
wait robot)) SUCCESSORS (5))

=N~~~ A=~

(sTATE 12 world ((opened d67) (opened d6c) (in a rl) (in b rl) (in ¢ rl) (in d r4) (in e r4) (in robot r7))
ACTION ((wait robot)) SUCCESSORS (9 10))

Figure 16: A reactive plan for reaching room 7

Figure 16 shows a partial description of a reactive plan computed by our planner by
using Formula 3 for the goal of reaching room 7. The corridor is denoted by cor and the
robot by robot. Objects and rooms are identified with the same symbols as in Figure 15.
The door between room ri and the corridor is denoted by dic, while the door between room
ri and room 775 is denoted by dij. The kid-process randomly closes door d6c whenever it
is open. This plan was computed in 3.49 seconds. In fact, a more efficient plan can be
obtained by further constraining Formula 3 to prevent the wait actions in states 3 and 4.

8.3 Experiment 1

This experiment consists in moving objects into given rooms. The goal is of the form

O Oso(in(objr,room1) A ... Ain(objy, roomy,)).

30

This is a goal of reaching a state satisfying a given condition and then maintain true
thereafter, like in classical planners. However, contrarily to classical planners, here we have
exogenous actions performed by the kid who closes doors. Thus, a reactive plan must not
only ensure that a goal state can be reached, but also that it can be maintained.

The size of a problem is defined as follows. For a size n < 10, n objects are moved; in
this case, we have no kid-door. For a size n > 10, there are 10 objects to move and (n — 10)
kid-doors; that is, the kid can close up to (n — 10) doors at any time.

For a fixed size, the time taken by the planner depends on the initial rooms for objects,
the distance to the rooms the objects must be moved to, and the room connections. To
obtain representative experiments for each size, we performed 10 iterations by randomly
choosing the initial rooms, goal rooms for objects, and kid-doors. The performance recorded
for each size is then the average of the 10 iterations. Figure 17 shows the performances with
respect to the CPU time in seconds (a) and the number of expanded states (b).

CPU 500 I
in sec 450 formula 1 -

formula 2

400~ formula 3 —

350 —
300 . —
250 —] —
200] |
150 - -
100 y —

0 2 4 6 8 10 12 14

size

4000 | |
TR0 foma g
3000 a
2500 |- -
2000 |- _ -
1500 | y -
1000] .
500 - B -
0 I s R | | | | |
0 2 4 6 8 10 12 14

(b)

Figure 17: Performances for move-objects goals

The time and space performances do not depend significantly on the number of objects
in the domain per se because the control formulas prune irrelevant sequences. Rather, they
depend on the number of objects that are being moved and the number of doors that can
be opened by the kid. The performance curves increase drastically from size 10 since doors
can be nondeterministically closed by the kid, causing an exponential explosion in the state
space.

31

Since Formula 3 may prune sequences that are satisfactory but not efficient, it might
converge to a plan solution slower than Formula 2 or Formula 1. The same holds true for
Formula 2 with respect to Formula 1. In other words, there is a price to pay for efficiency.
We have tested similar goals with bounded-time constraints, yielding similar observed per-
formance. Trial and error is involved in finding the correct time bound specification for
which the goal is achievable. Otherwise, planning fails due to time constraint violation.

8.4 Experiment 2

The second experiment consists in reactively delivering produced objects to the consumer.
The goal is a conjunction of formulas of the form

in(obj, proom) — O (in(obj, croom) A —holding(robot, obj))

where obj is a producer object, proom is a producer room, and croom is a consumer room.

The size of a problem is the sum of different rooms involved in the goal and the number
of kid-doors. Again, the result for each fixed size is an average over ten random iterations.
Objects, rooms, and kid-doors are selected randomly for each iteration; kid-doors start
being involved from size 4. The observed performances are shown in Figure 18. Formula 3
is much more efficient than the two other formulas because the state explosion starts earlier
from size 4 when kid-doors are introduced. Since Formula 3 prunes more states than the
two other formulas, it can explore larger search spaces, even though it sometimes prunes
sequences that are satisfactory but not efficient.

8.5 Simulation

The quality of produced plans was evaluated by carrying out simulations with a robot
simulator that graphically shows the effects of actions performed by the robot, kid, producer,
and consumer. For instance, one can see on the screen the robot grasping an object or
moving. One can also see a flashing object that is newly generated by the producer. The
simulator screen looks similar to Figure 15. The simulator is also implemented in Common
Lisp, using the Lucid Common Lisp packages for processes and graphics.

To measure the benefit of planning, we first tried an experiment in which the robot was
controlled by using simply a hill-climbing heuristic but without a plan. For each situation,
the heuristic selects the action that looks most promising with respect to the goal. For
example, the doors to be opened and the room to move to are chosen depending on their
Euclidean distance to the goal room. Only 5% of the goals given to the robot were achieved
by using this heuristic without the planner. These goals are quite simple (at most, a size
of 3) and are achieved only after many tries.

Then, the planner was run online while the robot is executing. The speed at which the
robot executes actions is controlled by introducing some sleep instructions, to ensure that
the planner processes at a higher speed. This is to prevent the planner from frequently
producing obsolete SCRs. This time, the robot invokes the heuristic rule only when it is
in a situation without a planned SCR. The robot was able to achieve 80% of the goals
presented to it, with a size ranging from 1 to 14. However, before the planner converges to
a completely satisfactory plan, the robot might backtrack in some situations because the
intermediate plans that are generated by the planner are not completely satisfactory.

32

cpy 500 I
in sec 450 formula 1

formula 2

400~ formula 3 —
350
300
250 —
200
150 -
100

size

4000 | |

#states formula 1 — . .
3500~ formula 2 - - R n

3000 formula 3 — E |

2500 |- _ -
2000 N -
1500 - / § -
1000 - -

500 - -

size

(b)

Figure 18: Performances for reactive produce-consume goals

9. Further Notes on Related Work

The idea of progressing temporal formulas through a sequence of states was originally
introduced by Bacchus and Kabanza (Bacchus & Kabanza, 1995). Bacchus and Kabanza
originally applied this idea to progress search control formulas. Recently, they extended
their approach to handle MTL goals for classical plans that are sequences of actions (Bacchus
& Kabanza, 1996). The problem of synthesizing classical plans is actually a special case of
the problem of generating reactive plans. The problem is simpler and more efficient for three
reasons. First, only finite state sequences are involved. Hence, the eventuality progression
process is irrelevant because no liveness goals are involved. Second, the state space solely
consists of world states; that is, the goal and eventuality labels are not involved in the test
for equality between two states. Finally, there are no nondeterministic transitions.

The concept of goal progression is reminiscent of the decision procedure for linear tem-
poral logic using the tableau method (Wolper, 1989). This decision procedure proceeds by
constructing a Bichi automaton accepting sequences of states satisfying a temporal for-
mula. As defined in (Thomas, 1990), a Biichi automaton is a generalization of a finite
state automaton to accept infinite words. The method for constructing a Biichi automa-
ton that accepts sequences satisfying a formula involves three phases: 1) construction of
a local automaton accepting sequences that satisfy safety properties; 2) construction of an

33

eventuality autormaton accepting sequences satistying liveness properties; 3) combination of
the two automata. Originally developed solely for formulas without time constraints, the
technique was later generalized to formulas with time constraints (Alur & Henzinger, 1993).

Actually, a state labeled with an empty set of eventualities represents an accepting state
in the sense of Biichi automata. Like the algorithm for constructing a local automaton, the
goal progression algorithm is based on the property that a temporal formula is decomposable
into a present and a future part. The difference is that goal progression not only constructs
transitions that relate to present and future parts, but also compares these parts to the
transitions of a reactive agent. Intuitively, this amounts to a composition on the fly of the
local automaton and the state transition system for a reactive agent. On the other hand,
our eventuality progression algorithm is reminiscent of the procedure for constructing an
eventuality automaton, which also basically keeps track of unbounded time eventualities
that must be satisfied. However, our progression of eventualities is done with respect to
the goal progressions and to the transitions that are possible for a reactive agent. Again,
this intuitively amounts to a composition on the fly of the local automaton, the eventuality
automaton, and the transition system for the reactive agent.

Another major difference between our approach and the construction of Biichi automata
from temporal logic specifications is that nondeterminism in such automata means or-
branches, while nondeterminism in a graph generated by our function Expand means and-
branches. Thus, our notion of nondeterminism is much more like in stochastic automata,
except that we do not have transition probabilities. As such, a graph generated by Expand is
closer to a Biichi tree automaton that accepts infinite trees of states, as defined in (Thomas,
1990). In fact, a realization is essentially a representation of many infinite trees that would
be accepted by a tree automaton: each tree is obtained by unwinding cycles in the realiza-
tion. Even when the graph generated by Expand is finite, it may include infinitely many
realizations because one can repeat cycles one or many times. But our planner algorithm
only searches for one realization that represents a group of paths terminated with simple
cycles satisfying the conditions of Definition 3.

From a tree automaton point of view, our planning approach is related to approaches
in (Pnueli & Rosner, 1989; Abadi et al., 1989) for synthesizing a reactive module that sat-
isfies a given temporal property. A reactive module is essentially the same as a reactive
plan. However, in these approaches, it is computed by constructively proving that there
exists a tree automaton satisfying the desired temporal property. Although a graph gen-
erated by Expand could be understood as an acceptor of trees unwound from realizations,
our approach rather trees such a graph as a generator of realizations. Hence, we search
for a realization rather than trying to obtain it from a trace of a proof of the validity of
the specification. The advantage is that we can more easily control the state explosion by
adapting familiar techniques.

10. Conclusion

Robustness and reliability of reactive agents depend, in part, on their ability to reason
about their environments to predict their executions and plan. In this paper, we presented
a planning method for reactive agents that handles complex safety and liveness goals with
time constraints. A plan generated by our planner is, by construction, proven to satisfy

34

the goal whatever action the environment takes among those specified. Otherwise, goal
satisfaction is not guaranteed, but things cannot be as bad as if the agent had no plan
whatsoever.

Our planner can be adapted to other linear modal temporal logics used in the verification
of real-time systems (Alur & Henzinger, 1993). As with MTL, the semantics of these logics
can be formulated in terms of evaluating the truth values of a present and future constraint.
Hence, it is possible to define a corresponding goal progression procedure to apply them in
our planning framework.

The representation of discrete-event systems by state sequences is limited by the state
explosion problem. As explained above, one approach for controlling the state explosion
problem is to use search control formulas, although the number of expanded states may
become huge as the problem size increases. A possible future direction for coping with
this problem is to enumerate the state space by using abstractions to group together many
states that have common properties.

We have seen that search control formulas are useful not only for pruning irrelevant
sequences from the search space, but also for pruning inefficient sequences. This strategy
is applicable for inefficient behaviors that are easily identifiable. For example, the fact
that opening and closing a door is not an efficient behavior can easily be captured by a
search control formula. This strategy does not allow us, however, to generate plans that
are constructively proven optimal. The user must make sure that he has specified sufficient
formulas to prune nonoptimal sequences. There exist different possibilities for investigating
mechanisms allowing computation of plans that are constructively proven optimal.

One possibility is to apply traditional artificial intelligence search methods, such as A*
search (Rich & Knight, 1991). Under certain conditions of admissibility, A* generates plans
that are constructively proven optimal with respect to costs associated with actions. The
main idea is to use a heuristic function, assigning a cost to each transition in the search
graph depending on how it looks close to a given goal state. Then, the planner selects
the states to expand during the search in the order of their promise. The questions that
must be addressed to apply these ideas to our approach are how to handle nondeterministic
transitions and how to deal with cycles. In particular, A* search is based on a notion of
a final goal state, while our planner relies on final satisfactory cycles. In the same line of
search strategy, a hill-climbing heuristic is already supported by our current implementation,
although it was not involved in the tests we have given. In these tests, only the robot uses
the hill-climbing to react heuristically.

Another possible extension is to apply decision-theoretic techniques. Dean et al. de-
veloped a planner that takes as input a state transition system, transition probabilities,
and a reward function that assigns reward values to states (Dean et al., 1995). They apply
dynamic programming techniques to generate a plan that maximizes the expected future
rewards in each state. Given transition probabilities and reward functions, the extended
transition system computed by our planner could be used as input to this decision-theoretic
planner. The benefit is that our extended transition system is constructively proven to
satisfy complex temporal goals that could not otherwise be expressed as reward functions.
An interesting problem would be to examine the overheads introduced by the progression
of goals and the progression of eventualities.

35

Bacchus and Kabanza initiated a research program in this direction by defining a modal
temporal logic that can express a notion of wutility for a sequence of states (Bacchus &
Kabanza, 1994). The idea is that, instead of having a binary measure of satisfaction for
MTL formulas (true or false), there is a utility value that expresses how close the degree of
satisfaction is with respect to a given optimal value.

References

Abadi, M., Lamport, L., & Wolper, P. (1989). Realizable and unrealizable specifications of reactive
systems. In Proc. 16th Int. Colloguium on Automata, Languages and Programming, pp. 1-17.
Lecture Notes in Computer Science, Vol. 372.

Alur, R., & Henzinger, T. (1993). Real-time logics: Complexity and expressiveness. Information
and Computation, 104(1), 35-77.

Bacchus, F. (1995). TLPLAN user’s manual. University of Waterloo, ON, Canada. Anonymous ftp:
ftp:/ /logos.uwaterloo.ca/pub/bacchus/tlplan /tlplan-manual.ps.

Bacchus, F., & Kabanza, F. (1994). Applying decision theory to reactive planning. AAAI Decision-
Theoretic Planning Spring Symposium, 1-5.

Bacchus, F., & Kabanza, F. (1995). Using temporal logic to control search in a forward chaining
planner. In Proc. of 8rd European Workshop on Planning (EWSP), pp. 157-1609.

Bacchus, F., & Kabanza, F. (1996). Planning for temporally extended goals. In Proc. of 13th
National Conference on Artificial Intelligence (AAAI 96), pp. 1215-1222.

Barbeau, M., Kabanza, F., & St-Denis, R. (1995). Synthesizing plant controllers using real-time
goals. In Proc. of 14th International Joint Conference on Artificial Intelligence (IJCAI), pp.
791-798.

Courcoubetis, C., Vardi, M. Y., Wolper, P., & Yannakakis, M. (1992). Memory efficient algorithms
for the verification of temporal properties. Formal Methods in System Design, 1, 275—288.

Dean, T., Kaelbling, L. P., Kerman, J., & Nicholson, A. (1995). Planning under time constraints in
stochastic domains. Artificial Intelligence, 76, 35-74.

Drummond, M. (1989). Situated control rules. In Proc. of the first international conference on
Principles of Knowledge Representation and Reasoning, pp. 103-113.

Drummond, M., & Bresina, J. (1990). Anytime synthetic projection: Maximizing probability of goal
satisfaction. In Proc. of 8th National Conference on Artificial Intelligence (AAAI 90), pp.
138-144.

Drummond, M., Swanson, K., & Bresina, J. (1994). Scheduling and execution for automatic tele-
scopes. In Zwebeen, M., & Fox, M. (Eds.), Intelligent Scheduling, pp. 341-369. Morgan
Kaufmann Publishers.

Emerson, E. A., Sadler, T., & Srinivasan, J. (1989). Efficient Temporal Reasonning. In 16th Annual
ACM Symposium on Principles of Programming Languages, pp.- 166-178.

Godefroid, P., & Kabanza, F. (1991). An efficient reactive planner for synthesizing reactive plans.
In Proc. of 9th National Conference on Artificial Intelligence (AAAI 91), pp. 640-645.

Kabanza, F. (1992). Reactive Planning of Immediate Actions. Ph.D. thesis, Département d’infor-
matique, Universite de Liege, Belgium.

Kabanza, F. (1995). Synchronizing multiagent plans using temporal logic specifications. In Proc. of
First International Conference on Multi-Agent Systems (ICMAS), pp. 217-225.

36

Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-time Systems,
2(4), 255-299.

Manna, Z., & Pnueli, A. (1991). The Temporal Logic of Reactive and Concurrent Systems. Springer-
Verlag.

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and the Situation
Calculus. In Proc. of First International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR’ 89), pp. 324-332.

Pnueli, A., & Rosner, R. (1989). On the synthesis of an asynchronous reactive module. In ICALP,
pp- 6562-671. Lecture Notes in Computer Science, Vol 372.

Ramadge, P., & Wonham, W. (1989). The control of discrete event systems. Proceedings of the
IEEE, 77(1), 81-98.

Rao, A., & Georgeff, M. (1993). A model-theoretic approach to the verification of situated reasoning
systems. In Proc. of 18th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 318-324.

Rich, E., & Knight, K. (1991). Artificial Intelligence. McGraw Hill.

Schoppers, M. J. (1987). Universal plans for reactive robots in unpredictable environments. In Proc.
of 10th Internation Conference on Artificial Intelligence (IJCAI), pp. 1039-1046.

Thomas, W. (1990). Automata on infinite objects. In van Leeuwen, J. (Ed.), Handbook of Theoretical
Computer Science, Vol. B, pp. 133-192. MIT Press/Elsevier.

Wolper, P. (1989). On the relation of programs and computations to models of temporal logic. In
Proc. Temporal Logic in Specification, pp. 75-123. Lecture Notes in Computer Science, Vol.
398.

Appendix A. Proofs
A.1 Theorem 1

Let wow ... denote any infinite sequence of world states, d; the duration of the transition
from w; to wiy1, and 7 a function that evaluates propositions in states. Then, for any state

w; and MTL formula f, w; = f if and only if w;;1 |= Progress-goal(f,w;,d;,).

Proof:

For any state w;, if w; |= f, then w;y1 |= Progress-goal(f,w;, d;,).

The proof for this direction is by induction on the structure of f.5 The basic case is when f
is a proposition. Then, according to the semantic definition of MTL, 7 (f, w;) returns true.
But then, Progress-goal(f,w;,d;,) would return the formula true. Since any sequence
satisfies true, we have w; 1 = Progress-goal(f,w;,d;,).

6 We could also make a proof based on a double induction on the length of a sequence and the structure
of a formula. Instead, we consider an arbitrary sequence and an arbitrary state s; on it, and then show
that the conditions of the theorem hold for any formula. This approach is also used for other theorems
discussed in this paper.

37

The inductive case is when f is a combination of any other formulas with classical or
temporal connectives, as indicated by MTL syntax.” We detail only the cases O.;g, for
any ordering relation ~, O<; g, and g U<; h. The other cases are similar.

If f = O.;g, for any ordering relation ~, and w; = O..g, then, according to the
semantic definition of MTL, d; ~ ¢t and w;1+1 = ¢g. But, according to the definition of
Progress-goal, Progress-goal(f,w;,d;, ™) = g. Thus, w;y1 |= Progress-goal(f,w;,d;,).

If f = DO<;g, we have two possibilities: either d; < t or d; > t. We only show the
proof for the case d; < t. If d; < t and w; |= D<;g, then, according to the semantic
definition of MTL, w; = g and w;11 = O<(;—g;) 9- By inductive hypothesis, if w; = g, then
wiy1 [Progress-goal(g, w;,d;,). Thus, w11 | Progress-goal(g,w;,d;,) A O<(_g;) g-
But, since d; < t, according to the definition of Progress-goal, Progress-goal(f,w;,d;,m) =
Progress-goal(g, wi, di, m) A O<(;_q,) g- Hence, w;1 = Progress-goal(f, w;, d;,).

If f = gU<th, we have two possibilities: either d; < t or d; > t. We only show
the proof for the case d; < ¢. If d; < ¢t and w; = gU<¢h, then, according to the se-
mantic definition of MTL, w; = h or (w; F g and wiy1 = gU<—q;)h). By induc-
tive hypothesis, if w; | g, then w;;1 = Progress-goal(g,w;,d;,n) and if w; = h, then
wi+1 = Progress-goal(h,w;,d;, 7). Thus, w;y1 | Progress-goal(h,w;,d;,©) or (wi+1
Progress-goal(g, w;,d;,) and wiy1 = gU<(—q;) h). Clearly, this is equivalent to w;i;1 |
Progress-goal(h, w;, d;,) V (Progress-goal(g, wi, d;, ™) A g U<(t—4;) h). From the definition of
Progress-goal, since d; < t, Progress-goal(g U< h,w;,d;, 7) = Progress-goal(h,w;, d;,) V
(Progress-goal(g, wi, d;,) A g U<(—4;) h)- Hence, w;11 = Progress-goal(g U<t h, wi, d;,).

For any state w;, if wit1 = Progress-goal(f,w;,d;, 7), then w; |= f.

The proof for this direction is quite similar to the reverse direction, but deductions are
made in the opposite way. Again, we use induction on the structure of f. The basic
case is when f is a proposition. Then, there are two possibilities: 7(f,w;) returns true or
m(f,w;) returns false. Only the first case is possible because if 7(f, w;) returned false, then,
from the definition of Progress-goal, Progress-goal(f,w;,d;,) would return false, that is, a
contradiction with the hypothesis w;11 = Progress-goal(f,w;,d;, 7). Hence, 7(f,w;) must
return true. By the semantic definition of MTL, this means that w; = f.

The inductive case is when f is a combination of other formulas. We only show the proof
for the case g U<¢ h. We have two possibilities: either d; < ¢ or d; > t. We show the proof
for the case d; < t. By hypothesis, w;;1 |= Progress-goal(g U<t h,w;,d;, 7). By definition,
Progress-goal(g U<t h,w;,d;, 7) = Progress-goal(h,w;,d;, n) V (Progress-goal(g, w;, d;,) A
9 U<(t—d;) h)- Thus, w;11 | Progress-goal(h, w;,d;,) or (w;y1 | Progress-goal(g, w;,d;,)
and wi1 F gU<(—g;)h)- By inductive hypothesis, if w;1 | Progress-goal(g,w;, d;,),
then w; = ¢ and if w;11 = Progress-goal(h,w;,d;,), then w; = h. Hence, w; = h or
(wi = g and wiy1 F gU<(—g;) k). By the semantic definition of MTL, this means that
w; = gU<th. m

7 The inductive hypothesis is: for any state w;, if w; = g, then w; 11 | Progress-goal(g, w;, d;, 7), similarly
for h. Given this hypothesis, we must prove that for any other formula f constructed from g and h and
for any state w;, if w; |= f, then w;41 | Progress-goal(f, w;, d;,).

38

A.2 Theorem 2

For any path terminated by a cycle sos1 ...sj...s; and produced by Expand, if for alli > 0,
s;.goal # false, and there exists k > j such that sy.eventualities = (), then for any state s;
on the infinite sequence obtained from the path by unwinding the cycle, we have s; = s;.goal.

We provide a proof of the theorem that only considers time constraints of the form “< ¢”
and “> t”. The extension to constraints of the form “< t” and “> ¢” is trivial. For any
infinite sequence of states sgsi ..., let us define the following properties.

Property 1: For all i > 0, s;.goal # false.
Property 2: For all i > 0, there exists j > 4 such that s;.eventualities = 0.

For any state s;, we note s;.goal = fi A--- A ffm and d; the duration of the transition from
8; to s;41. The proof of Theorem 2 is based on the following five lemmas.

Lemma 1 If ;8,1 ... satisfies Properties 1 and 2, and f;; =09 (1 <p<my), then (a)
di ~ t and (b) siy1.goal has a conjunct that implies a disjunct of the disjunctive normal
form of g.

Proof: By definition, Progress-goal(O.; g, s;.world, d;, 7) yields false or g. But, by Prop-
erty 1, sjy1.goal # false. Thus, d; ~t. As O.;g is a conjunct of s;.goal and since, from
the definition of Expand, s;11.goal is a disjunct of Progress-goal(s;.goal, s;.world, d;, 7) and
the only possible result for Progress-goal(O.. g, s;.world,d;,) is g, then every disjunct of
Progress-goal(s;.goal, s;.world, d;, m) will contain a conjunct that implies a disjunct of the
disjunctive normal form of g. ®

Lemma 2 If s;s;y1 ... satisfies Properties 1 and 2, and f;; =gUs¢h, for some p (1<p<
m;), then there exists a state s; (j > i) such that (a) (Z{;Zl d;) >t and s;y1.goal has a con-
junct that implies a disjunct of the disjunctive normal form of Progress-goal(h, sj.world, d;, m);
and (b) for all k (i <k < j) such that (YXF="d;) > t, sgy1.goal has a conjunct that implies
a disjunct of the disjunctive normal form of Progress-goal(g, si.world, dy,).

Proof: Let us note s;.goal = F; A gU>th, where F; = Ay, fli. From the definition
of Progress-goal, Progress-goal(s;.goal, s;.world, d;, ™) = Progress-goal(F;, s;.world, d;, m) A
Progress-goal(g Us¢ h, s;.world, d;,). Let us note Fiv...v Fﬁl the disjunctive normal form
of the result of Progress-goal(F;, s;.world,d;,). We have three possibilities: (I) d; < ¢, (II)
d; >t and t # 0, and (III) ¢ = 0.

CASE 1. According to the definition of Progress-goal, when d; < t, then we must have
Progress-goal(g U> h, s;.world, d;,m) = gU>(;—q;) h- By taking into account the notations
above, Progress-goal(si.goal, s;.world, d;, m) = ViZ (F} A gUs(t—g;) h). From the definition
of Expand, we must have s;i1.goal = F; A gUs>(—4;)h, for some ¢ (1 < ¢ < n;). We
can repeat this reasoning with states s;4+1, Si+2, and so on. Since we required that all ac-
tion durations be strictly positive, it follows that there exists a state s; (j > 4) such that
t'=t—dj—---—dj_1 >0,d; >, and sj.goal = Fg_l/\g Usy h, for some ¢ (1 < g < nj_q).
Then, either ¢ # 0 or ¢/ = 0. If ¢ # 0, then s; is in the same situation as s; in Case II;

39

otherwise, s; is in the same situation as s; in Case III. In either case, we continue the
argumentation of Case IT or Case III by replacing s; by s;, and reach the conclusion that
Lemma 2 holds.

CASE II. According to the definition of Progress-goal, if d; > t and ¢ # 0, then we have
Progress-goal(g Us¢ h, s;.world, d;, 7) = gUs>o h. But, from the definition of Progress-goal,
Progress-goal(s;.goal, s;.world, d;,) = \/[i, (Ff A g Uso h). From the definition of Expand,
Siy1.goal = qu‘ A gUso h, for some g (1 < g < n;). Thus, s;4; is in the same situation as s;
in Case III. Hence, we continue the argumentation of Case III by replacing s; by s;4+1, and
reach the conclusion that Lemma 2 holds.

CASE III. According to the definition of Progress-goal, if t = 0, then

Progress-goal(g U h, s;.world, d;, 7) =
Progress-goal(h, s;.world, d;, w) V (Progress-goal(g, s;.world, d;,) A g Uso h).

Let /[, gf and \/]-; h! the disjunctive normal forms of Progress-goal(g, s;.world, d;,n) and
Progress-goal(h, s;.world, d;,), respectively. Then, Progress-goal(s;.goal, s;.world, d;,) =
(V2 Vizi FEARY)V (VE L Vi1 FE A gl A gUsoh). From the definition of Expand, we
have two possibilities: (A) siy1.goal = Fy A by, for some g (1 < ¢ <n;) and r (1 <r <n);
or (B) sit1.goal = Fj A g, AgUsoh, for some ¢ (1 < g <mn;)and r (1 <r <m).

Case IIILA If s;41.goal = F; A h%, then since Al is a disjunct of the disjunctive normal
form of Progress-goal(h, s;.world, d;,), part (a) of Lemma 2 is satisfied. Moreover, since
j =1, part (b) of Lemma 2 is trivially satisfied.

Case IIIL.B If s;11.goal = Fg A gt A gUso h, then since s;;1.goal contains gU>oh as a
conjunct, we can resume the reasoning from the beginning of Case I1I, but applied to s;11.
Similarly, we can repeat this for s;2, and so on. It follows that, for any state s; (k > i) be-
fore a state s; satisfying Case III.A, s 1.goal must be of the form F(f AgkEng U>o h, for some
g and r. This means that all states before any such a state s; satisfy part (b) of Lemma 2.
But note that state s; (assuming that it exists) satisfies part (a) of Lemma 2. Thus, to
complete the proof, it remains to show that a state s; satisfying Case IIL.A effectively exists.

By Property 2, there exists a state s; after s; such that s;.eventualities = (). Either
there exists a state s; between s; and s; such that s; satisfies case IIl.A or no such state
exists. If such a state s; exists, then this trivially ends the proof. Now, if no such state
sj exists, this means that all states between s; and s; fall in Case III.B. Hence, s;.goal is
of the form Fé‘l A gi_l A gUsq h, for some ¢ and r. From the definition of Expand and
Progress-eventualities, s;ii.eventualities must contain g U>o h. But then, by Property 2,
there must exist a state sy after s; such that sp.eventualities = (). From the definition
of Expand and Progress-eventualities, this means that there exists a state s;; between s;
and sy such that s;;1.eventualities is obtained by removing g U>o h from s;r.eventualities
because h is locally entailed by s;. From this, it follows that sj;.goal = Fg'_l A hﬁ"_l,
for some g and r such that h{:lfl implies a disjunct of the disjunctive normal form of
Progress-goal(h, sj _1.world,dj_q, 7). Hence, state sj_; satisfies Case II.A of the present
proof, that is, part (a) of Lemma 2. m

40

Lemma 3 If s;s;41-.. satisfies Properties 1 and 2, and f;, =gU<th, for somep (1<p<
m;), then there exists a state s; (j > i) such that (a) (Zf;zl d;) <t and s;y1.goal has a con-
junct that implies a disjunct of the disjunctive normal form of Progress-goal(h, sj.world, d;, 7);
and (b) for all k (i < k < j), sg+1.9goal has a conjunct that implies a disjunct of the dis-
Junctive normal form of Progress-goal(g, sy.world, dy,).

Proof: The proof is similar to that for Lemma 2 in Case III since, for ¢ greater than
the duration of the current action, the progression of g U<; h is similar to the progression
of gU>gh. But, to prove part (b) of the lemma, we use the observation that sooner or
later, we reach a state at which the time constraint for the until connective is less than the
duration of the current action. From the definition of Progress-goal, h will be ultimately
progressed through that state. m

Lemma 4 If s;s;4+1... satisfies Properties 1 and 2, and f; = 0.t g, for somep (1 <p<
m;), then for all 7 > i such that (Z{:—il d;) ~ t, sjy1.goal has a conjunct that implies a
disjunct of the disjunctive normal form of Progress-goal(g, s;.world,d;,).

Proof: The proof is similar to Lemma 2 and Lemma 3. In fact, O.; g is almost equivalent
to g U~ false and is progressed like an until formula, except that we do not have to check
that false is eventually satisfied. m

Lemma 5 If sys1 ... satisfies Properties 1 and 2, then for all i >0 and for allp (1 <p <
m'i); Si |= f;

Proof: We prove this by induct_ion on the structure of f;;. The basic case is when f;;
is a proposition. In this case, (Ips s;.world) returns true or false.. From the definition of
Progress-goal, if 7(f;, si-world) returns false, then Progress-goal(f,, si.world,d;, T) returns
false. This would cause s;11.goal = false. But this is impossible according to Property 1.
Hence, the only possible result for (f;,si.world) is true. By the semantic definition of
MTL, then s; = f,,. .

The inductive case is for a formula f; that is the negation of a proposition, or a formula
whose main connective is O, O, or U (from the definition of Expand, a goal labeling a state
is a conjunct of such formulas). We only show the proof for g U< h.

By Lemma 3, there exists a state s; (j > 4) such that (a) (E{:—il d;) < tand s;;i.goal has
a conjunct fg“, for some g (1 < ¢ < mj1) that implies a disjunct of the disjunctive normal
form of Progress-goal(h, s;.world,d;,«); and (b) for all k& (¢ < k < j), Sg4+1.goal has a con-
junct f5+1 for some r (1 < r < my 1), that implies a disjunct of the disjunctive normal form
of Progress-goal(g, sy.world, dy, 7). In case (a), by inductive hypothesis, s;1 |= fg“. Since
fg“ implies a disjunct of the disjunctive normal form of Progress-goal(h, s;.world,d;,),
then s;41 = Progress-goal(h,sj.world,d;,). Then, by Theorem 1, s; = h. Similarly,
in case (b), for any k (i < k < j), sx = g. Hence, by the semantic definition of MTL,
siEgU<th. ®

Now, we can prove Theorem 2.
Proof: Let sps1...5;...5; a path terminated by a cycle and produced by Expand. If for
all i > 0, s;.goal # false, and there exists k > j such that sj.eventualities = (), then any

41

infinite sequence unwound from the path satisfies Properties 1 and 2. By Lemma 5, for any
state s; on that sequence and for any f; that is a conjunct of s;.goal (1<p<my), sk Iy
But, s;.goal = f{ A--- A fp,.. Hence, s; = s;.goal. ®

A.3 Theorem 3

For any path terminated by a cycle wowy ... w;...w;, and produced by succ, the infinite
sequence obtained by unwinding the cycle satisfies an MTL formula f if and only if the
graph produced by Expand contains a path terminated by a cycle sos1...s;...s; such that
(a) for all i > 0, s;.goal # false; (b) there exists k > j such that sg.eventualities = 0; and
(¢) sp.world = wy and, for any sy and w;, if sy.world = w;, then sp1.world = w;y1.

Proof:

If (a), (b), and (c), then wy = f.
This follows trivially from Theorem 2.

If wy = f, then (a), (b), and (c).

Let us note d; the duration of the transition from w; to w;4+1. Let us build a path of pairs
(’u}(), f())(wl, fl) .. (wk, fk) .. (wk, fk) such that f() = f and fi_|_1 = PI‘OgI‘eSS—gOHJ(fz', ws, di, 7T)
for all 4 > 0. This path is terminated by a cycle (wg, fx) .- . (wg, fx) because it is defined
from a path wow; ... w;...w; that is also terminated by a cycle, and Progress-goal can
generate only finitely many different formulas.?

For any f;, let us note fiV---V ffh the disjunctive normal form of f;. By Theorem 1,
since wy = fo, then we must have w; |= fi. Similarly, from w; = fi, we have we | fo.
And so on, we obtain w; = f; for any world state w;. From this, we have that, for every
world state w;, there exists at least one fé such that w; = f;. Then, using Theorem 1 again,
it follows that, for every f! such that w; [= f!, there exists f/*! such that w;y; = f/*!
and fit! is a disjunct of the disjunctive normal form of Progress-goal(f;,wi, d;,m). Thus,
there exists at least one path terminated by a cycle (wy, fl?)(wl, fz}) -« (wg, f‘f) oo (wg, fé“)
and satisfying the property that for any state w;, (P.1) w; F f; and (P.2) fi! implies a
disjunct of the disjunctive normal form of Progress-goal(fg,w;,d;,). (We use the symbol
P to denote P.1 and P.2.)

Now, for any pair (wy, f;,)) such that wy = fz?’ let us construct a graph G of extended
states by grouping all paths rooted on this state and satisfying Property P, while extending

each pair (wj, f;) with a set of eventualities e’ ; each tuple (w;, f%, e’) denotes an extended

q @ %
state sy with sy.world = w;, sy.goal = f;, and sy.eventualities = efll. Precisely, G is
constructed as follows. The root is a state sg with sg.world = wy, sg.goal = I(,), and
so.eventualities = (). Then, for any state sy, successors are obtained as follows: for any
pair (wit1, fiT1) that is a successor of (w;, f) on a path rooted on (wy, f;) and satisfying
Property P, sy has a successor sy 1, with sy i.world = w1, syi1.goal = fit!, and

T
sy+1 = Progress-eventualities(s;, $i+1,d;, 7).

8 The number of propositions and connectives in f is fixed; time values are always decreased with action
durations, but never below 0. Since the path has finitely many actions, there are finitely many different
durations for decrementing time values. Hence, Progress-goal can generate finitely many subformulas
with different time constraints.

42

From P.2 and s;;.eventualities = Progress-eventualities(s;, sj+1,d;,), it follows that
G is a subgraph of the graph generated by Expand from sg. The graph G cannot be
empty since above we concluded that there exists at least one path satisfying Property P.
By Property P.1 and Theorem 1, it follows that, for every state s of G, s.goal # false.
Hence, all paths of G satisfy part (a) of Theorem 3. By Property P.1 and the definition
of Progress-eventualities, it follows that at least one path satisfies part (b) of Theorem 3.°
From the definition of G, all paths of G satisfy part (c) of Theorem 3. Hence, G contains a
path satisfying parts (a), (b), and (c) of the theorem. As G is part of the graph generated
by Expand, there exists a path generated by Expand that satisfies parts (a), (b), and (c) of
Theorem 3. m

A.4 Theorem 4

Given an initial world state wy, a transition function succ for world states, a function «
that evaluates propositions, and a formula f, there exists a reactive plan satisfying f if and
only if the graph generated by Expand contains a realization.

Proof:

If the graph generated by Expand contains a realization, then there exists a reactive plan
satisfying f. This direction is trivial. It follows from the definition of a realization and the
observation that a reactive plan is merely a syntactic sugar for a realization.

If there exists a reactive plan satisfying f, then the graph generated by Expand contains
a realization. A reactive plan satisfying f can be seen as a finite set of paths terminated by
cycles such that an infinite sequence unwound from any of these paths satisfies f.!1° By The-
orem 3, for each of these paths, the graph generated by Expand contains a corresponding
path satisfying the criteria 1 and 2 of a realization. Now all together, these paths generated
by Expand satisfy all the criteria of a realization. Hence, there exists a subgraph generated
by Expand that is a realization. ®

Appendix B. Search Control Formulas

Search control formulas are progressed by using the TLPLAN package which supports first-
order temporal formulas (Bacchus, 1995). Formulas are given in prefix notation. The time
constraint for the modal connectives is implicitly “> 0”. Following is the specification for
search control Formula 3.

(always
(forall (7room) (in robot 7room)
(and
(forall (7object) (holding robot 7object)
(and

9 This follows by contradiction, by observing that if part (b) did not hold for any path, this would mean
that there is a formula gUsoh labeling some state w; such that h is not locally entailed with any
descendant of w;. This contradicts Property P.1.

10 By definition, a reactive plan is finite; thus, the number of different paths terminated by cycles composing
areactive plan is also finite; but, all together, these paths may generate infinitely many infinite sequences.

43

;3 grasp only relevant objects only
(exists (7room2) (goal (in 7object 7room2)))
(forall (?room2) (goal (in 7object ?room2))
(and
;3 keep held objects until in their rooms.
(if-then-else (= ?room ?room?2)
(next (not (holding robot 7object)))
(next (holding robot ?Pobject)))
;;don’t come back until having delivered object.
(next (implies (not (in robot ?room))
(until (not (in robot 7room))
(in ?object ?room2))))))))
;3if arm empty, don’t come back until having grasped an object
(implies (not (exists (7object) (holding robot Tobject)))
(next (implies (not (in robot ?room))
(until (not (in robot ?room))
(exists (7object)
(holding robot Zobject))))))
;3 move only when there exist objects to move
(implies (not (exists (7object 7room) (in 7object 7room)
(exists (?room2) (goal (in 7object ?Proom2))
(not (= ?room2 ?room)))))
(next (in robot 7room)))
(forall (?door ?room2) (door/room 7room)
(and
;3 keep doors opened, expect those controllable by the kid.
(implies (and (opened 7door)
(or (not (exists (7door2) (kid-doors)
(= 7door 7door2)))
(not (exists (7t) (clock kid 0 7t)))))
(next (opened 7door)))
;;open doors only when there exist objects to move.
(implies (and (not (opened 7door))
(not (goal (opened ?door)))
(not (exists (7object 7room) (in 7object 7room)
(exists (Proom2) (goal (in 7object 7room2))
(not (= ?room2 ?room))))))
(next (not (opened ?door))))
;;1f the robot opens a door, it must enter the connected room
; ;immediately.
(implies (not (opened 7?door))
(next (implies (opened ?door)
(next (in robot 7room2))))))))))

Formula 2 is obtained from Formula 3 by removing the subformula annotated by the
comment “if the robot opens a door, it must enter the connected room immediately”.
Formula 1 is obtained from Formula 2 by further removing the subformulas annotated by
the comments “don’t come back until having delivered object” and “if arm empty, don’t
come back until having grasped an object”.

All these formulas are general for the robot domain and do not depend on a specific
initial state or goal. To fully understand them, the reader may need some familiarity with
the TLPLAN goal specification notations, which are explained in (Bacchus, 1995).

44

