A COMPUTER-AIDED DESIGN TOOL
FOR PROTOCOL TESTING

Michel Barbeau
INRS-Telecommunications
3 Place du commerce
I1e des souers, Québec
Cenada H3E tH§

ABSTRACT

Reliable communication among heterogenous
computers in a distributed system will be built on
standardized protocols based on the open systems
interconnection reference model. Testing these
protocols locally or from a distance is of prime
importance for 0SI. In this paper, a computer-aided
design tool is presented for designing tests for
protocols. CAD-PT accepts a formal specification in
Estelle of the protocol and generates control and data
flow graphs on a graphic workstation. The tool is
explained component by component by taking a
simplified 1SO Class 2 transport protocol as an
example.

1.INTRODUCTION

In order to facilitate interconnection of
computer systems of various types, international
standardization institutions such as 1S0 and CCITT
have developed a reference model of open systems
interconnection (0SI). 0S| typical applications are file
transfer, remote job entry, distributed data base
access, teletex and electronic mail. The last two
applications are slso classified as teleservices in
integrated services data network (ISDN) context.

What makes 0S| work is the standardization of
protocols and services. Standard definitions are
presently given in natural language and because of this
the definitions contain ambiguities and impreciseness.
1S0O and CCITT have been involved in defining formal
languages with which protocols and services can be
specified. The development of the formal description
techniques has benefited from earlier efforts of
protocol modelling with finite-state machines (FSM)
[Dant 83] and Petri nets [Diaz 82]. A Formal
Description Technique (FDT) of interest to us in this
paper is Estelle [Linn 85]. Estelle is based on an
extended finite-state machine model. Many of the 0S!
protocols have already been formally specified and
formal specification of others ere being developed.(an
example is given in [1SO 82])

Behget Sarikaya
Concordia University
Electrical Eng. Dept.
1455 de Maisonneuve W.
Montréal, Québec
Canada H3G 1M8

Protocols and services of 0S| and ISDN are
complex. They have to be throughly tested before
being incorporated in the system. Another related
activity is testing for conformance to the protocol
specification. Conformance testing is usually
undertaken by national or international institutions.
There are two major aspects of protocol testing:
defining the environment in which an implementation
under test (IUT) will be tested and defining the tests to
be applied to IUT. We are interested in test design for
protocols and we will describe a tool for this purpose.
The resulting tests can be used in any architecture
defined by 1S0 Conformance Testing Methodology [ISO
861

The computer-aided design tool CAD-PT is a
partial implementation of a protocol test design
methodology [SaBoCe 87]. The methodology derives
graphical models of the formel specification of a
protocol/ service. The contral graph is used to define
the interaction sequences to be applied / observed
during a test while the data flow graph decomposes the
protocol data flow into various simpler flows called
functional blocks.

The 5th generation programming language
Prolog is suggested as a modelling tool for protocol
verification [Sidh 83], protocol analysis [UrPr 86]
and testing [UrSh 86]. Much earlier, Prolog was used
in compiler development [Warr 80]. in CAD-PT we
used Prolog for syntactic and semantic analysis of
Estelle specifications. The result is a quicker way of
implementing compilers since Prolog programs are
much shorter than those written in conventional
languages.

The paper is organized as follows: Section 2
gives an overview of protocol specification and the
formal description language Estelle, Section 3
introduces the tool whose components are explained in
detail in sections 4 (lexical/ semantic analysis and
normalization), 5 (control flow analysis) and 6 (data
flow analysis). Finally, Section 7 contains authors’
conclusions.

1D.3.1.

0086 CH2534-6/88/0000-0086 $1.00 © 1988 IEEE

2.PROTOCOL SPECIFICATION

Itn this section we discuss protocol
specification with Estelle formal specification
language.

Estelle describes a protocol entity as a
collection of modules. Each module is a finite-state
machine capable of having memory, i.e., extended
finite-state machine. Modules of an entity can
communicate with each other as well as with the
modules of adjacent layer entities over channels
(FIFO queues). Service primitives (with bottom and
upper layer entities), and internal interactions (with
other modules) are communicated in the channels.
Protocol data units (PDUs) need not explicitly be
defined; they are encoded/decoded to become service
primitives. Decomposition of a protocol entity into
modules is usually functional: a module for timer
management, a mapping module to map PDUs into (N-
1) service primitives, an abstract protocol module
for handling (N+1) service primitives and forming
PDUs, etc.

Language of Estelle is based on Pascal with
extensions to facilitate protocol specification. To
save space we only describe the constructs related
to transitions. FROM/TO clauses define initial/ final
state(s) of the finite-state machine, respectively.
The arrival of an input interaction is expressed using
WHEN. Transitions with no WHEN clause are called
spontaneous. They are used to describe
nendeterminism (internal decisions of the entity, for
example). The conditions for firing the transition are
described in a PROVIDED clause which is a Boolean
expression on interaction primitive parameters and
variables of the module. Variables of the module are
called context variables. Finally, the action of the
transition is contained in 8 BEGIN block which can
have assignments to context variables, calls to
internal procedures, Pascal conditional statements
and produce output with OUTPUT statement.

An example protocol specification in Estelle is
given in Appendix A. This specification will be used
as an example in the sequel. It is a simplified version
of the transport protocol class 2 entity specified in
[150 82]. Only abstract protocol moedule (ATP_type)
is considered. This module has 5 major states :
closed (idle state), wtce (wait for CC TPDU), wtcr
(wait for TCONNECTresponse from the user), open
(connection established) and wfdc (wait for DC
TPDU). ATP_type module has 18 transitions and
communicates with modules Map (for mapping) and
TS (for transport service). Only transitions of the
data transfer phase along with one transition of the
connection establishment phase are listed in Appendix
A.

3.STRUCTURE OF THE ToOOL
The first step applied to an Estelle
specification is normalization. The process of

normalization (to be explained in Section 4) gives
rise to simpler specifications called normalized
specification. In a normalized specification we
identify two types of flows: control flow which
models major state transitions from one transition
to another; and data flow which models flow from
input primitive parameters to context variables and
from context variables to the output primitive
parameters.

Control flow analysis step (to be discussed in
Section 5) generates the control graph which is the
FSM of the protocol. From this FSM, test squences
can be generated. Data flow analysis step (to be
discussed in Section 6) generates the data flow
graph and partitions it. Protocol functions are
obtained from this graph. These functions can be
tested independently from each other with the
application of the test sequences.Figure 1 shows the
global structure of the tool. The rectangles are the
steps and rounded squares show the product obtained
from the step.

4 LEXICAL/SEMANTIC ANALYSIS AND
NORMALIZATION

To ensure a correct specification for the
normalization phase, the input specification is
syntactically end semantically analysed.

Lexical analysis and parsing phase verify that
the input Estelle specification has no syntactic
errors. This phase is implemented using standard
tools of Lex and Yacc available in Unix™ operating
system. The output produced is a parse tree
expressed as a single Prolog clause.

Lexical analysis phase accepts a subset of
Estelle language [Este 87]. The constructs concerning
dynamic module creation (init, attach, etc.) are
excluded. In the present version, the conditional
statements of for, repeat and while are not accepted.

Semantic analysis phase takes the tree
produced by the previous phase and verifies the
definitions, correct use of variables in the
statements and prepares a symbol table. This phase
is completely implemented in Prolog. The algorithm
used is an adapted version of [WaGo 85] More detail
on the structure of the symbol table can be found in
[Barb 871

4.1 .Normalization

Symbolic execution is a technique for
static program analysis [CIRi 81]. It has been used
for program verification and testing. An Estelle
specification can be symbolically executed for the
purpose of identifying all the control paths. It is also
possible to express these paths as distinct
transitions using Estelle syntex [SaBoSe 86].

In our tool the normalization, i.e. symbolic
execution of Estelle specifications, is done in three
steps: first procedure and function calls are

1D.3.2.

0087

replaced, then conditional statements (IF, CASE) are
eliminated and finally FROM and TO clauses are
processed so that each transition contains maximum
a single major state change. Each module of the
specification is treated independently, resulting in a
normalized specification for each module. Steps of
normalization are detailed in what follows.

4.1.1.Procedure/Function Call Elimination

Each procedure / function body definition is
converted to an internal representation to facilitate
replacement procedure. Local variables are
converted to global variables with unique identifiers
and a global variable is sometimes created for each
parameter which is called by value, i.e. when the
variable is assigned a value. For the result returned
by each function, a global variable is created.

All procedure/function calls are replaced by
the corresponding begin-end block. In replacing a
procedure call, here is what happens: i) The begin-
end bloc is obtained from the symbot table, ii) For
each value parameter which is assigned in the body
of the procedure, an assignment statement is placed
before call replacement occurs iii) All other
parameters are symbolically replaced by the actual
parameters. Function call replacement is similar and
explained in [Barb 87].

Procedures/functions declared as primitive
are not eliminated. In Estelle, this mechanism is used
for defining operations on abstract data types.

4.1.2.Conditional Statement Elimination

Conditional statements in the transitions can
be eliminated by creating two or more equivalent
transitions and modifying the PROVIDED clause to
reflect the condition from taking this path.

Modification of the PROVIDED clause is
compicated in cases where the boolean expression of
the conditional statement contains variables assigned
in the same transition before the conditional
statement. A symbolic replacement should be made
for these variables. The present version of the tool
does not accomplish this, instead the user is signaled
of the case with a warning message.

Elimination of the CASE statement is a
generalization of the IF statement. The loop
statements FOR, REPEAT and WHILE (excluded from
the language accepted by the present version) are
difficult to process in symbolic execution. CAD-PT
ignores these statements in the normalization phase.
However, the user can eliminate them by assuming
that the loop count can statically be known and by
repeating the loop body accordingly. While this
assumption may not be realistic in general case, it
turned out to be true for the specifications we have
treated so far.

4.1.3.FROM/TO Clauses

0088

This step simplifies FROM/TO clauses in a
given specification. State lists and state sets are
eliminated by creating more than one transition, one
for each state in the list. This elimination is
facilitated by other steps of normalization since the
control paths in the actions are identified.

4.2 Example

The example specification in Appendix A (the
simplified transport protocol specification) will be
treated for normalization. The specification contains
an abstract data type definition (buffer_type), two
variables of this type (send_buffer, receive_buffer)
and operations on this type (store, remove, etc.) as
primitive procedures and functions.

Normalized transport protocol specification is
listed in Appendix B. The transitions are numbered
starting from 1. Normalized transition O corresponds
to initialization (initialize in Estelle). Normalization
produces 24 transitions of which Appendix B contains
only the normalized transitions of the data transfer
phase to save space.

S.CONTROL FLOW ANALYSIS

Major state changes from one normalized
transition to another is called control flow. Control
flow is best shown by a state diagram. Because of
availability of an algorithm to graphically display a
tree, we have opted for displaying the state diagram
as a tree. In [Chow 78], such a tree is called testing
tree.

Control flow analysis module is implemented
in Prolog and C. The testing tree is created by a
Prolog program and then displayed by a C program
using Sun workstation graphics [SUN 85]. From a
tree representation of the normatized specification,
Prolog program extracts the names of the inputs
(WHEN clause) and outputs (output clause) and
creates an intermediary file. The transition function
of the FSM is easily obtained from FROM and TO
clauses and also placed in an intermediary file. AC
program then displays the testing tree using the
information in the files. The algorithm used to display
the tree can be found in [Vauc 80].

An example testing tree of the transport
protocol as obtained by our tool is shown in Figure 2.
Rectangles are the states and arcs are the
transitions. On each arc shown are the number of the
normal form transition, the input and the output.
Missing input/output are represented by the word nil.
Apart from displaying the tree, the module creates a
file which describes the FSM. This file can
furthermore be taken as input to test sequence
generation modules based on FSMs.

6.DATA FLOW ANALYSIS
Actions of the normalized transitions can be
seen as a collection of operations which process

1D.3.3.

parameters of input primitives (service primitives
and/or PDUs) in order to determine the values of
parameters of the output primitives. This processing
is done using context variables as storage and
applying certain functions such as arithmetic
operations or abstract data type operations on
context variables. Thus we define value changes on
the context variables as data flow. Data flows from
input primitive parameters to the context variables
and from context variables to output primitive
parameters. This leads us to a natural graphical
representation of the actions of normalized
transitions, called data flow graph (DFG). Generation
of DFGs is only possible when PDU (being input/
output primitives) psrameters are explicitly
identified. This point is discussed in Section 6.2.

A data flow graph such as shown in Figure 3
can be interpreted as displaying the overall flow of
information on each context variable. Therefore, this
type of flow graphs ere called global data flow
graphs. This property distinguishes them from other
data flow graphs such as parallel data flow graphs
described in [ArCu 86). Paraliel data flow graphs for
protocols are discussed in [AhSa 87].

6.1.Description of DFGs

In the upper part of the data flow graph, data
sources (input primitive parameters) are placed and
similarly, date sinks (output primitive parameters)
are placed in the bottom. All other nodes are placed
in the middle. The arcs describe the information flow
of the statements in the actions. For example, for a
simple assignment statement, an arc is created from
source node (the variable on the right hand side of
the := operator), to the destination node (the
variable on the left hand side of the := operator).

Procedure/function parameters are
represented depending on whether they are passed by
value or by reference: Value parameters are
connected by an arc to the node representing the
procedure; reference parameters are connected to
the node by a two-directional arc since the
parameter can be at times an input or an output.

The arcs are labelled with the number of the
normalized transition in which the statement it
models can be found. The same assignment statement
occuring in more than one transition is represented
with a single arc containing a list of transition
numbers.

6.2.PDU Field Identification

identification of individual fields of service
primitives and protocol data units (PDU) is necessary
for the data flow graphs. For service primitives,
Estelle specifications contain an explicit list of fields
but such is not the case for the PDUs. It is common
practice to define a single record for PDUs and
identify them using an identification field. Appendix A

contains TPDU_and_control_information which is
used to define the fields of all the PDUs, each
identified by the field "TPDU_code_type".

The tool requires user intervention in order to
identify fields of PDUs in case they are commonly
defined in the specification. The user is asked to
create a file in which (s)he places the name of the
record defining the PDUs, the id field and list of the
fields of the PDUs. In case of the transport protocol,
such a file would contain:

pdu_tgpe(tpdu_and_control_information).
pdu_id_field(kind).
pdu(cr,[peer_address,options_ind,credit_valuel).
pdu(cc,loptions_ind,credit_valuel).

pdu(dr [disconnect_reason,is_last_pdul).
pdu(dec,[]).
pdu(dt,fuser_data,send_sequence,end_of_tsdul).
pdu(ak,[expected_send_sequence,credit_value)).

The Prolog clause pdu_type defines the structure
containing the PDUs in the specification. The field of
the structure which identifies the PDUs is specified
by pdu_id_field clause. Following this is the pdu
clauses, one for each possible value of pdu_id_field.
The pdu clauses associate to each type of pdu, a list
of the names of the pdu fields.

PDU identification module is part of the data
flow analysis module and constitutes its first phase.
when PDU identification module is called with an
auxiliary file a modified normalized specification is
generated. The modifications to the specification are
done to reflect the changes in the field which defines
the PDUs, i.e. explicit definition of the fields of each
PDU of the protocol. The structure is replaced with
two or more new structures whose names are
automatically crested by adding the id of the PDU to
the end of the structure. Channel definitions are
modified to explicitly list the PDUs exchanged.
Transitions need to be modified to detect the places
where PDUs are generated and used as parameters to
the output statements.

The appendix B contains the normalized
transport specification in which PDU fields are
identified using the auxiliary file listed above.
Modifications done by the PDU field identification
module can be found in the Appendix by inspection.

6.3.DFG Generation

Data flow analysis module is also implemented
in Prolog and C. A Prolog program generates a
representation of the graph from the tree
representation that is the output from the PDU
identification module in an intermediary file. A
program written in C displays the graph on the
screen. The Sun workstation graphics facilities are
used to easily show the graph. Since optimal
placement of the nodes on the screen is difficult to

1D.3.4.

0089

achieve, instead the tool displays the nodes in some
order, but the user can easily displace any node
interactively. The final form is stored in a file for
further processing.

As an example, the data flow graph as
generated by the tool of the transport protocol is
given in Figure 3.

6.4.Partitioning the Data Flow Graph

A data flow graph can be partitioned into
blocs, 8 bloc representing the flow over a single
context variable. The blocs in the figure 3 are
separated with vertical lines. A partitioning
algorithm can be found in [SaBoCe 87]. In [SaBoCe
87] it is shown that by merging some of the blocs, it
is possible to obtain representations of most of the
protocol functions. Merging can only be automated to
some extent since what variables to merge in order
to obtain a protocol function is sometimes left to the
user. The present version of the tool does not
attempt sutomatic merging, but it is left to the user.
The functions are usually identified as data transfer
for sending, data transfer for receiving and flow
control for sending and receiving, etc.

6.5.Test Design

The aim of test design using the tool is to
generate test sequences that guarantee coverage of
each arc in the data flow graph of each function.
Coverage of the complete control graph is assured by
applying all the subtours obtained from the control
graph. The methodology is detailed in [SaBoCe 87]. In
the present version of the tool, test design is left
completely to the user. As an example we will design
a test for the data trensfer for sending function
shown in Figure 3.

Local user of the protocol (called upper tester
in conformance testing) sends T_Data_req service
primitive with ts_user_data parameter containing a
single byte with 0 value and end_of_tsdu parameter
containing true value. This information is verified by
the peer user (called lower tester in conformance
testing) from the DT PDU received. The local user
continues to send T_Data_req and each time changes
the contents of ts_user_data, achieving an
enumeration of this parameter. it is also possible to
increase the length and continue enumerating the
data. To ensure coverage of all the arcs, the local
tester should send some long data so that the
protocol entity stores the data in send_buffer and
then transmits them in consecutive DTs. More detail
can be found in [SaBoCe 87].

7.CONCLUSIONS

A protocol test design tool is presented. The
tool aids the user in designing protocol tests by
graphically displaying the control and data flow
graphs of the protocol. These graphs are obtained

from a formal specification of the protocol in Estelle.
Control graph leads to interactions to be applied in
the tests and the data flow graph decomposes the
protocol into various simpler functions, most of them
can be tested independently.

More automation of the test design process is
being planned in the future versions of the tool. This
way, nonexpert users will be able to benefit from the
tool. We believe that even this will not make the
protocol test design a completely automatic process
since the best tests require both expertise and
intelligence.

Protocol test design can also be based on
Lotos formal specification language. Theoretical
results indicate that Lotos specifications exhibit
similar structures as normal form transitions [AhSa
86]. This encourages us to work towards obtaining
another version of our tool which also supports
Lotos. Users interested in either formal description
technique will be able to use the tool to design
protocol tests.

Acknowledgements. We are grateful to Prof. G.v.
Bochmann of Université de Montréal for his
encouragements and fruitful discussions. The first
author acknowledges his financial support.

8.REFERENCES

[AhSa 86] R. Ahooja, B. Sarikaya, "Comparing
Normal Forms Obtained from Estelle and Lotos
Specifications”, 6th IFIP Workshop on Protocols,
June 1986, North-Holland 1987.

[AhSa 87] R. Ahooja, B. Sarikaya, "A Unified Data
Flow Model for Estelle and Lotos”, Submitted for
publication, available from Concordia University,
February 1987.

[ArCu 86] Arvind, D.E. Cueller, "DataFlow
Architectures”, Annual Reviews in Computer
Science, 1986.

[Barb 87] M. Barbeau, "Prototype d'un Systéme
d'Aide & 1a Conception de Test de Protocoles”, M.Sc.
Thesis, Université de Montréal, February 1987.
[CIRi 81] L.A. Clarke, D.J. Richardson, "Symbolic
Eveluation Methods for Program Analysis”, Program
Flow Analysis, S.S. Muchnick, N.D. Jones (Eds),
Prentice-Hall, 1981.

[Chow 78] T.S. Chow, "Testing Software Design
Modeled by Finite-State Machines”, IEEE Trans. on
Software Engineering, Vol. SE-4, No.3.

[Dant 83] A.S. Danthine, “Protocol Repesentation
with Finite-State Machines”, Computer Networks and
Protocols, P.E. Green (Editor), May 1983, pp. 579~
6'06, Plenum Press.

|Diaz 82] M. Disz, "Modelling and Analysis of
Communication and Cooperation Protocols Using Petri
Net Based Models", 2nd IFIP Workshop on Protocols,
pp.465-510, 1982.

[Este 87] 1SO/TC 97/SC 21 Estelle, "A Formal

1D.3.5.

0090

Description Technique Based on an Extended State
Transition Model”, DIS 9074, July 1987.

[1S0 82] 1SO/TC97/SC16/WG1, "Example of a
Transport Protocol Specification”, Nov. 1982.

[IS0 86] I1SO/TC 97/SC21/WG1 E28, "Conformance
Testing Methodology and Framework”, DP 11-12,
Sept. 1986.

[Linn 85]) R.J. Linn, "The Features and Facilities of
Estelle”, Sth IFIP

wWorkshop on Protocols, pp.271-296, June 1985,
North-Holland 1986.

{saBoCe 87] B. Sarikaya, G.v. Bochmann, E. Cerny,
“A Test Design Methodology for Protocol Testing”,
|IEEE Trans. on Software Eng., May 1987.

[saBoSe 86] B. Sarikaya, G.v. Bochmann, J-M.
Serre, “"A Method of Validating Formal
Specifications”, Submitted for publication. Available
as @ research report from Concordis University,
1986.

[sidh 83] D.P. Sidhu, “Protocol Verification via
Executable Logic Specifications”, 3rd IFIP Workshop
on Protocols, pp.237-248, 1983.

[SUN 85] SUN- MICROSYSTEMS, "Programmer's
Reference Manual for Sunwindows”, 1985.

[UrPr 86] H. Ural, R.L. Probert, "Step-Wise
Validation of Communication Protocols and Services”,
Computer Networks and ISDN Systems, Vol-11,
No.3, pp.183-202, 1986.

[UrSh 86] H. Ural, R. Short, "An Interactive Test
Sequence Generator”, Proc. of SIGCOM'86, Computer
Comm. Review, Vol.16, No3., pp.241-250.

[Vauc 80} J.G. Vaucher, "Pretty-Printing of Trees",
Software-Practice and Experience, Vol. 10, 553-
561.

[WaGo 85] W.M. Waite, G. Goos, “Compiler
Construction”, Springer-Verlag, 1985.

[warr 80} D.H.D. Warren, "Logic Programming and
Compiler Writing", Software-Practice and
Experience, Vol. 10, pp. 97-125.

APPENDIX A
TRANSPORT PROTOCOL SPECIFICATION IN ESTELLE

specification Transport;
const
max_seq..no = 127;

type

T-address_type = ..;

reference-type = ..;

option_type = ..;

seq_number—_type = 0. max_seq_no;

credit_type = seq_number_type;

data_type = ..;

buffer_type = ...;

PDU_size_type = integer;

reason_type = (TS_user_initiated, wrong_options);

TPDU_code_type = (CR,CC,DR,DC,DT,AK);
TPDU_and_control_information = record
peer_address : T_address_type;

kind : TPDU_code_type;

dest_ref, source_ref : reference_type;
credit_value : credit_type;

user_data : data_type;

options_ind : option_type;

is_last_PDU : boolean;

disconnect_reason : reason_type;
send_sequence : seq_number_type;
end_of _TSDU : boolean;
expected_send_sequence:seq_number_type;
end;

channel TCEP_primitives (user, provider);
by user:

T_DATA_req(TS_user_data : data_type);
user_ready(length:integer);

by provider:
T_DATA_ind(TS_user_data : data_type;
is_last_fragment_of_TSDU:boolean)

channel PDU_and_control_primitives(
protocol,mapping);

by protocol, mapping:

frwrd(PDU:TPDU_and_control_information);

ready—_for_sending;

module ATP_type process(
TS:TCEP-_primitives (provider);
Map:PDU_and_control_primitives(protocol));

body ATP_body for ATP_type;

var
state:(CLOSED,WTCC,WTCR,OPEN,WTDC);
TRseq, TSseq : seq_number_type;
R_credit, S_credit : credit_type;
send_buffer,receive_buffer: buffer_type;
max_PDU_size : PDU_size_type;

{ local functions }
function DT_PDU(s : seq_number_type;
d : data_type; e : boolean) :

TPDU_and_control_information;

begin
DT_PDU.kind := DT;
DT..PDU.user_data := d;
DT_PDU.send_sequence := s;
DT_PDU.end_of_TSDU := e;

end;

function AK_PDU(s: seq_number_type;

1D.3.6.

0091

c:credit_type): TPDU_and._control_information;
begin
AK_PDUkind := AK;
AK_PDU.expected_send_sequence := s;
AK_PDU.credit_value := ¢;
end;
(* other functions forming CR,CC,DR and DC are
omitted *)
procedure Strore(var Buf: buffer_type;
data:data_type);

primitive;

function Retrieve(Buf:buffer_type):data_type;
primitive;

function length_available(Buf: buffer_type):integer;
primitive;

(* indicates the Iength of data unit in the buffer %*)

function is_end_of_DU(Buf: buffer_type):boolean;
primitive;

(* indicates whether the data in the buffer includes a

complete DU*)

function enough_space(Buf: buffer_type;
length:integer): boolean;primitive;

(* indicates whether Buf has enough space for length

octets of data*)

initialize
to CLOSED
begin end;

{ Transitions }

trans

(* transitions of call establishment/
disconnection and call refusal are omitted *)

{ Data Transmission}

when TS.T_DATA_req

from OPEN to same

begin

Store(send_buffer, TS_user_data);
end;

when Map.ready..for_sending

from OPEN to same

provided (length_available(send_buffer)
>= max_PDU_size)
or is_end..of _DU (send_buffer)

begin

output Map.frwrd(DT_PDU(TSseq,
Retrieve(send_buffer),
is_end_of_DU(send..buffer)));

S_credit := S_credit - 1;

TSseq := (TSseq + 1) mod (max_seq_no + 1);

end;

{ Receiving Data)

when Map.frwrd
provided (PDU.kind=DT) and

0092

enough_space(receive_buffer,
max_PDU_size)
from OPEN to same
begin
it (R—credit <> 0) and (PDU.send_sequence = TRseq)
then begin
TRseq := TRseq + 1;
R_credit := R_credit - 1;
Store(receive_buffer,PDU.user_data);
end; (/ else error /)
end;

when TS.user_ready

provided length_available(receive_buffer) > length

from OPEN to same

begin

output TS T_DATA_ind(Retrieve(receive_buffer),
is_end_of_DU(receive_buffer));

end;

{ Acknowledgements }
from any_state to same
begin

R_credit := ...

end;

from open to same

begin

output Map.frwrd(AK_PDU(TRseq, R._credit));
end;

when Map.frwrd
provided PDU kind = AK
from OPEN to same
begin
{ Calculate new credit }
if PDU.expected_send_sequence <= TSseq
then
S_credit := PDU.expected_send_sequence
+ PDU.credit_value - TSseq
else
S_credit := ((PDU.expected_send_sequence
+ PDU.credit_value) mod 128) -TSsegq;
end;
end;
end.
APPENDIX B
NORMALIZED TRANSPORT PROTOCOL
SPECIFICATION
trans
(* 12 %)
when ts. t_data_req
from open
to open
begin
store(send_buffer,ts_user_data)
end;
(* 13 %)

1D.3.7.

when map. ready_for_sending
provided
(1ength_available(send_buffer)>= max_pdu_size) or
is_end_of_du (send_buffer)
from open to open
begin
dt_pdu_8._dt.user_data:=retrieve(send_buffer))
dt_pdu_8_dt.send_sequence:=tsseq;
dt_pdu_8_dt.end_of_tsdu:=
is_end_of_du(send_buffer);
output map.frwrd_dt(dt_pdu_8_dt);
s_credit:= s_credit - 1;
tsseq:=(tsseq+1) mod (max_seq_no + 1)
end;
(* 14 %)
when map.frwrd_dt
provided
enough_space
(receive_buffer,max_pdu..size))
and ((r—credit <> 0)
and (pdu. send_sequence = trseq))
from open to open
begin
trseq:= trseq + 1; r—credit:=r_credit - 1;
store(receive_buffer, pdu. user_data)
end;
(* 15 %)
when map. frwrd_dt
provided
enough_space(receive_buffer,max_pdu_size)
and
not({r—credit<>0)
and(pdu.send_sequence=trseq))
from open to open
begin end;
(* 16 *)
when ts. user_ready
provided length_available(receive_buffer) > length
from open to open
begin
output ts. t_data_ind(
retrieve(receive_buffer),
is_end_of_du(receive_buffer))

end;

(* 18 *)

from open to open
begin

r—credit:=

end;

(* 22 %)

from open to open
begin

ak_pdu_9_ak.expected_send_sequence:=trseq;
ak_pdu_9_ak. credit_value:=r_credit;

output map. frwrd_ak(ak_pdu_9_ak)

end;

(* 23 %)

when map. frwrd_ak

provided not (pdu. expected_send_sequence<=tsseq)
from open to open
begin
s_credit:=((pdu. expected_send_sequence
+ pdu. credit_value) mod 128) - tsseq
end;
(* 24 %)
when map. frwrd_ak
provided pdu.expected_send_sequence <= tsseq
from open to open
begin
s_credit:=pdu.expected_send_sequence
+ pdu. credit_value - tsseq
end;

Figure 1. Global Structure of the Tool

Protocol Specification
In Estelle

Lesnical and Syntactic
Analysis

Tree of Syntactic
Analysis

Semantic Anaiysis

Tree of Semantic
Rnalysis

Normalization

ormalized Speclficotion

Data Flow Rnalysis

Data Flow Graph

Control Flow Anslysis

Contro! Flow Graph

1D.3.8.

0093

Figure 3. Data Flow Graph of the Transport Protocol

Left Right Merge Move block Mmﬂ Quit

Select with left

mouse button.

(frurd_ak.pdu.credit_value X frurd_ak.pdu.expected_send sequence)

(frurd_cc.pdu.credit_value)

(Trurd_cr.pdu.credit_value)

=

13

7
ff ¢

((frwrd_dt.pdu.send)‘(frurd ak.pdu.expectef

Select with left

mouse button.

R ——————————

(1 _data_req.ts user data)

(frurd_dt.pdu.user_data} (t_conne
1. *
%ﬁwn store
¢ 2
receive buffer|
1. i 19
is_end of du retrieve (is_end_of_duy :"tfi"'ﬂ)
. 16 ’/ \I‘
é send_sequence)|(t_data_ind.is_last fragwent of tsdu)(t_data_ind.ts user data }j(frwrd dt.pdu.end_of tsdu)(frurd dt.pdu.user data)) (Trd
rurd c:

0094

1D.3.9.

Figure 2. A Control Graph of the Transport Protocol

Left Right Up Down MUEHEENES v-compress v-sxpand h-compress h-expand g&t

Select with left mouse button.

[] 1. 13
!.C(l:o:nzfﬂnrl.::"/ €, dat Peagy”
X dc,

33

1D.3.10.

0095

