Proceedings of the 35th
Conference on Decision and Control
Kobe, Japan ¢ December 1996

FP06 3:50

A Colored Petri Net-based Approach to the Design of
Controllers!

M. Makungu, R. St-Denis, and M. Barbeau
Département de mathématiques et d’informatique
Université de Sherbrooke
Sherbrooke (Québec) CANADA J1K 2R1
{barbeau, makungu, stdenis}@dmi.usherb.ca

Abstract

In this paper, we extend the supervisory control the-
ory and a supervisor synthesis problem to a class of
colored Petri nets. More specifically, we investigate the
forbidden state control problem with full observation in
which the discrete-event system is modeled as a colored
Petri net with a symmetry specification. This problem
is decidable if the colored Petri net has finite color sets
and bounded places. A new algorithm for deriving a
controller is presented in detail with a proof of its cor-
rectness. Unlike conventional algorithms that explore
the entire reachable set of states, our algorithm avoids
an exhaustive search of the state space by exploiting a
symmetry specification. It performs particularly well
when applied to large but structured processes with
similar components. Furthermore, this approach al-
lows to represent a controller in a compact form.

1 Introduction

A discrete-event system (DES) is a dynamic system
whose the internal state changes instantaneously in re-
sponse to the occurrence of an event. Typically, they
are used to represent the behavior of reactive, commu-
nication, or manufacturing systems. The control the-
ory for discrete-event systems pioneered by Ramadge
and Wonham [16) is a framework for modeling super-
vised discrete-event systems and applying synthesis al-
gorithms to solve control problems. This theory has
been primarily studied in the context of automaton-
based models. Automaton-based modeling is, however,
cumbersome, particularly in representing large systems
consisting of numerous similar interacting components.
Even though the computational complexity can be
polynomial in the number of system states, it grows ex-
ponentially with the number of components. This phe-
nomenon, called the state ezplosion problem [2], can be

1 The research described in this paper was supported in part
by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and the Fonds pour la formation de chercheurs
et 'aide a la recherche (FCAR).

0-7803-3590-2/96 $5.00 © 1996 IEEE

overcomed by partitioning the components into a small
number of equivalence classes so that all components in
a given class are essentially similar. This paper makes a
contribution in this direction and presents an algorithm
that reduces the complexity of the supervisory control
problem under full observation for instances consisting
of large but structured processes with similar behav-
iors.

Recently, Petri nets have begun to receive attention as
models for investigating the control of discrete-event
systems. The Petri net-based models are more power-
ful than the automaton-based models in that the set of
Petri net languages is a superset of regular languages.
Furthermore, they allow more compact representations
of multiple interacting components than equivalent au-
tomaton models. Indeed, a single Petri net structure
can describe the behavior of several concurrent compo-
nents modeled as tokens marking the structure.

One may identify mainly two different approaches.
In the first approach, introduced by Krogh [12] and
Ichikawa [9], a DES is described by using a Controlled
Petri net (CtlP-net). A CtlP-net is an extension of a
standard Petri net in which the enabling of transitions
can be influenced by external binary control inputs. A
tutorial survey of works related to this approach can
be found in [6]. Recently, Boel et al. [1] addressed the
forbidden state problem for a special class of Ctl1P-nets.
In contrast, the second approach does not include the
concept of control input. A DES is specified by using
an ordinary Petri net and its dynamic is viewed with a
linear algebraic perspective [3, 5, 13].

Among the Petri net-based models, colored Petri nets
(CP-nets) [10] are powerful enough to describe complex
systems in a manageable way, particularly when they
contain many interacting components that are similar
but not identical. It is well-known that the class of CP-
nets with finite color sets is equivalent to the class of
place/transition nets (PT-nets). The CP-nets describe
the same systems as the PT-nets but often in a more
compact form and allow the use of equivalence classes
to represent similar components. Specifications can be

4425

more readable and eventually more tractable. If we do
not impose any restrictions on the definition of CP-
nets, then they are equivalent to Turing machines.

The work presented in this paper addresses the for-
bidden state control problem for a class of CP-nets
in which color sets are finite and behaviors satisfy
boundedness properties. Given a control specifica-
tion expressed as a set of forbidden markings, a pro-
cedure computes the unique maximal set of admissi-
ble markings and a controller by means of an occur-
rence graph with symmetries. The symmetries guaran-
tee that equivalent markings have similar behavior [11].
Our aim is not to include, as control logic, additional
places and transitions to the CP-net being controlled.
Such an approach is generally used when a simulation
or a performance analysis is performed for a given con-
trol policy [12]. In this work, the process being con-
trolled is separated from the control logic. This ap-
proach is suitable to controller synthesis in which the
process to be controlled already exists and the aim is
to compute, from a control specification, a separated
controller which, when embodied with the process in
a closed-loop system, satisfies the control specification.
Thus, this approach permits formulations and solutions
of different control synthesis problems for the same pro-
cess.

The layout of the paper is as follows. The next sec-
tion introduces the notation and definitions used in
CP-nets. Section 3 extends the supervisory control the-
ory to processes modeled by CP-nets with a consistent
symmetry specification. Section 4 formulates the con-
trol synthesis problem for avoiding a set of forbidden
markings. Section 5 describes in detall a new synthesis
algorithm and gives a proof of its correctness. Sec-
tion 6 illustrates its application with a short example.
Finally, concluding remarks are provided in Section 7.

2 Notation and Preliminaries

We use a CP-net to model a discrete-event system
(DES). A colored Petri net is an ordered tuple:
CPN = (X,P,T,A,N,C, E, M), where ¥ is a finite
set of non-empty types, called color sets; P is a finite
set of places; T is a finite set of transitions; A is a fi-
nite set of arcs connecting places and transitions; N is
a node function that maps each arc to a pair of nodes
of different kinds (i.e., one is a place, while the other
is a transition); C is a color function that associates a
color set with each place; F is an arc expression func-
tion that maps each arc to a multi-set over the color
set that is attached to the corresponding place; and My
is the initial marking. We consider only CP-nets with
decidable properties as valid models for DESs; that is,
the color sets are finite and the contents of places are

4426

bounded. Furthermore, for the sake of simplicity, we
assume that guards (occasionally used in the definition
of CP-nets) always evaluate to true.

The following notation is introduced to consider the
behavior of a CP-net that is based on the concepts
of enabling and occurrence. The reader is referred to
Jensen’s book [10] for a detailed exposition. For all
t € T, let Var(t) be the set of variables appearing
on arcs that have ¢ as source or destination. For all
(pt) € PxT,let E(p,t) = PCoeapy Ela),’ where
A(p,t) gives the set of arcs from p to . E(t, p) is defined
in a similar fashion.

A binding b of a transition ¢ is a substitution, noted
b=<wv =c1,...,v5 = ¢ >, that assigns a color ¢;
to the variable v; € Var(t) (¢ = 1,...,n). A binding
elementis a pair (¢, b) where t € T and b € B(t), the set
of all bindings for t. Let BE be the set of all binding
elements.

The state of a CP-net is given by its current marking
M that maps each place p to a multi-set over C(p). A
marking gives the current distribution of tokens on the
places. A step Y is a function that maps each t € T
to a multi-set over B(t) such that Y () is finite for all
t € T and non-empty for at least onet € T. A step Y
is enabled in a marking M if and only if

Z Epty< M(p)forallpe P
bEY (t)

where E(p,t) < b > yields the multi-set of tokens re-
moved from p when t occurs with the binding b. The
sets of all markings and steps are denoted by M and
Y, respectively. When a step Y is enabled in a marking

M, it may occur, changing it to another marking M’,
defined by:

> E(pt))

beY (t)

+ Y. Etp)VpeP (1)
beY (t)

Moreover, we say that M’ is directly reachable from M
by the occurrence of the step Y, which is also denoted
by M[Y> M’. The concept of occurring step is ex-
tended to a finite occurrence sequence of markings and
steps as follows: Mi[Y1> M,[Yo> ... My[Yn> My,
where n € N and M;[Yi> Miy forall i € {1,...,n}.
The integer n i1s the number of steps in the sequence.
The abbreviated form M;[Y1Y2...¥y> Mp4, is also
used. A marking M’ is reachable from a marking M
if and only if there exists a finite occurrence sequence

1The expression Zsesm(s)‘s represents a multi-set. The

non-negative integer m(s) is the number of occurrences of the
element s in the multi-set m.

having M as start marking and M’ as end marking.
A marking M is reachable if and only if it is reach-
able from Mj. The set of markings that are reachable
from M is denoted as [M> and the marking directly
reachable from M by the occurrence of Y is repre-
sented by M[Y'>. It is always true that M € [M>
for all markings M € M. In this paper, we assume
that an occurring step contains only one binding ele-
ment, although a number of binding elements can be
concurrently enabled. Therefore, M{Y> M’ is writ-
ten as M[(t,b) > M' and Ml[Y1Y2 LY, > Mn+1 as
Ml[(tl, bl)(tz, bg) .. (tm bn)> Mn+1.

Symmetry Specification

It is often the case that large systems have numerous
interacting components with similar behaviors. Theses
components are so alike that we may abstract the dif-
ferences between them. This can be captured in a CP-
net by defining a set of symmetries called a symmetry
specification ® over markings or binding elements {11].
Each symmetry ¢ € ® is a function (more precisely
a bijection renaming tokens) that maps a given mark-
ing {or a given binding element) to another marking
(or binding element) with similar properties. In or-
der to capture the fact that two symmetrical markings
have similar properties, the symmetry specification @
must be consistent with the behavior of the CP-net.
A symmetry specification ¢ is consistent if and only if
the following properties are satisfied for all symmetries
¢ € @, all markings My, M2 € {My>, and all binding
elements (¢,b) € BE:

¢(Mo) = Mo 2
My[(t,0)> Mz & o(My)[(t, $(0))> 6(M2) (3)

The consistency property has been verified for par-
ticular symmetry specifications such as permutation,
rotation, and identity [11]. A consistent symmetry
specification ® induces the equivalence relations =sps
and ~gp. We use My and BE. to denote the set
of all equivalence classes for ~p; and ~pg, respec-
tively. The notation [X], where X C M, represents
all the markings equivalent to a marking from X:
[X] ={M € M | (3z € X) M ~u z}. The notation
[{M}], where M € M, is simplified to [M]. Finally,
the notation [Y], where Y C My, represents all the
markings that belong to one of the equivalence classes
inY: [Y]={MeM|(3yeY) Mecy}

3 CP-net Supervisory Design under Full
Observation

The basic problem in supervisory control is to construct
a controller that can turn off various events of an un-
controlled discrete-event system (DES), called a process

4427

(Pr), according to some requirements. The process
Pr is defined as a triple (CPN,®, K), where CPN is
a CP-net with a consistent symmetry specification &
and K € [P — N — {0}] is a capacity function bound-
ing the contents of every place. Therefore, we require
that My(p) < K(p) and M'(p) < K(p) forallpe Pin
the enabling rule (1).

Let T' be the set of all functions «, called control pat-
terns, that assign a subset of B(t) to every transition ¢
of T. If b € (t), then the controller prevents the tran-
sition t from occurring with the binding b. Let T, and
T, be fixed disjoint subsets of T' denoting the sets of
controllable and uncontrollable transitions, respectively.

A controlled discrete-event system (CDES) is an or-
dered tuple Pr. = (CPN:,®,K,T}). In a CPN,,
MI.(t,b)> M' denotes that a marking M’ is directly
reachable from M by the occurrence of the binding el-
ement (¢, b) under the control of ¥ € I'. This is defined
as:

M((t,b)> M’ ifteT,
M[(t,b)> M’ bg~(t) ift€eT.andyeT

A controller is a pair S = (G, ¢), where G is a sub-
graph of an occurrence graph with symmetries (OS-
graph) and ¢ the feedback function. An OS-graph is a
4-tuple (V, A, N, vp), where

o V is the finite set of nodes {{M] € My | [M]N
[Mo> # 0};

o A is the finite set of arcs {([M;],[(2,8)],[M2]) €
VxBEyxV | A(M{,(t,V), M}) € [M1]x[(t, b)] x
[M2] such that M{[(t,b)> M3};

e N is the node function from Ainto V x V. Ifa =
([M1],[(¢,8)], [M3]), then N(a) = ([Mi], [M2]);

e vo € V is the initial node (vo = [My)).

The feedback function ¢ € [V — T satisfies the follow-
ing conditions:?

elv)(t) =10 ifteT,,veV
e(v)(t) € p(B(t)) ifteT,,veV

The graph G can be interpreted as the transition graph
of an automaton modeling the behavior of the con-
troller as in the original framework of Ramadge and
Wonham. It is driven by a sequence of steps occur-
ring in CPN. That is, after the firing of a transition,
G moves to a node v which represents the marking
reached by CPN. The role of the feedback function

2p(B(t)) denotes the power set of B(t).

¢ is to provide, after each execution step of CPN and
G, the control pattern « that represents the binding
elements inhibited for the next step.

The CDES and controller are then embodied in a
closed-loop system to constitute a supervised discrete-
event system (SDES) S/Pr, = (S,Pr.). A state of
a SDES is a pair (v,M) where v € V and M is a
marking of CPN, such that M € v. The behavior of
S/ Pr. is illustrated in Fig. 1. Let M; be the current
marking of the process and v; = [M/] be a node of G
such that there exists ¢ € ® such that M] = ¢(M;).
Let (t;,b;) the next step such that M;[(t;, bi)> My
and b; ¢ ~(t;) with v = ¢(v;). First, the controller
S moves to the next node v, = [M],] by executing
the transition from node v; on the arc labeled (¢;,5%).
The binding element (;, b}) is the representative mem-
ber of binding elements equivalent to the process step
(ti, bi), that is, (t;,}) = (ti,#(b;)). The controller
S includes control patterns for representative marking
of each equivalence class of reachable markings. Let
Yiz1 = @(vig1) be the control pattern of node vj4y.
To compute the control pattern corresponding to the
next marking M;;; of the process, the controller uses
the inverse of symmetry function ¢ to map the control
pattern ¥}, to the control pattern ;11 = ¢7*(vi,4)2
Formally, if (v;, M;) is the current state of S/Pr, then
the next state is (viy1, Mi41) if and only if there exists
a binding element (t;, b;) such that M;[(¢;,b:)> M;tq,
bi & (t:) with 7 = (v1), and (v, [(t,)], vi11) € A
with (¢;,0;) ~pgr (t;,b}). The control pattern of M;,,
is 3~ 1(¢(vi+1)). The controller S must always be com-
plete in the sense that (vi, [(£;, 8))], viy1) € A whenever
S/Pr. is in state (v;, M;) with M;[c(t:, b;)> M;41 and
b & p(0)(L).

Process Pr Controller S
M- ¢ **************** - [M,]‘ =V
(t,by) ¢ [(t;,59)] E
R,
Misi Mipd = Vs
¢! .
Yis1 P(Vis) =Yiny

Figure 1: An execution step of the closed-loop system

4 The Forbidden State Control Problem

Several types of control specifications can be applied
to control synthesis methods, including: avoiding a
set of forbidden states {12]; enforcing event language

3Since @ is a group, ¢! always exists.

4428

specifications [16]; and enforcing liveness [8]. In this
paper, we consider the forbidden state control prob-
lem in which the control specification is expressed as
a set of forbidden markings M,. Based on the con-
sistency property of @, if a marking is forbidden, all
its equivalent markings are also forbidden. Therefore,
only one representative per each equivalence class of
forbidden markings is included in Mp. This prob-
lem is expressed as follows. Given a set of forbidden
markings M,, an uncontrolled discrete-event system
(CPN,®,K), and an admissible (the definition of in-
admissible marking is given in the next subsection) ini-
tial marking My ¢ [M,], derive a mazimally permissive
controller S, that is: (1) the closed-loop system S/Pr,
is safe (Pr. cannot reach a forbidden marking under
the control of S); (2) a reachable marking of Pr, which
1s a nonreachable marking of Pr, under the control of
S, 1s either forbidden or can uncontrollably lead to a
forbidden marking. Before describing the synthesis al-
gorithm, lets us introduce an admissibility assessment
predicate and the notion of latest controllable binding
clements.

Inadmissible marking

Given a set of forbidden markings My, there is, in gen-
eral, a larger set of markings which must be avoided,
due to uncontrollable transition sequences. The mark-
ings from which the process can uncontrollably reach
forbidden markings are characterized by the following
recursive predicate:

Inadmissible(M) <= (In > 0)(3t1,... ,t, € T,)
(361 € B(t1)) ... (3b1 € B(t,))
M[(tl,bl)...(tn,bn)> € {Mb] (4)

A node with associated inadmissible markings is inad-
missible. When the initial marking is safe and admis-
sible, and steps contain only one binding element, the
maximally permissive solution to the forbidden state
control problem exists and prevents the process from
reaching any inadmissible marking [7].

Latest Controllable Binding Elements

Let y denote a node in the OS-graph. The latest con-
trollable binding elements of y is a set (denoted as
LCBE) of all triples of the form (z,,b) such that:*

1. @ is a node in the OS-graph;

2. (t,b) is a binding element, where t is a control-
lable transition;

3. (3n > 0) M,i(t,b)(t1,b1)...(tn,bn)> M, with
t, €y, fori=1,... n.

A triple (z,t,b) contained in the LCBE of y is in-
terpreted as follows. The occurrence of the step (¢,b)

4The expressions My and Icbey denote a representative mark-
ing M and LCBE of the node z, respectively.

from M, is controllable whereas the sequence of steps
(t1,61) .. .(tq,b,) from My[(t,b)> to M, are uncon-
trollable. Therefore, to make unreachable A, and its
equivalents in the process, it is necessary to disable the
binding & for ¢ when the process is in marking M.

5 The Synthesis Algorithm

The basic idea behind our algorithm is to reduce the
number of markings that must be examined by gath-
ering the components that “behave in the same way”
into the same equivalence class. Therefore, the sets
of all markings and steps are partitioned into disjoint
nonempty equivalence classes. The algorithm, given
in Fig. 2, is based on the notion of latest controllable
binding elements, equivalent marking, and inadmissible
marking. It accepts as input a process Pr, a consis-
tent symmetry specification represented by the equiva-
lence relations =y and ~gg, a set of forbidden mark-
ings My, and a set of controllable transitions 7.. A
maximally permissive compact controller S = (G, p) is
computed from representative members, one per class
of equivalent markings and class of equivalent steps.

1 function Synthesize.Controller(Pr = = gg, My . Tc)
2 V &« {}; A & {}; processed.nodes + {};
unprocessednodes « {NewNode(Mo,{})}
3 repeat
4 select x in unprocessed_nodes;
5 if not (M; ~p M,) for some y in processed nodes then
6 for all (¢,b) enabled in M do
7 M + New Marking(M,(t,b));
8 if M ~p M’ for some M’ in M, then
9 ift € T then
10 0(@)(t) « p(z)(t)U {5}
11 else
12 Inadmissible(x); break
13 else
14 if not (M =~ M) for some y being a son of # then
15 if t € Tc then lcbe, + {(z.t,b)} else icbe, « lcbe,;
16 z + New.Node(M icbe.);
17 unprocessed.nodes «— unprocessed.nodes U {z};
18 a + New.Arc(z,(t,b),z); A« AUa

19 if z.status = admissible thenV « V U {z}
20 else
21 if y.status = inadmissible then Inadmissible(z)
else lcbey + lcbey U lcber
22 processed + processed U {z};
23 unprocessednodes « unprocessed-nodes \ {x}
24 until unprocessed-nodes = {};

Figure 2: Algorithm for synthesizing a compact controller

The algorithm uses many functions briefly described
hereafter. The function New Node creates a new
node from a marking and an LCBE. The function
New Marking yields the marking reached after the oc-
currence of a binding element from a given marking.
The function New_Arc creates a new arc from a source
node, a binding element, and a destination node. The
function From Nodes takes as argument a node z and
returns the set of nodes in V from which « is directly
reachable on an uncontrollable binding element.

Each node has a status indicating whether or not its
associated marking is admissible. A new node has its
status set to admissible. The function Inadmissible,
given in Fig. 3, fixes the status of a node to inadmiss:-
ble (line 2), determines those that become inadmissible
among its predecessors (lines 3 and 4), and updates
the feedback function by inserting, for each (’,,5) in
the LCBE of z, the binding b in the set of forbidden
bindings for ¢ of «’ (lines 6 and 7). When a node be-
comes inadmissible, all its son nodes in V are removed
(including their bound arcs) by using the procedure
Remove_Sons (line 2). If the LCBE of z is empty, then
there are no solutions (line 8).

1 procedure Inadmissible(z) :
2 z.status + inadmissible; RemoveSons(z); V « V \ {z}
3 for each z' in From_Nodes(z)

such that ' .status = admissible do

4 Inadmissible(s")

5 if leber # {} then

6 for each (z',t,b) € Icbe, do
7 o(e')(t) © o(a)(£) U {6}
8 else “no solutions”

9 end

Figure 3: Procedure for determining inadmissible nodes

The algorithm works as follows. Initially, the sets of
nodes V and arcs A of the graph are both empty.
The set of processed nodes is also empty. The node
vg = (Mo, {}) is created and inserted into the set of
unprocessed nodes (line 2). While there are unpro-
cessed nodes, a node z is selected (line 4) and pro-
cessed. - The processing of a node starts with a test
for an equivalence between the marking M, and the
marking M, of an already processed node y (line 5).
Only the first-picked node in each equivalence class is
developed further. If such a node y exists, then the
algorithm checks if it is an inadmissible node. If so,
then the Inadmissible function is called on node z to
disable the latest controllable binding elements on the
path leading to = (line 21). Otherwise, the contents
of lcbe, is inserted in Icbe, (line 21). If such a node y
does not exist, every binding element (Z,b) enabled in
M, is analyzed (line 6). The marking M reached after
the occurrence of the binding element (¢, b) is computed
(line 7) and checked for an equivalence with some other
marking M’ included in the set of forbidden markings
(line 8). If so, there are two cases: either ¢ is control-
lable or not. If transition ¢ is controllable, the binding b
is inserted in the set of forbidden bindings of z {line 10).
If ¢ is uncontrollable, then the function Inadmissible
is called on node z (line 12). If M is not equivalent
to some forbidden marking in My, then the algorithm
checks if marking M is equivalent to a marking M,
where y is a son of (line 14). If all the above condi-
tions are not satisfied, it means that the marking M is
not equivalent to a marking of a son of « and not for-
bidden. In this case, a new node z is created with the
following attributes: the marking M and Icbe, which is

4429

defined as {(z,t,b)} if the transition ¢ is controllable;
otherwise, it is the lcbe, of its parent node z (lines 15
and 16). Furthermore, the set of unprocessed nodes is
updated (line 17) and a new arc is created from node z
to node z and added to A (line 18). At the end of the
analysis of all binding elements (2, b) enabled in M, if
the status of ¢ is admissible, then z is included in V.
Finally, the node z is included in the set of processed

nodes and removed from the set of unprocessed nodes
(lines 22 and 23).

The following theorem shows that the set of nodes V
generated by our algorithm represents the unique maxi-
mal set of markings that solves the forbidden state con-
trol problem with respect to a set of forbidden markings
M. The proof of the theorem is based on two lemmas.
Let us first introduce some properties of the Jensen’s
OS-graph [11] that are used in the proof. Hereafter, a
node is identified to its representative marking.

Proposition 1 Let & be a consistent symmetry speci-
fication and (W, A, N,vo) an OS-graph. The following
properties hold for all My,... ,My11 € [Mp> and all
¢ €

L [Mo> = [W]

2. Ml[(tl,b1)> .. -Mn[(tnybn)> Moy =
SM)(t1, (001> - S(M (i (80> #(Mss)

3. M€ [Mp < ¢(M) € [Mp>

Lemma 1 Let ® be a consistent symmelry specifi-
cation. For all M € [My > and all ¢ € @,
Inadmissible(M) = Inadmissible(¢(M)).

Proof: Because of the definition of the predi-
cate Inadmissible, there exists a sequence of un-
controllable binding elements (t1,51)...(tn, bn) with
t; € T, and a marking M’ € M such that
M[(t1,b1) .. . (tn,bn) > M’ and M’ € [M;]. From
Proposition 1, ¢(M)[(t1, (1)) ... (tn, #(bn))> S(M').
By the definition of My, ¢(M’) € [Ms]. Therefore,
Inadmissible(¢(M)) = true. The proof of the converse
is similar, using the function ¢~*. O

Lemma 2 Let predicate Inadmissible be restricted to
markings labeling nodes in the set processed_nodes, v €
V iff Inadmissible(M,) = false.

Proof: We use induction on the number of times & the
repeat-until loop is executed.

Basis: (k = 0). Trivially true since processed_nodes
(the set of markings reachable form M) is empty.

Induction hypothesis: v € V iff Inadmissible(M,) =

false.

4430

Induction: (k > 0) We show that, if the hypothesis
holds at the start of the loop, then it holds at the end.
Let z € processed_nodes at the end of the loop. There
are two cases: whether © € processed_nodes at the
start of the loop or not.

Case 1: When z ¢ processed_nodes at the start of the
loop, « is selected from the set unprocessed.nodes by
the current loop, yielding two subcases.

Subcase 1.1: The conditions of the if statement at
line 5, the for loop at line 6, and the if statement
at line 8 are satisfied. The condition of the if state-
ment at line 9 is not satisfied (the else part starting
at line 11 is entered). The procedure Inadmissible is
called with the actual parameter z (line 12). The node
z is not included in V (line 19) since its status has
been set to inadmissible in procedure Inadmissible
(line 2, Fig. 3). These conditions are true iff there ex-
ists a binding element (t,b) such that M,[(t,8)> M,
t € Ty, and M € [M’] for some M’ € [My]. Then
Inadmissible(M,;) = true because of Eq. 4.

Subcase 1.2: The conditions of the if statement at line 5
is not satisfied (the else part starting at line 20 is en-
tered) and the if statement at line 21 is satisfied. The
procedure Inadmissible is called with the actual pa-
rameter ¢ (line 21) and its status is set to inadmis-
sible {line 2, Fig. 3). These conditions are true iff
there exists an inadmissible node y € processed_nodes
with a marking that is equivalent to M, (M, =
&(My)}. Therefore, Inadmissible(M,) = true because
of Lemma 1.

Case 2: =z € processed_nodes at the start of the loop.
At the start of the loop, either z € V or not. It can
easily be checked that if z ¢ V at the start of the loop,
then the algorithm never inserts a node with a mark-
ing equivalent to M, in V (because of line 5). Let us
consider the case where £ € V' at the start of the loop.
The node z is removed from V' at the end of loop iff
a node z’ from unprocessed_nodes has been selected
and the procedure Inadmissible has been called with
actual parameter z’ (lines 12 or 21). Then, z’.status re-
ceived the value inadmissible and the recursive calls to
Inadmissible follow backward all the paths incoming
to z’, while transitions are uncontrollable. Further-
more, every encountered inadmissible node in paths
leading to #’ are removed, including # (line 2, Fig. 3).
The above is, however, possible iff 2’ has been selected,
Inadmissible(My) = true, in accordance with Case 1,
and there is a sequence of uncontrollable steps Y7 ...Y,
with M, [Yi...Ys,> M. These conditions are true iff
Inadmissible(M;) = true at the end of the loop be-
cause of Eq. 4. O

Theorem 1 The procedure Synthetize Controller
always terminates and, if Mo ¢ [Mp] and
Inadmissible(My) = false, then it returns a controller

S = (G,) that is the unique mazimal solution to the
forbidden state control problem with respect to the set
of forbidden markings My.

Proof:

Note that the procedure Synthetize Controller al-
ways terminates since the color sets are finite and the
CP-net Pr satisfies boundedness properties.

Now, let us assume that M, ¢ [M,] and
Inadmissible(My) = false. Let S = (G,) be the
controller computed by Synthetize Controller. We
can easily show the following by using Lemma 2 and
the definition of the predicate Inadmissible which ex-
presses the converse of controllability. For every v € V,
M, € [My> and Inadmissible(M,) = false. Fur-
thermore, for all ¢ € T, and b € B(t), if M,[(¢,b)>€
[Mo> then Inadmissible(M,[(t,b)>) = false. From
Lemma 1, this property holds for all markings equiva-
lent to M,. Therefore, the controller is safe.

From Proposition 1, we know that a marking is reach-
able ff it belongs to [W], where W is the set of nodes
of the OS-graph generated from Pr. Remark that
V C processed_nodes C W. Let w € W such that
Inadmissible(My,) = false, M,, is reachable under the
control of S, and w ¢ V. If w € processed_nodes,
then, from Lemma 2, Inadmissible(My) = true,
a contradiction. If w ¢ processed_nodes, then for
all sequences of steps (t1,b1)...(ts,bn) such that
Mo[(t1,51)> M1 ... Mu_1[(tn, bn)> My, there exist i €
{1,...,n—1} and a node v with v € processed_nodes,
Inadmissible(M,) = true (that is v ¢ V), and M; €
[M,]. Therefore, (W] are nonreachable under the con-
trol of S, a contradiction. Hence, the controller is max-
imal. O

6 A short example

As an example, Fig. 4 shows a CP-net that models
a flexible assembly cell [4]. It contains two color sets
C ={co,c1,¢2} and R = {rg, r1, 2}, representing three
conveyors and three robots, respectively. A conveyor
and two neighboring robots are needed to carry out an
assembly task. Each conveyor requests the left robot
first (defined by the function Left(c;) = r;, where
i = 0, 1,2), and after acquiring it, requests the right one
{defined by the function Right(c;) = rig1, where i @ 1
means i+ 1 mod 3 and ¢ = 0,1, 2). Then the assembly
operation starts. When the task is completed, the con-
veyor releases both robots. The states of a conveyor or
a robot are represented by places (circles), that is, Un-
used_Conveyor, Free_Robot, Waiting, and Working. A
conveyor passage from one state to another is modeled
by a transition (a rectangle). There are three tran-
sitions (Request.Left_Robot, Request-Right_Robot, and
Release_Robots). Places can be marked by tokens. In

4431

our example, every place may contain tokens which val-
ues are of type C', except the place Free_Robot which
has the color set R. A token in a given place represents
the fact that the corresponding conveyor or robot is in
the corresponding state.

I'cO+1'cl+1'c2
color C = withcOlcl lc2 C D

color R = withr0frl 112
varx:C

PLefi(x)

ros'ri+l’r2

1"Left(x)+1'Right(x)

Figure 4: A CP-net describing a flexible assembly cell

Initially, the conveyor are unused and robots are free.
The initial marking is represented by the expressions
Teg + Iy + Teq and Trg + Irg + I'rg next to places Un-
used_Conveyor and Free_Robot, respectively. The in-
teger before the back quote indicates the number of
occurrences of the value after the back quote. The ex-
ecution of a transition always extracts one token from
its incoming place and inserts one or two tokens in its
outgoing place. The variable = ranges over the color
set C. In this model, no constraint is given concern-
ing the state of the three conveyors relative to each
other. In this example, we use a particular consistent
symimnetry specification called a rotation [11] and noted
®,. In this symmetry specification, equivalent mark-
ings are obtained by changing the identity of all con-
veyors and robots with the same rotation which adds &
(in a cyclic way) to the index of conveyors and robots.
Formally, we have functions ¢*¥ € [C — C] defined
by ¢%(ci) = cigk = i + kmod3 (k = 0,1,2) and
¢* € [R — R] defined by ¢*(r;) = rigr (k = 0,1,2).
Thus, &, = {42, ¢, 62, 40, 67,47}

Let us consider the forbidden markings for this ex-
ample. We want to prevent the assembly cell from
ever reaching deadlock markings. A marking is dead
when no step is enabled. The marking in which the
three conveyors have acquired their left (right) robots
and are waiting for their right (left) one are the only
forbidden markings. We assume that only transition
Request_Left_Robot is controllable. The graph and
feedback function ¢ are given in Fig. 5 and Table 1,

#1 = <(Unused_Conveyor,1'c0+1’c1+1°c2),(Free_Robot,1'r0+1'r1+1'r2)>

<Request_Left_Robot, x = 1'c0>

#2 = <(Unused_Conveyor,1'c14+1°c2),(Free_Robot,1'r1+1'r2)+(Waiting,1'c0)>

1

l<Request_Leﬂ_Robo(, X=T1et>

#3 = <(Unused_Conveyor,1'c2),(Free_Robot,1'r2),(Waiting,1'c0+1'c1)>
|<Request_Rigm_Hobol. x=1¢l>

#5 = <(Unused_Conveyor,1'c2),(Waiting,1°c0),(Working,1°c1)>

l<Relaase__Robox, x=1¢c1>

#8 = <(Unused_Conveyor,1'c1+1'c2),(Free_Robot,1'r1+1'12),(Waiting,1'c0)>
equivalent to #2

<Request_Right_Robot, X = 1°c0>

#4 = <(Unused_Conveyor,1’c1+1'c2),(Free_Robot,1'r2),(Working,1'¢0)>

(<Release_nobot, x = 160>

#6 = <(Unused_Conveyor,1'c0+1'c14+1'c2),(Free_Robot,1'r0+1'r1+1'r2)>
equivalent to #1

<Request_Left_Robot, x = 1°¢2>

#7 = <{Unused_Conveyor,1'ct),(Waiting,1'c2),(Working,1'c0)>
equivalent to #5

Figure 5: The subgraph for the assembly cell system

respectively. Since the LCBE of each node is useless
in the closed-loop system, only a representative mark-
ing of each node is kept in the solution.

[Marking | Request Left_Robot |
< {(Unused.-Conveyor, Tcp),
(Free_Robot, I'ry), <z =cp>
(Waiting, Tcg + Tcy) >

Table 1: The feedback function ¢

7 Conclusion

In this paper, we have presented a colored Petri-net ap-
proach to the control of discrete-event systems. One of
the benefits of using CP-nets instead of equivalent PT-
nets is the more compact and readable representation
of the system. The algorithm developed for synthesiz-
ing the controller avoids an exhaustive search of the
state space by the use of equivalence relations. Qur ex-
periments on different systems with many similar com-
ponents shown that our algorithm is generally more ef-
ficient than methods requiring the construction of the
entire reachable set of states [14, 15]. The theoretical
limitation of our algorithm is, however, due to the re-
strictions introduced in Section 3. Future efforts may
be devoted to model the controller by using a colored
Petri net equipped with the required symmetry speci-
fications.

References
[1] R. K. Boel, L. Ben-Naoum, and V. Van Breusegem,
“On forbidden state problems for a class of controlled Petri
nets,” IEEE Transactions on Automatic Control, 40 (10),
1995, 1717-1731.

[2] E.M. Clarke and O. Grimberg, “Avoiding the state
explosion problem in temporal logic model checking algo-
rithms,” Proceedings of the Sizth Annual ACM Symposium
on the Principles of Distributed Computing, 1987, 294-303.
[3] M. J. Denham, “A Petri-net approach to the con-
trol of discrete-event systems,” in M. J. Denham and A.
J. Laub, Eds., Advanced Computing Concepts and Tech-
niques in Control Engineering, NATO ASI Series, Vol. F47,
Springer-Verlag, Berlin, 1988, 191-214.

[4] A. A. Desrochers and R. Y. Al-Jaar, Applications of
Petri Nets in Manufacturing Systems: Modeling, Control,
and Performance Analysis, IEEE Press, New York, 1995.
[5] A. Giua and F. DiCesare, “Supervisory design using
Petri nets,” Proceedings of the 30th Conference on Decision
and Control, 1991, 92-97.

[6] L. E. Holloway and B. H. Krogh, “Controlled Petri
nets: A tutorial survey,” Lectures Notes in Control and In-
formation Sciences, 199, Springer Verlag, London, 1994,
158-168.

[7] L. E. Holloway and B. H. Krogh, “Synthesis of feed-
back control logic for a class of controlled Petri nets,” IEEE
Transactions on Automatic Control, 35 (5), 1990, 514-523.

[8] L. E. Holloway and X. Guan, “A generalization of
state avoidance policies for controlled Petri nets,” Technical
Report T93002, Technology from the Center for Robotics
and Manufacturing Systems, September 1993.

9] A.Ichikawa and K. Hiraishi, “Analysis and control of
discrete event systems represented by Petri nets”, Discrete

Event Systems: Models and Applications, Springer Verlag,
New York, 1988.

[10] K. Jensen, Coloured Petri Nets, Basic Concepts,
Analysis Methods and Practical Use, Volume 1, Springer-
Verlag, Berlin, 1992.

[11] K. Jensen, Coloured Petri Nets, Basic Concepts,
Analysis Methods and Practical Use, Volume 2, Springer-
Verlag, Berlin, 1995.

[12] B. H. Krogh, “Controlled Petri nets and maximally
permissive feedback logic,” Proceedings of the 25th An-
nual Allerton Conference on Communication, Control, and
Computing, 1987, 317-326.

[13] Y. Li and W. M. Wonham, “Control of vector
discrete-event systems I - The base model”, IEEE Transac-
tions on Automatic Control, 38 (8), 1993, 1214-1227.

{14] M. Makungu, M. Barbeau, and R. St-Denis, “Syn-
thesis of controllers with colored Petri nets”, Proceedings of
the 32th Annual Allerton Conference on Communication,
Control, and Computing, 1994, 709-718.

[15] M. Makungu, M. Barbeau, and R. St-Denis, “A su-
pervisory control theoretical approach to congestion man-
agement”, Proceedings of ICCT’96, Beijing, 1996, 857-861.
[16] P.J. Ramadge and W. M. Wonham, “Supervisory
contro] of a class of discrete event processes,” SIAM Journal
Control and Optimization, 25 (1), 1987, 206-230.

4432

