CCECE/CCGEI'95

809

7 A Comparison of two Synthesis Methods
for Timed Discrete-Event Systems*

M. Barbeau. F. Kabanza, and R. St-Denis
Département de mathématiques et d’informatique
Université de Sherbrooke
Sherbrooke. Québec CANADA J1K 2R1
Email: {barbeau. kabanza. stdenis}@dmi.usherb.ca

Abstract ~ The control theory for discrete-event sys-
tems has become noteworthy due to its utility in auto-
matically generating controllers. Recently two timed
versions of this framework were developed to enable
the specification of temporal properties and synthesis
of controllers that supervise processes under time pro-

-gression: one is operational, the other is axiomatic.
The comparative study done in this paper shows their
relative strengths and weaknesses.

I. INTRODUCTION

In this paper, we compare two controller synthesis meth-
ods for timed discrete-event systems (TDES). These meth-
ods are in the line of the supervisory control theory in-
troduced by Ramadge and Wonham [4]. Given an uncon-
trolled discrete-event system (hereafter called a process)
and a control requirements specification. the goal in super-
visory problems is to obtain a nonblocking and mazrimally
permissive controller satisfying the requirements. Then.
the process is controlled by combining its execution with
that of the controller in a closed-loop as follows. At each
step, the controller reacts to the same event as the process
by determining those events that are prohibited at the next
step among controllable ones. The framework of Ramadge
and Wonham for deriving such a controller, by using syn-
thesis algorithms, requires the following specifications: the
description of unrestrained behavior of the process compo-
nents; the identification of controllable events; and the ex-
pression of the control requirements as a set of legal event
sequences. Generally, finite automata are used to specify
the unrestrained and legal behavior of the process.

This framework has been specialized by Brandin and
Wonham such that the process and control requirements
specifications are both given in terms of TDES [3]. Hence.
they are operational. This makes it possible to reason
about time dependencies. Usually, the unrestrained behav-
iors of the different components of the process are specified
as separate TDESs. The global TDES is then calculated
as their composition. This approach is appealing because
it allows manipulation of simpler (smaller) TDESs that
are more readable. Similarly, the control requirements are
specified using several TDESs (one per constraint). Then.
the global control specification is obtained by taking their
intersection. The operational character of the control spec-
ification hides the requirements in an executable struc-

* The research described in this paper was supported in
part by the Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC) and the Fonds pour la formation de
chercheurs et l’aide & la recherche (FCAR).

0-7803-2766-7-9/95/$4.00 © 1995 IEEE

ture. In real problems, however, computational complex-
ity, readability, debugging and maintainability are limit-
ing criteria which make the modeling, specification. and
synthesizing tasks hard or even untractable with this ap-
proach (5]. In this case, an aztomatic approach can be a
useful alternative.

Such an axiomatic approach has been recently developed
by Barbeau, Kabanza, and St-Denis [2]. This method in-
tegrates concepts from control theory, concurrency. and
Al planning. In this method, the control requirements
are translated into a formal specification by using et-
ric Temporal Logic (MTL) formulas. These formulas are
then checked over state sequences incrementally. During
the synthesis process, a control-directed backtracking tech-
nique is used to prune the search space. Since MTL speci-
fications are declarative and maintained as such during the
synthesis process, we expect that debugging will become
easier than with the operational approach. Moreover. since
solutions are presented in a symbolic form. their traceabil-
ity with regard to.problem specifications is improved.

In this paper, we compare the two above methods. The
goal of this comparative study is to determine their rela-
tive strengths and weaknesses. The comparison is made
mainly along the convenience of specification languages by
demonstrating how requirements stated in one formalism
are expressed in the other.

1I. DESCRIPTION OF THE PROBLEM

This section introduces a control problem on which our dis-
cussion and comparison is based. The process is specified
by using an activity transition graph which is a graphical
representation of a standard state machine. The control
requirements are informally stated in natural language.

4. Process

The process consists of two components. numbered 1 and
2. that may be running in parallel. Every component
is either idle, running or failed. Component i is started
when event «a; occurs and then moves from state /[DLE;
to RUNNING;. While running, a component may ei-
ther stop (outgoing transition to state [DLE; labeled with
event J;) or fail (outgoing transition to state FAILED; la-
beled with event v;). Repair of a component is modeled as
a transition from state FAILED; to state IDLE; labeled
with event J;. Fig. 1 gives an activity transition graph
which represents the global states and transitions of the
process. The whole system is inactive until event a occurs

435

810

{ FAILED,
S lDLE:_J'
5 N B,

FAILED,

RUNNING,
i
o By | B2 % M Bl 1
o 12 IDLE, jﬂUNN;NGI‘ ;r-l-:AlLEDl.
IDLE, { RUNNING | _FAILED, ;
L) By | B o |1 LR
|
IDLE, “—e{ RUNNING, —
RUNNING, == FAILEDy ==
| i
3 Y 18
FAILED, ! f—
et i

Fig. 1 Activity transition graph

from global state /DLE to (IDLE,,IDLE,). Fori=1.2.
events a;, J; are controllable whereas #; and d; are uncon-
trollable. The occurrence of an event triggers an activity
(or action) that has a duration. All activities last one time
unit, except 3;s which last two time units.

B. Control Requirements

There is a dependency from Component 1 to Component 2.
The process startup must proceed as follows. Component 1
must be started first (C'1). After a warmup period of 2 time
units, Component 2 must be activated not later than 2 time
units (C2). If Component 2 fails, then Component 1 may
not be running more than 2 time units (C'3). If Component
1 fails, Component 2 may remain running. For the sake of
economy, however, Component 2 must be stopped within
one time unit (C4).

[II. THE OPERATIONAL APPROACH

In this approach, a timed transition graph. which is a
graphical representation of a TDES, is used to formally
specify the unrestrained behavior of the process. A TDES
is like a finite state automaton in which there exists a spe-
cial event, called tick and synchronized with a clock. that
represents the progression of time. As usual. events are

_instantaneous, that is, an arbitrary number of events may

occur between two ticks. The duration in time is associated
to states. A timed transition graph is obtained from an ac-
tivity transition graph and temporal properties associated
to events. More specifically, each timed event o has a lower
time bound [, and an upper time bound u,. The set of
events is partitionned into two subsets: the set of prospec-
tive events and the set of remote events. The events of the
former have finite upper time bounds (0 </, < u, < x).
while the events of the latter have no upper time bounds
(0 <1, < uy = 00). An event may occur only within its
time bounds relative to the times when it first becomes
enabled.

and <G.2.4>

(@) = QD e G ¢

tick tick tick tick

(b)

Fig. 2 Timed event

The concept of timed event has been introduced to study
the controllability of TDESs and incorporate temporal at-
tributes at the process level. Indeed, timed events are used
to represent physical constraints that include delays (lower
time bounds) and deadlines (upper time bounds). For ex-
ample, the timed event (o, 2, 4) is incorporated in a timed
transition graph as shown in Fig. 2. The timed transition
sub-graph of Fig. 2(b) actually corresponds to the tran-
sition labeled with o in the activity transition graph of
Fig. 2(a). Note that transitions labeled with tick must be
inserted in such a way that all delay/deadline constraints
are satisfied together. Furthermore, if we increase the de-
lay and deadline for an event, the size of the corresponding
timed transition sub-graph increases proportionately.

The role of timed events is limited because Brandin and
Wonham have not defined any algebra for such events. For
example, a timed event (s, —, —) cannot capture temporal
properties that depend not only on & but also on events
that occur before o. For instance one cannot express di-
rectly the constraint that an event ¢ occurs after m with
a deadline of two ticks or after 7 with a deadline of four
ticks. This is indeed inconsistent with the definition of
timed event, that is, each event must have only one upper
bound. One can, however, express an equivalent constraint
by using different event names to model different versions
of event o.

Fig. 3 Part of the timed transition graphs for the process

In this method only remote events can be controllable.
Thus, it is impossible to introduce a deadline constraint
on a controllable event at the process level. For the par-
ticular problem of Section II, this requires that the lower
and upper bounds of all events are set to 0 and ¢ re-
spectively even if as has a deadline. The timed transition
graph of the process is then obtained, firstly, by adding to
each state of the activity transition graph of Fig. 1 a self-
loop labeled with the event tick. Furthermore, durations
must be considered since they represent physical proper-
ties of the process. Appropriate sequences of ¢t ticks are
thus added after each transition having an activity with

tick tick tick
) *2

Fig. 4 Partiel timed transition graphs for the constraints

a duration t. Fig. 3 shows, in part, the resulting timed
transition graph for the TDES G of the process. Note that
for our problem, it is not true that an arbitrary number of
events may occur between two ticks.

A. Modelling the Constraints

TDESs are used for modelling control requirements. Con-
straints C1 to C4 are formally described by the timed
transition graphs of Fig. 4. Note that the timed transi-
tion graph for C2 includes also C1. Therefore, the first
timed transition graph of Fig. 4 will not be further con-
sidered. One should note that these graphs are skeletons.
Only self-loops labeled with tick have been added to these
timed transition graphs. This first solution is intuitive.
For example, to obtain a complete TDES for C4, we must
reason on GG by abstracting some details that are irrelevant
for C4. The construction of such TDES represents a te-
dious task, particularly when the number of components
or states of the process is large. Fig. 4 shows the complete
solution for C4.

any-{ vl) tick

Fig. 5 Complete timed transition graph for C4

B. Deriving a Controller

The procedure used for computing a nonblocking and max-
imally permissive controller satisfying the requirements
specification is algebraic and consists in the following three
steps:

1. Combining the requirements specification languages
by taking their intersection

C = meet(meet(C3, C3),C4))

811

2. Deriving the automaton SC accepting the supremal
controllable sublanguage included in C N L,,(G)

S5C = supcon(G,C)

3. Determining the feedback function

PHI = condat(G,SC)

The operators meet, supcon, and condat are imple-
mented in the TCT tool {6].! The operator supcon works
on the product transition structure meet(G.C). It iter-
atively prunes states that do not comprise an outgoing
transition on a possible but uncontrollable event in G.

IV. THE AXIOMATIC APPROACH

In the axiomatic approach, only the process is described
by a TDES. The legal language is described by an MTL
formula. TDESs, however, differ from those in the oper-
ational approach by the fact that transitions are labeled
with timed activities rather than instantaneous events.
That is, time progression is captured by transitions rather
than states. In particular, a tick activity lasts at least
one time unit. For instance, the TDES for the problem in
Section II is described by a similar graph as in Fig. 1, ex-
cept that each transition has the duration corresponding
to that given in the problem description, and each state
has a self-loop labeled with tick.

A. Modelling the Constraints

The requirements are expressed by the MTL formula f3 =
O>0(g1 A g2 A g3 A ga), with g; described as follows:

® g; expresses condition C1:
g1 = ((idley V failedy) Atdles) — O<1 =running,
e g, expresses condition C2:
g2 = idley = Oy (running; —-(Ocq(running,

— runnings) A Ogz ~runnings))

e g3 expresses constraint C3:
g3 = fatleds —=O<o ~(—runnings A running,)

e g4 expresses constraint C'4:
94 = failed; — O<y ~(—running, A runnings)

B. Deriving a Controller

The manner in which a controller is synthesized is es-
sentially incremental model-checking using a technique for
progressing formulas along state sequences. That way, one
prunes those transitions violating the specification, tak-
ing into account the controllability problem. To be more
specific, using formula progression, one generates a search
graph from which the controller is extracted. In this graph,
states are identified with MTL formulas. Fig. 6 shows a
part of such a graph for the aforementioned problem.

In this figure, w; denotes a state of the process and f; an
MTL formula. For process states, we have wy = idle, wy =
idley Aidles, wy = running; Aidles, wz = idle; Arunnings,
w4 = Tunning; Arunnings, and ws = fatled; Aidle;. The

!'We presume that supcon handles the forcible events, which
is not the case with the current version of TCT.

812

mtick
(o)

wy

Fig. 6 Progression of the MTL specification through the process TDES

MTL formula fy is the input. The other formulas are ob-
tained using the formula progression technique. Each of
these formulas is a combination of sub-formulas from the
original one, fy, but possibly with different time subscripts.
In each state, the formula expresses the requirements that
must be satisfied by all the sequences rooted on it, accord-
ing to the original formula f;, and the history of paths
from the initial state. Specifically:

fi = fo AQzg(running; =(O<a(running; — runnings)
A Ogz ~runninga)) A U=g —running,

fa = fo A Oga(running) —= runnings) A Og; —running,

fa = false

fa = fo ANQ=g ~running,

fs = fo A Ogalrunning; — runnings) A Q=g ~running,

fs=foA O;l(runningl — runninga)

fz = fo A O=gl(running; — running,)

Note that Formula f3 is equivalent to false. This means
that states labeled with f3 are sinks, so the controller must
inhibit events leading to them.

MTL specifications have many advantages. For instance.
as illustrated above, MTL formulas can be more natural
than TDES. Their intuitive meaning is easily captured us-
ing the natural language interpretation for logical connec-
tors (e.g., Og: f is read as “eventually f within ¢ time
units” and fi — f> as “f; implies f»”). We can express
other styles of requirements more concisely and straight-
forwardly. For example, the requirement that each free-
failure cycle on the idle; Atldes state lasts at most 20 time
units is expressed by the formula

DZQ Oégo("!(failed1 \ failea’g) —+(zdlel A ldle'g))

It should also be noted that one can change the dead-
line requirements by modifying only the subscripts of MTL
modal operators. If one were using a TDES, such a change
would lead to a more complex automaton. We are planning
to handle even more succinct specifications using quanti-
fied MTL formulas.

Furthermore, the fact that states in the search graph are
characterized by MTL formulas facilitates understanding
of the impact of specification requirements on the oper-
ations of the process. For example, we can immediately
understand the reason why a state is a sink by observing
that an eventuality deadline is expired (e.g., its time script

has decreased to zero before the eventuality is satisfied).
or an always condition is made false. In the end, this helps
debugging of specifications.

V. CONCLUSION

In this paper, two timed frameworks for the specification of
temporal properties and synthesis of controllers have been
discussed. These two frameworks have been compared
with respect to three aspects, namely, the time model.
specification formalism, and synthesis procedure.

In the time model of Brandin 'and Wonham time pro-
gresses in states, whereas in that of Barbeau, Kabanza.
and St-Denis it progresses in transitions. Both meth-
ods use TDES to describe the process. In the method
of Brandin and Wonham, the requirements are expressed
operationally, that is, with automata, whereas in that of
Barbeau et al. they are expressed declaratively, that is.
with MTL formulas which we think are more readable than
automata. The svnthesis procedure used by ‘Brandin and
Wonham consists of a state space comparison between the
TDES of the requirements and the TDES of the process
(implemented in supcon). Barbeau et al. promote a pro-
cedure in which synthesis is performed as a state space
search during which MTL formulas are checked incremen-
tally. We think that this approach improves traceability
because of its symbolic nature. For efficiency purposes, the
state space is pruned using control-directed backtracking.

The two frameworks are thus substantially different. No-
tice that it could be possible to generate an automaton
consisting of states satisfying MTL formulas [1]. One can
then use the supcon operator to generate the controller.
One can, however. reasonably expect that the formula pro-
gression technique performs better on average because sink
states are avoided by incremental model-checking.

VI. REFERENCES

(1] R. Alur and T. Henzinger. Real-time logics: Complex-
ity and expressiveness. Information and Computation.
104(1):35-77. 1993.

[2) M. Barbeau. F. Kabanza, and R. St-Denis. Synthesiz-
ing plant controllers using real-time goals. To appear in
the Proceedings of the International Joint Conference
on Artificial Intelligence, 1995.

{3] B. A. Brandin and W. M. Wonham. Supervisory con-
trol of timed discrete-event systems. [EEE Transac-
tions on Automatic Control, 39(2):329-342. 1994.

{4} P. J. G. Ramadge and W. M. Wonham. Supervisory
control of a class of discrete event processes. S[ALMS
Journal of Control and Optimization. 25(1):206~230.
1987.

[3] K. Rudie, N. Shimkin, and S. D. O'Young. Timed
discrete-event systems: A manufacturing application.
In Proceedings of the 1994 Conference on Information
Science and Systems, pages 374-381, Princeton, 1994.

[6] W. M. Wonham. Notes on control of discrete-event
systems. Technical report, University of Toronto, 1994.
255 pages.

