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Abstract

Several formal methods model reactive systems as
discrete-event systems (DES). This makes mathemat-
ical reasoning about their properties easier and con-
troller synthesis possible. In this paper, we investi-
gate the forbidden state control problem in which a
DES is represented as a colored Petr: net with a sym-
metry specification. More specifically, we provide an
efficient formal method for synthesizing a controller
which, when combined with the original system, will
avoid reaching forbidden states. This problem s de-
cidable if the colored Petri net has finite color sets
and bounded places. Unlike conventional methods that
explore the entire reachable set of states, our method
avoids an erhaustive search of the state space by ex-
ploiting a symmetry specification. Furthermore, this
abstraction technique allows a compact representation
for the controller. Therefore, our method performs
particularly well when applied to large but structured
processes with similar components.

1 Introduction

A discrete-event system (DES) is a dynamic sys-
tem whose the internal state changes instantaneously
in response to the occurrence of an event. Typically,
they are used to represent the behavior of reactive,
communication, or manufacturing systems. The con-
trol theory for discrete-event systems pioneered by
Ramadge and Wonham [15] is a framework for mod-
eling supervised discrete-event systems and applying
synthesis algorithms to solve control problems. This
theory has been primarily studied in the context of
automaton-based models. Automaton-based model-
ing is, however, cumbersome, particularly in repre-
senting large systems consisting of numerous similar
interacting components. Even though the computa-
tional complexity can be polynomial in the number of
system states, it grows exponentially with the number
of components. This phenomenon, called the state ez-
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plosion problem [1], can be overcomed by partitioning
the components into a small number of equivalence
classes so that all components in a given class are es-
sentially similar. This paper makes a contribution in
this direction and presents an algorithm that reduces
the complexity of the supervisory control problem un-
der full observation for instances consisting of large
but structured processes with similar behaviors.

Recently, Petri nets have begun to receive atten-
tion as models for investigating the control of discrete-
event systems. The Petri net-based models are more
powerful than the automaton-based models in that the
set of Petri net languages is a superset of regular lan-
guages. Furthermore, they allow more compact rep-
resentations of multiple interacting components than
equivalent automaton models. Indeed, a single Petri
net structure can describe the behavior of several con-
current components modeled as tokens marking the
structure.

One may identify mainly two different approaches.
In the first approach, introduced by Krogh [10] and
Ichikawa [7], a DES is described by using a Controlled
Petri net (CtlP-net). A CtlP-net is an extension of
a standard Petri net in which the enabling of tran-
sitions can be influenced by external binary control
inputs. A tutorial survey of works related to this ap-
proach can be found in [4]. In contrast, the second
approach does not include the concept of control in-
put. A DES is specified by using an ordinary Petri
net and its dynamic is viewed with a linear algebraic
perspective [2] [3] [11].

Among the Petri net-based models, colored Petri
nets (CP-nets) [8] are powerful enough to describe
complex systems in a manageable way, particularly
when they contain many interacting components that
are similar but not identical. It is well-known that the
class of CP-nets with finite color sets is equivalent to
the class of place/transition nets (PT-nets). The CP-



nets describe the same systems as the PT-nets but
often in a more compact form and allow the use of
equivalence classes to represent similar components.
Specifications can be more readable and eventually
more tractable. If we do not impose any restrictions
on the definition of CP-nets, then they are equivalent
to Turing machines.

The work presented in this paper addresses the for-
bidden state control problem for a class of CP-nets
in which color sets are finite and behaviors satisfy
boundedness properties. Given a control specifica-
tion expressed as a set of forbidden markings, a proce-
dure computes the unique maximal set of admissible
markings and a controller by means of an occurrence
graph with symmetries. The symmetries guarantee
that equivalent markings have similar behavior [9].
Our aim is not to include, as control logic, additional
places and transitions to the CP-net being controlled.
Such an approach is generally used when a simulation
or a performance analysis is performed for a given con-
trol policy [10]. In this work, the process being con-
trolled is separated from the control logic. This ap-
proach is suitable to controller synthesis in which the
process to be controlled already exists and the aim is
to compute, from a control specification, a separated
controller which, when embodied with the process in a
closed-loop system, satisfies the control specification.
Thus, this approach permits formulations and solu-
tions of different control synthesis problems for the
same process.

The layout of the paper is as follows. The next
section introduces the notation and definitions used
in CP-nets. Section 3 extends the supervisory control
theory to processes modeled by CP-nets with a con-
sistent symmetry specification. Section 4 formulates
the control synthesis problem for avoiding a set of for-
bidden markings. Section 5 describes in detail a new
synthesis algorithm, illustrates its application with an
example, and outlines a proof of its correctness. Fi-
nally, concluding remarks are provided in Section 6.

2 Notation and Preliminaries

We use a CP-net to model a discrete-event sys-
tem (DES). A colored Petri net is an ordered tuple:
CPN = (X,P,T,A,N,C, E, M), where X is a finite
set of non-empty types, called color sets; P is a fi-
nite set of places; T is a finite set of transitions; A is
a finite set of arcs connecting places and transitions;
N is a node function that maps each arc into a pair
of nodes of different kinds (i.e., one is a place, while
the other is a transition); C is a color function that
associates a color set with each place; F is an arc ez-
pression function that maps each arc into a multi-set
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over the color set that is attached to the corresponding
place; and My is the initial marking. We consider only
CP-nets with decidable properties as valid models for
DESs; that is, the color sets are finite and the contents
of places are bounded. Furthermore, for the sake of
simplicity, we assume that guards (occasionally used
in the definition of CP-nets) always evaluate to true.

The following notation is introduced to consider the
behavior of a CP-net that is based on the concepts
of enabling and occurrence. The reader is referred to
Jensen’s book [8] for a detailed exposition. For all
t € T, let Var(t) be the set of variables appearing
on arcs that have t as source or destination. For all
(p,t) € Px T, let E(p,t) = YFocame) E(a),* where
A(p,t) gives the set of arcs from p to t. E(¢,p) is
defined in a similar fashion.

A binding of a transition ¢ is a substitution, noted
b=<wv; =c1,...,U, = ¢, >, that assigns a color ¢;
to the variable v; € Var(t) (i =1,...,n). A binding
element is a pair (¢,b) where t € T and b € B(t),
the set of all bindings for ¢. Let BE be the set of all
binding elements.

The state of a CP-net is given by its current mark-
ing M that maps each place p into a multi-set over
C(p)- A marking gives the current distribution of to-
kens on the places. A step Y is a function that maps
each ¢t € T into a multi-set over B(t) such that Y (¢)
is finite for all ¢ € T and non-empty for at least one
t€T. Astep Y is enabled in a marking M if and only
if

Z E(p,t)<b>< M(p)forallpe P
beY (t)

where E(p,t) < b > yields the multi-set of tokens
removed from p when ¢ occurs with the binding b.
The sets of all markings and steps are denoted by M
and )Y, respectively. When a step Y is enabled in
a marking M, it may occur, changing it to another
marking M’, defined by:

M'(p)=(Mp) — > E(pt)<b>)
bEY(t)

+ Y. E(tp)<b>VpeP (1)
bEY (t)

Moreover, we say that M’ is directly reachable from M
by the occurrence of the step Y, which is also denoted
by M[Y> M’. The concept of occurring step is ex-
tended to a finite occurrence sequence of markings and

1 . .
The expression Eéesm(s)‘s represents a multi-set. The
non-negative integer m(s) is the number of occurrences of the

element s in the multi-set m.



steps as follows: M;[Y1> M[Yo> .. . Mup[Yn> Mug,
where n € N and M;[Yi> My, foralli e {1,...,n}.
The integer n is the number of steps in the sequence.
The abbreviated form M;[Y1Y2...Y,> My is also
used. A marking M’ is reachable from a marking M
if and only if there exists a finite occurrence sequence
having M as start marking and M’ as end marking.
A marking M is reachable if and only if it is reach-
able from Mp. The set of markings that are reachable
from M is denoted as M[>. It is always true that
M € M[> for all markings M € M. In this paper, we
assume that an occurring step contains only one bind-
ing element, although a number of binding elements
can be concurrently enabled. Therefore, M[Y> M’ is
written as M[(t, b)) M’ and M1[Y1Y2 LY > Mn+1
as M][(tl, bl)(lz, bg) . (tn, bn)> A/[n-}-b

As an example, Fig. 1 shows a CP-net that models
a unidirectional circular railway with two trains [8].
The track is divided into six different sections. A sec-
tion is represented by a place (a circle) and the pas-
sage from a section to the adjacent section is mod-
eled by a transition (a rectangle). Places can be
marked by token colors. In our example, token val-
ues model identities of trains. The declaration “color
Train = with Trl | Tr2” defines the domain of token
values. Every place may contain values from the do-
main Train. A token in a given place represents the
fact that the corresponding train occupies the corre-
sponding section. Initially, train number 1 (771} is in
section 1 and train number 2 (7Tr2) in section 4. The
initial marking is represented by the expressions I7r1
and IT'r2 next to places S1 and 54 respectively. The
integer before the back quote indicates the number of
occurrences of the value after the back quote. The
execution of a transition always extracts one token z
from its incoming place and inserts one token z in its
outgoing place. Since the variable z ranges over the

color Train = with Tr1 | Tr2
var x : Train

T1 J_ﬁ@ﬂbn 2

1"

Té ~——<— T5
1'x 1'x

Figure 1: A CP-net describing a circular railway with
two trains
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color set Train, £ may only take either value T'r1 or
Tr2. In this model, no constraint is given concerning
the position of the two trains relative to each other.

It is often the case that large systems have nu-
merous interacting components with similar behav-
iors. Theses components are so alike that we may
abstract the differences between them. This can be
captured in a CP-net by defining a set of symme-
tries called a symmetry specification & over markings
or binding elements [9]. Each symmetry ¢ € @ is
a function that maps a given marking (or a given
binding element) to another marking (or binding el-
ement) with similar properties. In order to capture
the fact that two symmetrical markings have simi-
lar properties, the symmetry specification ¢ must be
consistent with the behavior of the CP-net. A sym-
metry specification ® is consistent if and only if the
following properties are satisfied for all symmetries
¢ € ®, all markings My, M2 € [Mp>, and all bind-
ing elements (¢,b) € BE: (1) ¢(Mo) = My, and (2)
Mi{(t,0)> My & ¢(M1)[(t,¢(b))> ¢(M3). A consis-
tent symmetry specification @ induces the equivalence
relations ~p; and ~gg. The symmetry specification
is given by the person who analyses the system. We
use My and BEx to denote the set of all equivalence
classes for ~); and ~pgg, respectively. The notation
[M], where [M] € My, represents all markings equiva-
lent to M. In our example, we use a particular consis-
tent symmetry specification called a permutation [9]
and noted @, that allows all possible permutations of
the Train color set. Therefore, a marking in which
train 1 is in section 1 and train 2 in section 2 is equiv-
alent to a marking in which train 2 is in section 1 and
train 1 in section 2.

3 CP-net Supervisory Design Under
Full Observation

The basic problem in supervisory control is to con-
struct a controller that can turn off various events of
an uncontrolled discrete-event system (DES), called a
process (Pr), according to some requirements. The
process Pr is defined as a triple (CPN, ®, K), where
CPN is a CP-net with a consistent symmetry spec-
ification ® and K € [P - N — {0}] is a capacity
function bounding the contents of every place. There-
fore, we require that My(p) < K(p) and M’'(p) <
K(p) for all p € P in the enabling rule (1). In our
example, capacity is two.

Let I' be the set of all functions v, called control
patterns, that assign a subset of B(t) to every tran-
sition ¢ of 7. In our particular example, B(t) = {<
z=Trl><z=Tr2>}forallt € T. i b€ (1),
then the controller prevents the transition ¢ from oc-



curring with the binding b. Let T, and T, be fixed
disjoint subsets of T' denoting the sets of controllable
and uncontrollable transitions, respectively.

A controlled discrete-event system (CDES) is an
ordered tuple Pr, = (CPN;,®,K,T). In a CPN,,
M[c(t,b)> M’ denotes that a marking M’ is directly
reachable from M by the occurrence of the binding el-
ement (t, b) under the control of ¥ € I'. This is defined
as:

M{(t,b)> M’
M((t,0)> M',b & ~(t)

ifteT,
ifteT,andyeT

A controlleris a pair S = (G, ¢), where G is a sub-
graph of an occurrence graph with symmetries (OS-
graph) and ¢ the feedback function. An OS-graph is
a 4-tuple (V, A, N, vg), where

e V is the finite set of nodes {[M] € My | [M]N
[Mo> # 0}

o A is the finite set of arcs {([M1],[(¢,))], [M2])
VxBExxV | 3(M], (¢,b), M3) € [M1]x (¢, b)]
[M3] such that M{[(t,¥)> M}};

S
x

e N is the labeled function that maps each arc a
into a representative binding element. If a =
([M1], [(2,b)],[M3]) € A, then N(a) = (t,b);

e vg € V is the initial node (v = [My]).

The feedback function ¢ € [V — T satisfies the
following conditions:?

p(v)(t) =10
p(v)(t) € p(B(1))

The graph G can be interpreted as the transition
graph of an automaton modeling the behavior of the
controller as in the original framework of Ramadge
and Wonham. It is driven by a sequence of steps oc-
curring in CPN. That is, after the firing of a transi-
tion, G moves to a node v which represents the mark-
ing reached by CPN. The role of the feedback func-
tion ¢ is to provide, after each execution step of CPN
and G, the control pattern v that represents the bind-
ing elements inhibited for the next step.

The CDES and controller are then embodied in a
closed-loop system to constitute a supervised discrete-
event system (SDES) S/Pr. = (S, Pr.). A state of
a SDES is a pair (v, M) where v € V and M is a
marking of CPN, such that M =~ M’ if v = [M'].

ifteTy,veV
fteT,,veV

2(B(t)) denotes the power set of B(t).
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It should be noted that a node v is a representa-
tion of markings equivalent to M’. Therefore, v and
[M'] are interchangeable. The behavior of S/Pr. is
illustrated in Fig. 2. Let M; be the current mark-
ing of the process and (t;, b;) the next step such that
M;[(t;,b:)> Miy1 and b; & ~y(t;). Let v; = [M]] be
a node of G such that M/ = ¢(M;). First, the con-
troller S moves to the next node vy, = [M],,] by
executing the transition from node v; on the arc la-
beled (¢;,4:). The binding element (¢;,¥}) is the rep-
resentative member of binding elements equivalent to
the process step (t;,b;), that is, (;,b) = (i, o(b;)).
The controller S owns control patterns for represen-
tative marking of each equivalence class of reachable
markings. Let ¥j,; = ¢(vig1) be the control pat-
tern of node v;y1. To compute the control pattern
corresponding to the next marking M;4, of the pro-
cess, the controller uses the inverse of symmetry func-
tion ¢ to map the control pattern v}, into the con-
trol pattern v;4; = ¢"1(7,{+1)43 Formally, if (v;, M;)
is the current state of S/Pr., then the next state is
(vig1, Miy1) if and only if there exists a binding ele-
ment (¢;,5;) such that M;[(t;,b:)> Miy1, bi & v(ti),
and (vi,[(t,-,bj)],v,-+1) € A with (t,',b,') XBE (t,‘,b;).
The control pattern of M;y1 is ¢~ !(¢(vn41)). The
controller S must always be complete in the sense
that (v;, [(#:, )], vi+1) € A whenever S/Pr, is in state

1

('U,',M,') with M,‘[c(t,’,b,’)> M,'+1 and b: ¢ QO(U,)(t,)

Process Pr Controller S
Y O e - Mi]l=v;
¢ B
(ti,bi) [([hbl)]
Min1 [Min) = Visg
q)»l
Vi1 Ois1) =Yin

Figure 2: An execution step of the closed-loop system

4 The Forbidden State Control Prob-
lem

Several types of control specifications can be ap-
plied to control synthesis methods, including: avoiding
a set of forbidden states [10]; enforcing event language
specifications {15]; and enforcing liveness [6]. In this
paper, we consider the forbidden state control prob-
lem in which the control specification is expressed as

3Since @ is a group, ¢! always exists.



a set of forbidden markings M,. Based on the con-
sistency property of ®, if a marking is forbidden, all
its equivalent markings are also forbidden. Therefore,
only one representative per each equivalence class of
forbidden markings is included in Mj. This prob-
lem is expressed as follows. Given a set of forbidden
markings My, an uncontrolled discrete-event system
(CPN,®, K), and an initial marking My ¢ My, derive
a mazimally permissive controller S, that is: (1) the
closed-loop system S/Pr, is safe (Pr, cannot reach a
forbidden marking under the control of S); (2) a reach-
able marking of Pr, which is a nonreachable marking
of Pr. under the control of S, is either forbidden or
can uncontrollably lead to a forbidden marking,.

Let us consider the forbidden markings for the pro-
cess described in Fig. 1. The behavior of the trains
must be restrained to prevent the trains from collid-
ing. Therefore, the two trains must be separated by
at least one section to ensure that an incoming train
can stop at a proper distance. It is assumed that tran-
sitions 74 and 76 are uncontrollable. The set of for-
bidden markings is formally specified as

My ={ I(S1,Trl)+I(S1,Tr2),...,
1(S6,Tr1) + 1(S6,Tr2),
I(S1,Trl) + 1(S2,Tr2),..
I(S6,Trl) + 1(S1,Tr2)}
As mentioned above, a forbidden marking which has
an equivalent marking already in M, is not inserted
in M. For example, forbidden markings 1(S1, Trl)+
1(S2,Tr2) and I(S1,772) + I(S2,Trl) are equiva-
lents, only one representative is included in M,. Be-
fore describing the synthesis algorithm, lets us intro-
duce an admissibility assessment predicate and the no-
tion of latest controllable binding elements.

4.1 Inadmissible marking

Given a set of forbidden markings My, there is,
In general, a larger set of markings which must be
avoided, due to uncontrollable transition sequences.
The markings from which the process can uncon-
trollably reach forbidden markings are characterized
by the recursive predicate Inadmissible which has a
marking M as argument and returns:

true if (3t € T,)(3b € B(t)) M[(t,b)>€ [M,)] or
if (3t € T,)(3b € B(t))
Inadmissible(M[(t, b)>)
false otherwise

A node with associated inadmissible markings is inad-
missible. When the initial marking is safe and steps
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contain only one binding element, the maximally per-
missive solution to the forbidden state control problem
exists and prevents the process from reaching any in-
admissible marking [5].
4.2 Latest Controllable Binding Elements
Let z, y, and z denote nodes in an OS-graph, and
(t,b) a binding element, where ¢ € T.. The latest
controllable binding elements of z is a set (denoted as
LCBE) of all triples of the form (z,t,b) such that for
each triple:*

1. M[(¢,b)> M,

2. ]\’Iy{(tl,bl)(tg,bz)‘..(tn,bn)> M, with t; € Ty,
fori=1,...,n.

A triple (z,t,b) contained in the LCBE of z is in-
terpreted as follows. The occurrence of the step (¢, b)
from M, is controllable whereas the sequence of steps
(t1,b1) ... (tn, bs) from M, to M, are uncontrollable.
Therefore, to make unreachable M, and its equivalents
in the process, it is necessary to disable the binding b
for t when the process is in marking M,.

5 The Synthesis Algorithm

The basic idea behind our synthesis algorithm is to
reduce the number of markings that must be exam-
ined by gathering the components that “behave in the
same way” into the same equivalence class. There-
fore, the sets of all markings and steps are partitioned
into disjoint nonempty equivalence classes. The al-
gorithm, given in Fig. 3, is based on the notion of
latest controllable binding elements, equivalent mark-
ing, and inadmissible marking. It accepts as input a
process Pr, a consistent symmetry specification rep-
resented by the equivalence relations ~y and ~pg, a
set of forbidden markings M, and a set of control-
lable transitions 7.. A maximally permissive compact
controller S = (G, ¢) is computed from representative
members, one per class of equivalent markings and
class of equivalent steps.

The algorithm uses many functions briefly de-
scribed hereafter. The function New Node creates a
new node from a marking and an LCBE. The function
New_Marking yields the marking reached after the oc-
currence of a binding element from a given marking.
The function New_Arc creates a new arc from a source
node, a binding element, and a destination node. The
function From Nodes takes as argument a node z and
returns the set of nodes in V from which z is directly
reachable on an uncontrollable binding element.

4The expressions M, and lche, denote a representative
marking M and LCBE of the node z, respectively.



1 function Synthesize.Controller(Pr,~ar ~pg,Mp,Tc)

2 V «{}; A« {} processed.nodes + {};
unprocessed.nodes + {New_Node(Mo,{})}

3 repeat

4 select T in unprocessed.nodes;

5 ifnot (M, ~um My) for some y in processed_nodes then

6 for all (t,b) enabled in M, do

7 M « New Marking(Mz,(t,b));

8 if M x5 M’ for some M’ in M, then

9 if t € T then

10 p@)(t) — (@)t U {8}
11 else
12 Inadmissible(z); break
13 else
14 if not (M ~p M) for some y being a son of z then
15 if t € T. then lcbe; « {(z,t,b)} else lcbe, + lcbey;
16 2z + New._Node(M (lcbe,);
17 unprocessed_nodes < unprocessed.nodes U {2};
18 a + New.Arc(z,(t,b),z); A « AUa
19 if z.status = admissible then V «+ V U {z}
20 else
21 if y.status = inadmissible then Inadmissible(z)
else lcbe, + lcbey U lcbey
22 processed + processed VU {z};
23 wunprocessed.nodes « unprocessed-nodes \ {z}
24 until unprocessed.nodes = {};

Figure 3: Algorithm for synthesizing a compact con-
troller

Each node has a status indicating whether or not its
associated marking is admissible. A new node has its
status set to admissible. The function Inadmissible,
given in Fig. 4, fixes the status of a node to inad-
missible (line 2), determines those that become inad-
missible among its predecessors (lines 3 and 4), and
updates the feedback function by inserting, for each
(z',¢,b) in the LCBE of z, the binding b in the set of
forbidden bindings for ¢ of z’ (lines 6 and 7). When
a node becomes inadmissible, all its son nodes in V
are removed (including their bound arcs) by using the
procedure Remove_Sons (line 2). If the LCBE of z is
empty, then there are no solutions (line 8).

1 procedure Inadmissible(z) :
2 z.status « inadmissible; Remove_Sons(z); V « V \ {z}
3 for each z’in From.Nodes(z)
such that z’.status = admissible do
Inadmissible(z')
if lcbe, # {} then
for each (z’',t,b) € lcbe, do
w(@')(t) & w(z)(t) U {b}
else “no solutions”
end

© 00~ G A

Figure 4:
nodes

Procedure for determining inadmissible

The algorithm works as follows. Initially, the sets
of nodes V and arcs A of the graph are both empty.
The set of processed nodes is also empty. The node
vo = (Mo, {}) is created and inserted into the set of
unprocessed nodes (line 2). In the example, My =
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T(S1,Tr1)+1(S4,Tr2) and the LCBE of vg is empty
because we assume that My ¢ M,. While there are
unprocessed nodes, a node z is selected (line 4) and
processed. The processing of a node starts with a test
for an equivalence between the marking M, and the
marking My of an already processed node y (line 5).
Only the first-picked node in each equivalence class is
developed further. If such a node y exists, then the
algorithm checks if it is an inadmissible node. If so,
then the Inadmissible function is called on node z to
disable the latest controllable binding elements on the
path leading to x. Otherwise, the contents of lcbe,
is inserted in lcbey (line 21). If such a node y does
not exist, every binding element (¢,b) enabled in M,
is analyzed (line 6). The marking M reached after
the occurrence of the binding element (¢,b) is com-
puted (line 7) and checked for an equivalence with
some other marking M’ included in the set of for-
bidden markings (line 8). If so, there are two cases:
either t is controllable or not. If transition ¢ is con-
trollable, the binding b is inserted in the set of forbid-
den bindings of z (line 10). For example, the mark-
ing I(S3,Trl) + 1(S4, Tr2), reached after the occur-
rence of the step (72, < ¢ = Trl >) from node #2 in
Fig. 5, is a forbidden marking. Therefore, the bind-
ing < = Trl > must be added to ¢(#2)(T2). If ¢
is uncontrollable, then the function Inadmissible is
called on node z (line 12}.

#1=(1'S1.11) + 1°(54.712) 4D

1 M, <x=Tr1>)
(74, <x=Tr2>)
#2 = (1(S2.11) + 1'(SA.Tr2).(#).Tl.<x=Tr1>)})

l (14, <x=1r2>) #3=(1'(SLI) + 1°(s6. 11204

#4.=(1°(S2.Tr1) + 1'(S5.1r2).{(#1,11 <x=Tr1>)}) (11, x=Tr1>) l
1 (2, <x=Tr1>) #9 = (1 (521 + 1' (5T H(#F3.T.<x=Tr1>)H)
equivalent to #4

#5 = (1(53.1e1) + 1°(S5.,1r2) 4 (#4,12,<x=Tt1>)}}
1 (15, <x=Tr2>)

#6=(1°(S3.T11) + 1'(S6.Wr2) {(#5,15.<x=T2>)})
l (16, <x=Tt2>)

#7 = (1'(S3.Tr1) + 'S LTI (#5.15.<x=12>)])
1 (13, <x=Tr1>)

#8 = (1'(84110) + 1'(SLT2) {(#7.13.<x=T1>)})
equivalent to #1

Figure 5: The graph for the circular railway system

Let us consider a part of the graph of Fig. 5 as illus-
trated in Fig. 6. The marking (52, Tr1) +I(S1, Tr2),
reached after the occurrence of the step (T6,< z =
T7r2 >) from node #10, is a forbidden marking. Since
the transition T'6 is uncontrollable, the controller can-



not prevent the step from occurring in the process at
this level. Based on the information in lcbey;o, the
binding < & = Tr2 > is inserted into ¢(#4)(T5).

#4=(1'(52,Tr 1)+ 1'(85.12) {(# 1.1 <x=Tr1>)P)

l (12, <x=Tr1>)
(15, <x=Tr2>)
#5= (1S3, + 1'(SS. W) 4(#4A.12,<x=Tt 1>)})
#10 = (1'(52.71) + V(SO A(#4.15 <x=T2>)})
(16, <x=Tr2>) 1

(Y21 )+ V(S1.Te2)4h)
Figure 6: A part of the graph

If M is not equivalent to some forbidden marking
in Mj, then the algorithm checks if marking M is
equivalent to a marking My, where y is a son of z
(line 14). If all the above conditions are not satisfied,
it means that the marking M is not equivalent to a
marking of a son of £ and not forbidden (for example,
node #7 in Fig. 5). In this case, a new node z is
created with the following attributes: the marking M
and Icbe, which is defined as {(z,¢,b)} if the transition
t is controllable; otherwise, it is the lcbe, of its parent
node z (lines 15 and 16). Furthermore, the set of
unprocessed nodes is updated (line 17) and a new arc
is created from node z to node z and added to A4 (line
18). At the end of the analysis of all binding elements
(t,b) enabled in My, if the status of z is admissible,
then z is included in V. Finally, the node z is included
in the set of processed nodes and removed from the set
of unprocessed nodes (lines 22 and 23).

L Markings T1 ] T2 T3 Ts5 I
I(52,7Trl) + 1(S4,Tr2) [] Trl [ [}
1(82,Tr1) + 1(S5,Tr2) ] ] [ Tr2
1(53,Tr1) + 1(S5,Tr2) [ ] Tr1 [
I(83,Trl) + 1(S6,Tr2) ? [ Tr1 ¢
1(83,Tr1) + 1(S1,Tr2) | Tr2 [ [
I(S1,Trl) + 1(S5,Tr2) 1] [} (1] Tr2

Table 1: The feedback function ¢

Fig. 5 shows the final solution for the circular-
railway example. Less than half of the possible nodes
have been inserted in the graph. The feedback func-
tion ¢ is given in Table 1°. Since the LCBE of each
node is useless in the closed-loop system, only the
marking of each node is kept in the solution.

5In column labeled T;, i = 1,2,3 or 5, Try must be read
{Kz=Trg>}(k=10r2).

34

To show how a discrete-event system is controlled,
we define an instantaneous closed-loop system config-
uration as an ordered tuple [M,v,v], where M € M,
v €V, and v € T'. The notation

(M1, 01,7) £ (M, v, 7]
indicates that the configuration [My, vq, 2] is obtained
from [Mi,v1,71] by the execution of one step of the
closed-loop system. An example of control is given by
the following steps:

[1(S4, Tr1) + T(S1, Tr2), #1, {}]

L2120 11(S4, Tr1) + 1(S2, Tr2), #2, {T2 : Tr1}]
IOE=Tr 1185, Trl) + 1(52, Tr2), #4, {T5 : Tr2}]
(T2,{z=Tr2}

[1(S5, Tr1) + 1(S3, Tr2), #5, {T3 : Tr1}]

The correctness of the algorithm is based on the
following theorem.

Theorem 1 The procedure Synthesize_Controller
always terminates and, if My ¢ [Mp] and not
Inadmissible(M,), then it returns a controller § =
(G, ) that is the unique mazimal solution to the for-
bidden state control problem with respect to the set of
forbidden markings M.

The proof of this theorem is presented in [12]. It
is based on the following two lemmas. Lemma 1 re-
flects some properties of the Jensen’s OS-graph [9].
Lemma 2 concerns an invariant of the main loop.

Lemma 1 Let ® be a consistent symmetry speci-
fication.  For all M € [My > and all ¢ € @,
Inadmissible(M) iff Inadmissible(¢(M)).

Lemma 2 Let predicate Inadmissible be restricted to
markings labeling nodes in the set processed_nodes.
For all M € [Mo> such that there exists a node v with
M, = M, v €V iff not Inadmissible(M,).

6 Summary and Conclusions

In this paper, we have presented a colored Petri-net
approach to the control of discrete-event systems. One
of the benefits of using CP-nets instead of equivalent
PT-nets is the compact and readable representation
of the system. The algorithm developed for synthesiz-
ing the controller avoids an exhaustive search of the
state space by the use of equivalence relations. For
systems with many similar components, our algorithm
will generally be more efficient than methods requiring
the construction of the entire reachable set of states.



The theoretical limitation of our algorithm is, how-
ever, due to the restrictions introduced in Section 3.

Comparison given in Table 2 shows that our method
is efficient relative to the automaton-based approach.
It concerns the same problem as the one introduced
in Section 2, but the track is divided in ten sections
and the transitions T'1, T'3, T5, T'7, and T'9 are con-
trollable. This table gives the number of states (and
transitions) in the process, the control specification,
and the controller when automata are used. This ta-
ble also gives the number of places in the process, the
number of forbidden markings in the control specifi-
cation, and the number of nodes® (and arcs) in the
graph associated to the controller when the colored
Petri net is the formalism used in conjunction with
equivalent markings. Note that these controllers have
been calculated by a software tool that support both
the automaton-based [14] and colored Petri net-based
approaches. The reader can find, in a companion pa-
per [13], an application of our method to the conges-
tion management in virtual circuit networks.

Process Control specification
Trains Automaton CP-net | Automaton My,
2 10% (2 x 10%) 10 70 (120) 20
3 10% (3 x 10%) 10 150 (300) 180
4 107 (4 x 107) 10 100 (160) 1800
Controller
Trains | Automaton graph
2 60 (100) | 30 (50) [54
3 90 (150) | 30 (50) (64
1 40 (40) 10 (10) {17

Table 2: Comparison o1 ‘he automata and CP-nets
approaches
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