WATOO: An Internet Access Software to a Satellite Tracking
Station”

M. Normandeau, S. Bernier, J.-M. Desbiens, and M. Barbeau
Département de mathématiques et d’informatique
Unuversité de Sherbrooke
Sherbrooke, Québec CANADA JIK 2R1

{normand, berns00, desbiens, barbeau}@dmi.usherb.ca

Abstract

The goal of the project presented in this paper
1s to provide means to share the resources of a
satellite tracking station via the Internet. Be-
ing costly and cumbersome, this kind of instal-
lation 1s not affordable to everybody. But with
the outreach offered by the Internet, it is possi-
ble to share this material. In particular, we hope
that this project will make easier participation of
students to communication programs with astro-

nauts (such as SAREX).

The project itself can be divided into two main
areas: the client application and the satellite
telecommunications server. The client applica-
tion is the user interface. Using this applica-
tion, an internaut is able to connect to a satellite
telecommunications server and talk on a satellite
frequency (an amateur radio license is required).
The server manages the control information ex-
changes, antennas, and radios. Both the client
and server designs are object-oriented. The client
1s programmed in Java and the server is imple-
mented in C++. Our software is called WATOO
which stands for World wide Access To Orbiting
Objects. This paper presents the user interface

of WATOO and briefly reviews the design of the
client and server.

*The work described in this paper was supported
in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), the Fonds pour
la formation de chercheurs et ’aide a la recherche

(FCAR), and Bombardier Inc.

1 Introduction

This paper presents a novel software pro-
viding access to satellite telecommunications
stations via the Internet. Installation of a
satellite telecommunications station is not
affordable to everybody because is requires a
certain investment of money, expertise with
satellite telecommunications equipment, and
adequate space for antennas. Qur goal is to
develop software that enables distant access
and sharing of this kind of material through
the Internet. In particular, we hope that
with such software, participation of students
to communication programs with astronauts
(such as SAREX) will be more accessible.
Our software is called World wide Access To
Orbiting Objects (WATOO).

The software is divided in two parts: the
client application and the satellite telecom-
munications server. The client application is
the user interface. Through this application,
a radio amateur internaut may get connected
to a satellite telecommunications server and
talk on a satellite voice radio frequency. The
server controls the antennas and radios and
sends/receives voice over the radio channel.

The satellite telecommunications server
comprises the following pieces of equipment.
Outside the station, there is a system of
crossed yagi antennas for the 2 m and 70 ¢cm
bands. Their length is approximately 10 feet.
There are azimuth and elevation rotors to
maintain the direction of antennas toward

a satellite. Inside the station, there is a
Yaesu F'T-736R radio covering the 2 m and
70 cm bands. The satellite telecommunica-
tions server runs on a Pentium personal com-
puter executing the Linux operating system.
The computer has a hardware interface with
the rotors of the antennas and a hardware
interface with the radio, so they can be au-
tomatically controlled by software. The com-
puter also has a sound card connected to the
radio audio in an out.

This paper presents the user interface of
WATOO (Section 2) and briefly reviews the

design of the client and server (Section 3).

2 User interface

The user interface of the software is illus-
trated in Figure 1. In the top left corner of
the window, the name of a tracked satellite
is posted. On the left side, there is a panel
of four numeric values indicating the current
satellite latitude, longitude, and altitude,
and antenna direction, in terms of azimuth
and elevation. For the sake of simplicity
and readability by non-experts, all numeric
values are displayed as rounded integers, al-
though computations within the server are
done using double floats. In the middle,
there is a map showing the ground location of
the server and the point directly below the
satellite (the subsatellite point (SSP)). An
ovoid figure is drawn around the subsatel-
lite point that delimits the coverage area. Of
course, the location of the satellite telecom-
munications server, and not necessarily the
one of the client, has to be within the cov-
erage area to make communication possible.
On the right side, there is a panel of four
buttons. A click on the button Connect (Dis-
connect) triggers the client to server connec-
tion establishment (release) process. The
button Talk launches a voice over the Inter-
net communication software. The software
that we use for this purpose is named Speak-
freely [6]. The last button on the bottom al-
lows selection of a language in which names

of fields and buttons as well as messages are
displayed (presently, English and French are
supported).

1 APDD/WATOO Copyright (c) 1997 Université: de Sherbrooke

e P
Ly ol
Figure 1: User interface

3 Design
The design has been devised using

the object-oriented development method of

Booch [1].

3.1 Client application

One of our main goals was to develop a
client application that can run across se-
veral platforms. At first, we turned our at-
tention to the Java language [3] that aims
to have the portability property. Develop-
ment in Java means re-use as much as pos-
sible of Java components, from a rich collec-
tion of classes, and Java architectural pat-
terns. Adoption of Java has therefore con-
siderably influenced the structure of the in-
terface. However, we were not able to do
everything in Java, while investing a reason-
able amount of efforts. Hence, we achieved
the portability goal to a certain extent.

The architecture of the client application
is pictured by the class diagram of Figure 2.
Every class is represented as a rectangle
with its name in a top subrectangle and list
of methods and in a bottom subrectangle.
Edges between classes represent has by-value
relations (solid diamond on the component

WatooClient GUl

¥ —>

“Elpnesr;% "enableCnnnectinnEluﬁnnO
‘ = .

*rung disableConnectionButtond

)

EventListener

Figure 2: Architecture of the client applica-
tion

side) and has by-reference relations (hollow
diamond on the referee side).

In our diagram, there are three main
classes of objects: WatooClient, GUI, and
EventListener. This architecture follows
the event delegation architectural pattern
of Java (JDK 1.1). An important point is
the fact that the application logic is sepa-
rated from the graphical user interface, giv-
ing to them a certain independence. The ap-
plication logic is in class WatooClient and
the graphical user interface is in class GUI.
An other important point is that there are
sources of events and listeners of events.
A source of event is typically a graphical
user interface object (instance of GUIL in our
case). A listener is an object that provides
a method called by the event source in res-
ponse to a specific event that occurs at the
interface (e.g., the click of a button). In our
design, there is specialized (subclass) event
listener for every type of event. The method
called when an event occurs is polymorphic.
An event listener may dispatch work to other
components of the application. Hereafter, we
describe two key mechanisms of the interface:
connection establishment and voice commu-
nication.

The mechanism for the connection estab-
lishment with the server is illustrated in Fig-
ure 3. First, a user clicks on the button
Connect. An event emerges from the graph-
ical user interface that triggers an event lis-
tener. The event listener calls method open()

on an object of class WatooClient. This
method opens a stream transport connection
with the server (using TCP), sends to the
server the name of a satellite to track, re-
quests disabling (enabling) of the connection
(disconnection) button on the object of class
GUI, and threads a copy of itself which, by
definition, executes the method run(). The
method run() embeds an endless loop that
periodically receives from the server a mes-
sage giving the coordinates of the tracked
satellite.

Presently, not much is available in Java for
supporting real time duplex voice communi-
cation [4].
anism of the interface simply launches the
communication freeware called Speakfreely.
The executable code of Speakfreely is plat-
form dependent. However, it is available
for several platforms (Windows, various Unix
systems). Therefore, the WATOO client ap-
plication is portable to a platform as long as
an executable of Speakfreely is available for
that platform.

The voice communication mech-

anEventlistener avatogClient

Click connect button

Trig event listener
opend

Establish connection

l
disableConnectionButtond
|

Start thread

Figure 3: Connection establishment mecha-
nism

3.2 Satellite telecommunications

server

The server is responsible for:

e Determining the position in space of a
satellite (the SSP and altitude) at a
given time using Keplerian orbital ele-
ments data.

e Determining the direction in which the
antennas should point, expressed in
terms of azimuth and elevation.

e Positioning the antennas according to
the computed direction.

e Tracking a given satellite, i.e., making
that the antennas point towards a satel-
lite.

e Setting the communication mode and
frequency of the radio.

e Accepting a connection from a client.

e Periodically transmitting to a connected
client the SSP and altitude, of a tracked
satellite, and direction of antennas.

e Serving a voice connection with a client.

Since the satellite is constantly moving (for
non geostationary orbits), the antenna rig
needs to be repositioned periodically. A con-
tinuous update of the frequency is necessary
to compensate for the Doppler shift effect.

TrackinoServer
1
—
[£ N

GroundTracker AzEIProvider RadioController

KCTDriver

®getTrackParm(| | ®CompssPo|| ®SetFrequency) || $SetDirectiong

Figure 4: Architecture of the server

The architecture of the server is pictured
in Figure 4. In the run time environment, ev-
ery class is instantiated once. At the heart of
this architecture is the TrackingServer that
The Ground-
Tracker class is a computation center for the
SSP and radius (distance between geocenter
an satellite). The AzElProvider class is an-
other computation center. It calculates the
direction of the antennas, the altitude of the
satellite, and the center angle! based on the

controls all related classes.

'The center angle is defined as the angle between
two vectors originating from the geocenter, one di-

SSP and radius as well as the location and al-
titude of the ground station. The RadioCon-
troller class is the interface used to set the
radio modes and frequencies, which is done
using the parameters computed by Ground-
Tracker and AzElProvider. The last abstrac-
tion is KCTDriver.
rotors. Given positioning parameters, it is
responsible for moving the antennas in the
proper direction.

It controls the antenna

A typical tracking session goes as follow.
The object of class TrackingServer accepts
a client Internet socket connection. Next,
it receives a selected satellite name from
the client. Afterwards, it reads the corres-
ponding Keplerian orbital elements from a
file and sends them to the object of class
GroundTracker (using message SetTrack-
Parm(), see Figure 5). Then, it enters and
executes a loop until the socket connection
with the client is broken.

afzEIProvider aRadio

Controller

aTrackingServer | [aGroundTracker| akCTDriver

KCTDriver

; SetTrackParm{

|

i CompssPo

J CompDirg

SetFreguency

] SetDirectiong

i

Figure 5: Main loop of the server

The loop of the server is illustrated in Fig-
ure 5. The participating objects are aTrack-
ingServer, aGroundTracker, aAzElProvider,
aRadioController, and aKCTDriver. There
are five main steps. First, aTrackingServer
sends message CompSSP() to aGround-
Tracker. It triggers computation of the
current subsatellite point and radius. Sec-
ond, aTrackingServer sends this informa-
tion in message CompDir() to aAzElProvider
that computes the current azimuth, eleva-

rected toward the satellite and another one directed
toward the ground station.

tion, altitude, and center angle. This second
block of information is sent in message Set-
Frequency() to aRadioController (that sets
the radio channel taking into account the
Doppler shift effect) and, in part, in message
SetDirection() to aKCTDriver.

Note that in this design, the control flow
of the application (put in TrackingServer) is
separated from objects that performs spe-
cific computations or tasks. This design has
two advantages. The control flow is easier to
grasp. And, controlled objects can be easily
substituted by objects that offer the same
services but in different ways (e.g., more ac-
curately, faster, for a different hardware).

The server is implemented under the Linux
platform using C+4. We selected the free-
ware Linux for its performance and wide dis-
We selected C4++ because the
object-oriented design was easy to map this
implementation language with good perfor-
mance. Most of the top level objects are im-
plemented as Unix processes communicating
through Unix sockets. Although, this sin-
gle user version of the server is essentially
a sequential process, we went for a multiple
processes structure because this server is the
first phase of a more ellaborated project. We
have foreseen development in a near future of
a multiple users, radios, and antennas server
that will require parallelisms within its com-
ponents.

tribution.

Keplerian orbital elements are automati-
cally gathered daily through the FTP site
at the Air Force Institute of Technology
(AFIT). This feature has been implemented
using the cron mechanism of Unix. All cal-
culations are based on the two body model
and equations described in Ref. [2].

4 Conclusion

We have presented the interface and the
design of a software that provides access
through the Internet to satellite telecommu-
nications stations. The current version is sin-
gle user and supports solely voice communi-

cation. Note that we are currently support-
ing only one type of rotor hardware interfaces
(Gracilis Grace) and solely one type of radios
(Yaesu). More work is required to support
other makes of equipment.

We are presently working on a second

client-server software that will support mul-
tiple users, various digital modes, and video.
We are also sketching a network of dis-
tributed, interconnected, and cooperating
satellite tracking stations. When a client will
log on this system the latter will automati-
cally switch him to a station that will provide
the earliest available communication window
with the desired satellite. And, upon closure
of this window, the system will switch the
client to the server that provides the next
available communication window. Hence,
the client will have access to longer commu-
nication time, automatically managed by the
system.
Acknowledgments: The authors would
like to thank Andre F. Lamothe, Gaston
Sirois, and Denis Thibault whom precious
collaboration has greatly contributed to the
realization of this project.

References

[1] G. Booch, Object-Oriented Analysis and
Design with Applicalions, Second Edi-
tion, Benjamin/Cummings, 1994.

M. Davidoff, The Satellite Frperimenters
Handbook, The American Radio Relay
League, 2nd Edition, 1994.

G. Cornell and C. S. Horstmann, Core
Java - Second Fdition, The Sunsoft
Press, Java Series, 1997.

http://www.pentium.com /ial/jmedia.

B. Selic, G. Gullekson, and P. T.
Ward, Real-time Object-oriented Model-
ing, John Wiley & Sons, Inc., 1994.

[6] http://www.fourmilab.ch.

