General Conference (Port A)

SERVICE DISCOVERY IN A MOBILE AGENT API USING SLP

Michel Barbeau
- Département de mathématiques et d’informatique
Faculté des sciences
Université de Sherbrooke
Sherbrooke (Québec) CANADA J1K 2R1
E-mail: barbeau@dmi.usherb.ca

Abstract

A mobile agent that performs a network manage-
ment task needs to access services on visited nodes. In
this paper, the integration, for the purpose of service
discovery, of the Service Location Protocol in a mobile
agent API called Aiglet is presented. The capabilities
of Aiglet are illustrated and evaluated using a configu-
ration task requiring discovery of services in wireless
local area networks.

Keywords: Mobile agent, network management, ser-
vice location protocol, software design, wireless local
area network.

1 Introduction

The mobile agent (MA) model is a new distributed
software development paradigm. It contrasts with the
client-server model. Instead of calling operations on
servers with some form of synchronization, the user
passes its goal to an agent that knows how to handle
it without being controlled. MAs are particularly well
suited to network management tasks [2].

There are several MA issues that are not well under-
stood and that need further investigation. In particular,
there are issues facing the architecture of agent sys-
tems [8]. To address such issues, we developed an MA
API nicknamed Aiglet that focusses on agent transfer
and resource discovery [1}. An important feature of
Aiglet is its native multicast agent transfer support. In
this paper, we describe the integration of the Service

Global Telecommunications Conference - Globecom’99
N 7AN2.C704_£/00/€10 00 @ 1900 IREE

Location Protocol (SLP) [7] to Aiglet resulting in an
MA API capable of multicast dispatch and resource
discovery. The Aiglet API can be used for the network
management tasks requiring resource discovery such
as configuration management.

MAs and resource discovery are discussed in Sec-
tion 2. Our agent API Aiglet and an example wireless
configuration problem, solved using Aiglet, are pre-
sented in Section 3. Finally, we conclude in Section 4.

2 Resource Discovery

An agent system is a context in which agents ex-
ecute and use resources. It is interesting for an agent
system to comprise a mechanism that makes agents ca-
pable of discovering resources and services to which
they have access. For instance, an MA configuring
network interfaces needs to access system services on
visited nodes. The code to access the system services
may be embedded in the MA code. The agent trans-
ports with it all the code it needs. System services are,
however, in general platform dependent. The capabili-
ties of such-an MA would be limited to a fixed number
of platforms for which it has been configured. Sup-
port of new platforms cannot be added on-the-fly. In
addition, the size of the code of the MA grows with
the number of supported platforms. Transporting large
code augments the amount of network traffic. More-
over, this approach implicitly assumes that system ser-
vices are always available, which may not be the case
(e.g., the access to a printer). In cases where services
are not available, there are no provisions for alterna-

391

General Conference (Part A)

\ , o
/l Y V.4 N
’ . ~
K Directory AN
/ agent K
t T ’
' \ P
' A N . 7’ ’
Y H Servxc[e 1. register
% agen .
User - < 3. reply(g a service

\\
2. re‘qucst(N agent URL)
service-names

bool-expr)

specification

Figure 1. Architecture of SLP.

tives. These are serious drawbacks considering the dy-
namic nature of today’s network configurations.

IETF has defined the Service Location Protocol
(SLP) for the purpose of discovery of services in a mo-
bile environment [7]. In this paper, we exploit an im-
plementation of SLP available through an API called
the Java Naming and Directory Interface (JNDI) [6].

SLP is a naming system associating names with ser-
vice specifications, in contrast to the DNS that asso-
ciates names with IP addresses. A service specification
consists of an Uniform Resource Locator (URL), i.e.,
the location of the service, together with an optional
list of attributes.

SLP has the concept of service agent (SA), directory
agent (DA), and user agent (UA), see Fig. 1. Services
of SAs are registered with one or several DAs. To dis-
cover a service, an UA sends a request using multicast.
The request contains a service name and a boolean ex-
pression over values of attributes. For example, SLP
can be used to search for a printer with the color print-
ing capability or for the DA itself. If the search is suc-
cessful, the reply from the DA contains the URL of the
service.

Network interface configuration of the hosts in a
wireless local area network, e.g. WaveLAN [3] is an
example service. According to SLP, an URL giving
the location of the configuration service must be de-
fined such as: service:wavelan://dellcoms.u-aizu.ac.jp/wi0
The service is named wavelan located at the host
dellcom5.u-aizu.ac.jp (a host in our research labora-
tory) for the interface name w/0. The JNDI-SLP API
actually gives the illusion to the UA that the URL
is bound to a Java service object that represents the

392

ication 1
SLP daemon Application level

(User agem) (Service agena

Directory agent

Agent platform
INDI-SLP API | Agent transfer

Figure 2. Architecture of Aiglet

SA. In reality, the service object is not stored directly.
When a service is registered, the URL of a factory
object class is attributed to the service specification.
When the service is selected by an UA, the factory
object class is executed and the service object is pro-
duced. Note that the task of this service can also be
achieved using a client-server model, i.e., using the In-
ternet’s network management protocol SNMP set re-
quests (see Section 3.2).

3 Mobile Agent API

Aiglet is inspired of IBM’s Java Aglets [S] MA
system and its architecture is described in Fig. 2. Tt
runs over a Java Virtual Machine (JVM). MAs pro-
viding specific services to users are at the application
level. The agent platform is their execution environ-
ment. The agent transfer module handles migration of
agents on the network. MAs act as UAs. The JNDI-
SLP API handles service registrations and searches. It
communicates with a SLP daemon which acts as an
DA. 1t stores service specifications. When a service is
selected, the API creates a service object, representing
the SA and running on the agent platform.

3.1 Application

We illustrate our approach with the case of an MA
that is multicast to the nodes of a WaveLAN wireless
area network to change the network id (NWID) of net-
work interfaces. A NWID identifies a cell. Change
of a NWID may done for configuration purposes. The
configuration services are provided by service objects
registered with an SLP DA. When an MA arrives to
a node, it searches a SLP DA then queries the DA to
search for the service objects.

Classes related to the implementation of service ob-

Global Telecommunications Conference - Globecom’99

WaveLanIntFactory WaveLanlInt

getObjectinstance() config()

|

FreeBSDWaveLanlnﬂ [WinNTWaveLanlnt] [()lherpla{form]

inheritance creator-created object - ==~ --= >

Figure 3. Service object related classes

jects are pictured as boxes in Fig. 3. We assume that
network nodes run different operating systems such
as FreeBSD, Linux, and Windows. The MA is dis-
patched to every node, using the multicast capability
of our agent APIL. On every node, it dynamically finds
the service required to configure the WaveL AN inter-
face according to the platforms.

There is a factory class, called WaveLanIntFactory
providing a method called getObjectInstance() for cre-
ating service objects of the subclasses of class Wave-
Lanint. The subclasses of WaveLanlnt are defined ac-
cording to the supported platform. For instance, a ser-
vice object of class FreeBSDWaveLanint knows how
to configure a WaveLan interface on a FreeBSD plat-
form. The service itself is modeled as the method
config() which is defined as follows in class FreeBS-
DWaveLanlint:

1. public String config(String nwid) {
String data = new String{"");
try {
String line;
2. Process s =
Runtime.getRuntime() .
exec ("wlconfig -i “"+iName+" -w " + nwid);
3. BufferedReader in =
new BufferedReader (
new InputStreamReader (s.getInputStream()));
4. while((line = in.readLine()) != null)
data = data + line + "\n";
} catch(IOException e) {
5. data = e.getMessage():; }
6. return data;)}

The service object exploits the command wlcon-
fig available on FreeBSD for configuring a Wave-
LAN interface. Command wlconfig is called as a
separate process (Line 2). Actual parameters are the
Jocal interface name and the NWID. The NWID is a
formal parameter of the method, nwid (Line 1). The
interface name is extracted from the service URL and

Global Telecommunications Conference - Globecom’99

General Conference (Part A)

is passed to the service object when instantiated. It is
stored in the data member iName. In order to provide
feedback to the MA, a handle to the output of the pro-
cess is obtained (Line 3), read line by line, stored in a
variable (Line 4), and returned (Line 6). Whenever an

error occurs, the exception message is returned instead
(Line 5).

The MA implements two methods: onCreation()
and run(). Method onCreation() is as follows:

public void onCreation(String nwid) (
this.nwid = nwid; udispatch(); }

It receives and stores, in a private data member, the
NWID to apply for the configuration task. Then, it dis-
patches itself to all nodes of a pre established multicast
group. Method run() is as follows (with some details
abstracted):

public void run(} {
// ref. to service object
WaveLanInt wLI = null;
// current host name
String hostName = null;
1. <assert the current user is root>
2. hostName = ...
try {
3. SLPServiceProviderContext root =
SLPServiceProviderContext.
getSLPServiceProviderContext () ;

4. SLPServiceCon-

text serv=root.lookup(“wavelan");

5. NamingEnumeration se = serv.search();

6. while(se != null && se.hasMoreElements()) {

SearchResult res = se.next();
Object obj = res.getObject(});

7. if (obj instanceof WaveLanInt) {
wLI = (WaveLanInt)obj;

8. if (hostName.compareTo (wLI hostName)==0)
break;

}
}
if (wLI==null) {
<report the failure and exit>
}
} catch(Exception e) {
<report the exception an exit>
}
try {
9. String result = wLI.config(nwid);
<check the result>
} catch(IOException e) {
<report the exception an exit>
}
}

A handle to a service object of class WaveLanlint is ob-
tained by querying a SLP directory server. The MA
uses the INDI-SLP API providing search operations.
Conceptually, the directory user navigates within con-
texts and sub-contexts. A context is a set of name-

393

General Conference (Part A)

to-object bindings. A name can be bound to a sub-
context. First, the MA asserts it has the required root
privileges for this task (Line 1, not detailed). Then,
it gets the current host name (Line 2, not detailed).
Navigation within contexts starts thereafter. The top
context for SLP is obtained (Line 3). Then, it looks
up for a sub-context bound to the name wavelan. This
sub-context models the WaveLAN configuration type
of service (Line 4). All the bindings within that sub-
context are enumerated (Line 5). They are inspected
one after the other within a while loop (Line 6). The
MA selects the one that is an instance of class Wave-
Lanint (Line 7) and which represents the interface of
the current host (Line 8). If the agent is running on
a FreeBSD platform, it is actually an object of class
FreeBSDWaveLanint that is created by the APL

Variable wL.I stores a reference to this object.
Method config(), with the NWID, is called on the ob-
ject (Line 9).

3.2 Evaluation

Fig. 4 shows the latency of the NWID configura-
tion using our approach versus the number of nodes
(label Aiglet). The time required to do the same task
using the SNMP set operations is also plotted (label
SNMP). It is, however, worth mentioning that the com-
parison is rather unfair because in contrast to our ap-
proach, SNMP does not support resource discovery.
With SNMP an user that wants to control a device must
have a priori a model of the device parameters, called
a management information base or MIB.

The latency using the Aiglet approach goes as high
as 0.25 second for three nodes. This can be considered
as high for most applications. The reason for consum-
ing so much time is due to the navigation from con-
texts to sub-contexts performed by JNDI-SLP. In ad-
dition to the explicit navigation performed by the MA
there is internal navigation performed by the API to
give the illusion to the UA that it has access to an ob-
ject store. A number of multicast messages are sent by
the API to complete that navigation. We counted up to
24 multicast messages. Replies are unicast messages,
and do not appear on the network if the UA and DA
are both on the same node. This heavy use of mul-
ticast is a handicap to SLP scalability. Extension of

394

03

............................
...

1 2 3
Number of nodes

Figure 4. Latency versus number of nodes.

SLP to make it usable on a wide area network by con-
trolling the number of multicast messages is discussed
in Ref. [9]. For wireless networks, unicast commu-
nication with the DA called Mobile DA, or MDA is
suggested [4].

We measured the latency of service registration and
we obtained figures close to the ones plotted in Fig. 4.

4 Conclusion

An MA needs resources and services to perform its
task. In this paper, we have demonstrated feasibility
of resource discovery in an MA system using the Ser-
vice Location Protocol. Services are registered to a
SLP directory when they are available. When they be-
come unavailable, they can be explicitly unregistered.
For fault tolerance, a registration has a finite lifetime.
Available services can be retrieved and selected by
properties with queries. There is also provision for ac-
cess control, privacy, and authentification.

The performance of the SLP implementation used
in this research may be too low for most applications
due to the use of multicast communication. We think
that the search logic can be reformulated in order to not
generate so many multicast messages. The implemen-
tation we used behaves as if it forgets the location of
the directory from one query to the other. Other imple-
mentations of SLP are currently being developed and
released. It is expected that they will offer much bet-
ter performance which will be assessed in our future
work.

Global Telecommunications Conference - Globecom’99

Acknowledgments

This work was done while the author was a visiting
researcher at The University of Aizu, Japan. The au-
thor thanks The University of Aizu for supporting this
research.

References

[1] M. Barbeau. Implementation of two approaches for
the reliable multicast of mobile agents over wireless
networks. In Proceedings of 1999 International Sym-
posium on Parallel Architectures, Algorithms and Net-
works (I-SPAN’99), pages 414419, Fremantle, Aus-
tralia, June 1999. IEEE Computer Society.

[2] A.Bieszczad, B. Pagurek, and T. White. Mobile agents
for network management. /EEE Communications Sur-
veys, 1(1):2-9, Fourth Quarter 1998.

[3] L. M. S. Committee. 802.11 - Local and metropolitan
area networks. Institute of Electrical and Electronics
Engineers, Inc., New York, NY, November 1997.

[4] J.Jawanda. Mobile service discovery over wireless net-
works. Internet Draft, February 1998. 19 pages.

[5] D. Lange, M. Oshima, and O. Mitsure. Program-
ming and deploying mobile agents with Java Aglets.
Addison-Wesley, 1998.

[6] S. microsystems. The source for java
technology - JNDI service providers.
http://java.sun.com/products/jndi, 1998.

[7] C. Perkins. Service location protocol. In ACTS Mobile
Networking Summit/MMITS Software Radio Workshop,
Rhodes, Greece, June 1998.

(8] A. Pham and A. Karmouch. Mobile software agents:
An overview. IEEE Communications, 36(7):26-37,
July 1998.

[9] J. Rosenberg, H. Schulzrinne, and B. Suter. Wide
area network service location. Internet Draft (work in
progress), November 1997.

Global Telecommunications Conference - Globecom’99

General Conference (Part A)

395

