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Abstract

An experience is presented with an automated test de-
sign tool for functional analysis and test derivation of
distributed systems formally specified using Estelle, a de-
scription technique based on an extended finite-state ma-
chine model. The tool accepts a formal specification of
the system and generates control, data flow graphs and
unparameterized test sequences. The tool has been used,
on an experimental basis, for conformance test design of
ISO File, Transfer, Access and Management protocol.
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graph, file transfer protocol.

1. Introduction

Distributed system specification and analysis have re-
cently been an area of active research and development. An
area of distributed system research that is of interest to us
in this paper is protocols. Protocols provide communica-
tions in distributed systems. Various tools have been devel-
oped for protocol verification! and specification?. In order
to provide reliable communication among computers from
different manufacturers, an architecture has been defined to
structure the protocols in various layers. This architecture is
called Open Systems Interconnection {(OSI) reference model.
What makes OSI work is the standardization of its proto-
cols and services. Standard definitions are presently given in
natural language. Natural language specifications are inher-
ently ambiguous. Standardization institutions such as ISO
and CCITT have been involved in defining formal languages
with which protocols and services can be specified. The de-
velopment of formal description techniques (FDT) has ben-
efited from earlier efforts of protocol modelling by means of
finite-state machines® (FSM), Petri nets?, and a calculus of
commumicating systems®.

There is a FDT of interest to us in this paper: EstelleS.
Estelle is based on an extended finite-state machine (EFSM)
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model. Many of the OSI protocols have already been for-
mally specified in this FDT and formal specification of others
are being developed (examples are given in References 7and
8). Protocols and services of OSI are complex. They have
to be throughly tested before being incorporated in the sys-
tem. Another related activity is testing for conformance to
the protocol specifications. Conformance testing is usually
undertaken by national or international institutions. There
are two major aspects of protocol testing: defining the envi-
ronment in which an implementation under test (IUT) will
be tested and defining the tests to be applied to IUT?. We
are interested in test design for distributed systems in gen-
eral and protocols in particular. A computer-aided test de-
sign tool!0 has been introduced for the purpose of test design
for conformance testing. An improved implementation of it,
now nick-named CONTEST-ESTL, has been recently re-
alized. Improvements are in terms of functionality, capacity
and speed.

CONTEST-ESTL is an implementation of a functional
formal specification based test design methodology!!. The
methodology derives two graphical models from a formal
specification. The first model is called the control flow
graph and is used to define interaction sequences to be ap-
plied/observed during a test. The second model is named the
data flow graph and it decomposes the data flow into var-
ious simpler flows called functional blocks. Test sequences
obtained from this methodology have been experimented on
transport protocol implementations!!. This paper reports
unparameterized test generation for ISO’s File Transfer, Ac-
cess and Management!? (FTAM) protocol. This has been
realized on an experimental basis using the test design tool
CONTEST-ESTL.

In order to apply the tool to FTAM, we had to make
a description of this protocol in Estelle, Section 2 provides
short introductions to Estelle and FTAM. An overview of
our FTAM description in Estelle is given in Section 3. Sec-
tion 4 introduces CONTEST-ESTL (whose components are
explained in more details in References 13, 14and 15) and
discusses test generation for FTAM. Finally, Section 5 con-
tains authors’ conclusions.
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2. Estelle and FTAM

2.1 Estelle

Estelle describes a system (protocol) as a collection of
modules. Each module is a finite-state machine capable of
having memory, i.e., a EFSM. The modules of an entity can
communicate to one another as well as with the environment
via FIFO channels. Service primitives (exchanged with bot-
tom and upper layer entities), and internal interactions (with
other modules) are communicated in the channels. Proto-
col data units (PDUs, messages exchanged between protocol
entities) are introduced as parameters of service primitives.
Decomposition of an entity into modules is usually func-
tional: a module for timer management; a mapping-module
to map PDUs into interactions with the environment, i.e.
service primitives; an abstract-protocol-module for handling
service primitives and forming PDUs, etc.

The language of Estelle is based on Pascal with exten-
sions to facilitate protocol specification. To save space we
only mention the constructs related to EFSM transitions.
The from and to clauses define respectively the initial and
final state of a transition. The arrival of an input interaction
is expressed using a when clause. Transitions with no when
clause are called spontaneous. They are used to describe
nondeterminism (e.g., internal decisions of the entity). The
conditions for firing the transition are described in a pro-
vided clause which contains a boolean expression on inter-
action primitive parameters and (context) variables of the
module. Finally, the actions of the transition are contained
inside a begin-end block. Actions can be assignments to
context variables, calls to internal procedures, Pascal condi-
tional statements and output statements.

2.2 FTAM

FTAM is a layer seven protocol for creating the means
by which a client user application process can access and
manage the file store of a remote open system (0OS). FTAM
also defines a common model, for files and their attributes,
called the Virtual File Store (VFS). This model permits
transfer, access and management of files between systems of
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Fig. 1 Architecture of the FTAM Service

different manufactures as well as of different level of sophis-
tication.

Figure 1 depicts the architecture of the FTAM service.
There are two asymmetrical FTAM protocol entities called
the initiator and the responder protocol machines (PMs) re-
spectively located in OSs one and two. The FTAM client is
an entity, located in OS one, that wishes to transfer files be-
tween the OSs or access and manage files of the VFS located
in OS two. An implementation dependent software must be
inserted between the VFS and the real file store, in order to
perform the necessary mapping between the virtual and the
real world.

The user operates with the FTAM service to create a
series of embedded phases in which the desired file activity
can take place. The main phases are:

1) FTAM Regime Establishment - the initiator and
the responder establish each other’s identity.

2) File Selection - identification of the needed file
along with required access types.

3) Data Access - operations, such as read and write,
are performed on the selected file.

ISO has recently defined an application layer modell6 in
which fits the actual description of FTAM. This model is
shown in Figure 2. A local user application process is called
the Application Process (AP). The application proto-
cols are contained inside the Application Entity (AE).
The AE contains a set of Application Service Element
(ASE). An ASE is an implementation of a given informa-
tion processing service such as FTAM. The AE chooses the
ASEs needed to provide the type of communication required
by the AP. The Association Control Service Element
(ACSE) is a special kind of ASE that is used by other ASEs
to open and release presentation layer connections between
associated AEs. A Single Association Control Func-
tion (SACF) along with a set of ASEs constitute a Single

AP e« — — — — AP

[ ]

Presentation Layer
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Fig. 2 Application Layer Model

Association Object (SAO). Simultaneous associations are
controled by the Multiple Association Control Func-
tion (MACF). A AE is identified by an Application Title.
A AE is attached to a presentation service access point and
its title is bound to the presentation address.




3. FTAM Description in Estelle

Our description in Estelle of FTAM has been derived
from the ISO document!? which describes the protocol in
natural language. We tried to design a description that
would fit into the actual ISO application layer model. The
description defines a FTAM ASE module that uses the fa-
cilities provided by the ACSE module to open and release
presentation layer connections.

The description consists of two major parts. The first
part describes the data types and the structures used by
FTAM, i.e. parameters, PDUs and service primitives. The
module representing the behavior of the FTAM ASE is de-
fined in the second part. The behavior is described in terms
of the interactions with the FTAM users, the presentation
service and the ACSE module. The following two sub-
sections discuss the description in Estelle of the FTAM data
structures and the FTAM behavior.

3.1 Translation of FTAM Data Structures inte
ASN.1

Estelle borrowed from Pascal the notation for data type
and structure definitions. The Pascal notation can express
simple data types like boolean, char, integer and real. Or-
dinal types, such as enumerated types and sub-ranges, can
also be described. Pascal provides as well the means for
structuring data into arrays, records and sets.

ISO definitions of ACSE and FTAM make use of a stan-
dard notation named ASN.117. ASN.1 has been specifically
developed for application protocols data type definitions.
For expressing FTAM in Estelle, it is necessary to translate
ASN.1 definitions of PDUs and service primitives to Pas-
cal. In the following we propose a mapping, typical (not all)
ASN.1 data types used for defining the PDUs will be con-
sidered. The idea is to reflect as much as possible the data
structures defined in the ASN.1 language. However, some
aspects of the data types are dropped simply because Pascal
is not as rich as ASN.1 in data description facilities. For
instance optional declared values in ASN.1 structured types
cannot be omitted in the corresponding Pascal type.

Example 1: An ASN.1 integer is a simple type with
positive and negative whole numbers as distinguished values.
Let us consider the ASN.1 definition of the Service Level
type.

Service-Level
reliable(0),
user-correctable(1) }

::= Integer {

In Estelle the distinguished values are defined as Pascal
constants whereas Service-Level is defined of integer type.
const
reliable=0;
usr_corr=1;

type
ServLev=Integer;

Example 2: ASN.1 Bitstrings are ordered sequences
of zero or more bits. The Functional-Units type is such a
sequence.
Functional~Units
read(0),
write(1),
file-access(2),
limited-file-management(3),
enhanced-file-management (4),
grouping(5),
recovery(6),
restart-data-transfer(7) }

::= BITSTRING {

The numbers inside parentheses indicate the distin-
guished bits of the bitstring. ASN.1 bitstrings are translated
to Pascal arrays of booleans.
type

Units=(read,write,fil_acc,lim_fil_man,
enh_fil_man,group,rec,res_dat_transf);
FunctUn=array [Units] of boolean;

Example 3: An ASN.1 sequence is a new type con-
sisting of an ordered list of existing types. It structures a
sequence of items which order is relevant. Let us consider
the F-Select-request type.

F-SELECT-request ::= SEQUENCE {
attributes Attributes,
requested-access Access-Request,
access-passwords Access-Passwords,
concurrency-control Concurrency-Control,
commitment-control Commitment-Control,
account Account }

A sequence type is expressed in Estelle by a Pascal record

type.
SELrqTyp=record

attr:Attributes;

req.acc:AccReq;

acc_passw:AccPassw;

conc_contr:ConcContr;

comm_contr:CommContr;

acc:Account;
end;

Example 4: The ASN.1 type sequence of defines, by
referencing a single existing type, a new type as an ordered
list of zero, one or more values of this existing type. The
number of values in a sequence of is unlimited. The type
Constraints-Sets is a sequence of.
constraints-sets ::= SEQUENCE OF

Constraint-Set-Name

A sequence of is mapped to an array type item and an
integer type item structured inside a Pascal record. The
array type item stores the sequence of values whereas the




actual number of values in the sequence is memorized in the
integer type item. An implementation dependent maximum
sequence length is assumed.
const
maxCons=any integer;
type
const_sets=record
seq:array[1..maxCons] of ConsSetNam;
num:integer;
end;

Given a Sequence of structure named z, we add to
the constant and record structure definitions the functions
z_Append, z_First,z_Last,z_Pred and z_Succ. Let s be an
instance of a sequence type z, and v a value from the se-
quence elements type. The item s.num is initially set to
the value 0. The procedure z_Append adds v at the end
of s with the following operations: s.num := s.num +
1;s.seq[s.num] := v. If s.num > 0 then z_First(s) re-
turns s.seqfl] and z_Last(s) returns s.seg[s.num]. If 1 <
i < s.num (0 < i < s.num) then z_Pred(i) is s.seqfi — 1]
(z-Succ(z) is s.seq[t + 1]).

The ASN.1 set structured type is like sequence type, but
the items order is unrelevant. A translation similar to the
one defined for sequence of is adopted. Although notions of
first, last, successor and predecessor do not exist for sets.

Example 5: A ASN.1 set of is a structured type de-
fined as a unordered list of zero, one or more values of an
existing type. Insert-Values is a set of type.
insert-values ::= SET OF Access-Control-Element

In Pascal, types of set elements are restricted to sim-
ple types. Therefore Pascal sets are not general enough for
representing ASN.1 set types. Consequently we use record
structures similar to those used for sequence of. Moreover
to capture the unordered aspect as well as the fact that set
elements must be distinct we add operations. A set type def-
inition named z which elements are from domain y includes
the following group of Pascal functions and procedures.
function x_Empty(s:x):boolean;

primitive;
function x_Member(v:y; s:x):boolean;
primitive;
function x_Included(s1,s2:x):boolean;
primitive;
procedure x_Inter(sl,s2:x; var s3:x);
primitive;
procedure x_Union(si,s2:x; var s3:x);
primitive;
procedure x_Add(v:y; var s:x);
primitive;

These operations have the semantic suggested by their
name. Their realization is left to the implementor and this
is indicated by the keyword primitive in place of expanded
bodies. Access to instances of a set data type must be real-
ized via those operations.

Example 6: The choice data type defines a new type
from a given list of distinct types. A value is chosen among
them. An example of a choice data type is the FTAM-
Regime-PDU structure.

FTAM-Regime-PDU ::= CHOICE {
F-INITIALIZE-request
F-INITIALIZE-response
F-TERMINATE-request
F-TERMINATE-response }

Choice structures are translated to Pascal variant records.

type
FTAMRegPDUTyp=(INIrq,INIrp,TERrq, TERTp) ;
FTAM_Reg_PDU=record
case tag:FTAMRegPDUTyp of
INIrq:(v0:INIrqTyp);
INIrp:(v1:INIrpTyp);
TERrq: (v2:TERrqTyp) ;
TERrp: (v3:TERrpTyp) ;
end;

3.2 FTAM Behavior Description

The EFSM of FTAM has been obtained by first trans-
lating in Estelle the transition tables supplied by ISO. The
result is a EFSM skeleton where from, to, when clauses and
output statements are defined for each transition. There is a
bijection between FTAM service primitives and PDUs. The
PDU and the primitive associated to each other have the
same name. The PDU is in general a sub-structure of the
service primitive. Pascal procedures are defined for mapping
service primitives into PDUs. For instance, the following
procedure maps the parameters of a f-initialize request ser-
vice primitive into a initialize request PDU structure. A call
to this procedure will appear in the appropriate transition.
procedure INIrqPDU(

{ inputs }
pi:ProtVers;pcm:BOOLEAN;le:ServLev;
cl:ServClass;un:FunctUn;ag:AttGroups;
ro:RollbAv;co:ContTypList;ii:UsId;
ac:Account;fp:Password;cw:INTEGER;
{ ouput }

var Val:FTAM_PDU);

begin

val.tag:=INIrq;

with Val.v0 do begin
prot_id:=pi;pres_cont_man:=pcm;
level:=le;class:=cl;units:=un;
att_groups:=ag;rollback:=ro;
contents:=co;in_id:=ii;acc:=ac;
fs_passw:=fp;checkp_wind:=cw;

end;

end;

The standard also indicates the presentation or ACSE

service primitive that will contain each type of FTAM PDU.
For example a initialize request PDU appears in a ACSE a-
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associate request primitive whereas a select request PDU is
contained in a presentation p-data request primitive. The pa-
rameter values of FTAM regime establishment primitives will
be assigned to or received from ACSE primitives. The de-
pendencies between FTAM primitive parameters and ACSE
primitive parameters are provided in the standard and re-
flected in the Estelle specification by appropriate assignment
statements. The predicate of the provided clauses are ob-
tained from the text associated to transition tables. For the
purposes of this experience we have considered the Basic
FTAM protocol with functional units kernel, read and write.
In units read and write checkpointing is omitted. The spec-
ification has three external interaction points, namely, with
the user, ACSE and the presentation service. Some elements
of the specification are given in Appendix A.

4. FTAM Test Design Using

CONTEST-ESTL

Actions of FTAM are structured into functional units.
The unit kernel contains actions related to FTAM regime
establishment/ termination and file selection/ de-selection.
Functional units read and write both consist of file opening/
closing, send/ receive data and end of data transfer actions.
Functional unit read (write) also contains read (write) ac-
tions. Functional units are the elements of a first natural
decomposition of the protocol for the purposes of testing.

The functional unit kernel is totally independent of units
read and write. However, units read and write, although in-
dependent of each other, are dependent of unit kernel since
before they can be activated a FTAM regime has to be es-
tablished and a file has to be selected. In order to test units
read and write, the test designer will have to drive the IUT
into an appropriate context, i.e. in the file selected state.

The transition part can easily be decomposed into func-
tional units according to the service primitives. The ISO
standard relates to each functional unit the possible actions
(i.e. service primitives and PDUs). To obtain the descrip-
tion of a given functional unit, we keep only the transitions in
which the desired actions appear. We separated the FTAM
description into functional units, each functional unit is con-
sidered individually.

CONTEST-ESTL takes an Estelle specification and
semi-automatically produces unparameterized test suites.
The first step applied to an Estelle specification is normal-
ization. In a normalized specification, we identify two types
of flow: control flow, modelling major state changes defined
by the transitions; and data flow, modelling flow from in-
put primitive parameters (service primitives and/or PDUs)
to context variables and from context variables to output
primitive parameters. Test sequence generation is realized
for every protocol function that is obtained by data flow
decomposition.

4.1 General Considerations

This section contains observations about testing the
FTAM application protocol. Those observations originally
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emerged from the work of Bochmann, Deslauriers and Be-
sette!8. From their experience characteristics of the environ-
ment in which FTAM will be tested came up. Further details
can be found in their paper. They also brought out obser-
vations on test design for FTAM. Our experience validated
the four following observations.

1) The order of primitives and PDUs, in a sequence of in-
teractions, is generally independent of parameter val-
ues. It implies that test sequences obtained from the
control graph will not contain unpracticable paths.
Parameters that make exception to this are those that
appear in provided clause predicates. However, their
value can be easily chosen to make fireable the tran-
sitions.

D
~

Though rules for valid sequences of interactions are
simple, rules of admitted parameter values at a given
point in the execution are usually very complex. It
makes the non-automated part of the task more com-
plex for the test designer, since (s)he is left with com-
puting appropriate values of subtour interaction pa-
rameters. An example of this is the parameter of type
Attributes of a F-select request PDU.

3

~

As already mentioned, there is a one-to-one mapping
between the set of primitives and the set of PDUs.
Moreover, in general values from a given primitive
flow directly, without internal transformations, to the
associated PDU, and vice versa. In some cases, val-
ues of output parameters are determined by internal
constants. The data flow graph .exhibits only sim-
ple relations between its elements. This point implies
that once appropriate values are selected for input in-
teractions, values in output interactions are easily ob-
tained. It also implies that in a given data flow graph
block, there is no incoming arcs from other blocks.
Consequently there is no (data flow) dependency be-
tween data flow functions obtained by merging the
blocks.

4) The problem of non-synchronizable test suites has
been raised for certain protocols!9. This problem does
not arise in the case of FTAM because of the corre-
spondence between primitives and PDUs.

4.2 Test Generation for Kernel Unit

The intent of the normalization step is to identify the
control paths. They will be expressed as distinct transitions
in the resulting normalized specification. The normalization
is done in three steps. First procedure and function calls
are symbolically substituted by the sequences of statements
they represent. Next selective (if and case statements) and
repetitive (for, repeat and while statements) control struc-
tures are eliminated. The first two normalized transitions of
FTAM initiator kernel unit are given in appendix B. We also
produced normalized specifications for functional units read




and write. In the sequel we will discuss test generation for
kernel unit.

4.2.1 Control Graphs

The control flow analysis step takes as input a normal-
ized specification and generates the control graph which cor-
responds to the FSM of the system (or protocol entity). This
step produces a graphical representation of the FSM, Figure
3, which can help the test designer to visualize paths of exe-
cution. The nodes represent the states and the arcs indicate
by their numbers the corresponding normalized transitions.

From an internal representation of the control graph, test
sequences composed of transition subtours are generated. A
subtour is a sub-sequence of interactions that starts and ends
in the initial state. The initial state of functional unit ker-
nel is closed. For kernel we obtained a total of 16 different
subtours. Three of these are given in Table 1. Each transi-
tion takes one line in which its from state, input, output and
the normalized transition number are listed in order. The to
state of a transition appears as the initial state of the next
transition.

State Input Output Transition
closed FINIrq AASSrq.INIrq 1
initialize_pd | AASScf_INIrp FINIcf 3
initialized FTERrq ARELrq-TERrq 5
terminate.pd | ARELcf_TERrp FTERcf 6
closed FINIrq AASSrq.INIrq 1
initialize_pd AASScf_INIrp FINIcf 4
closed FINIrq AASSrq.INIrq 1
initialize.pd | AASScfINIrp FINIcf. fail 2

Table 1 Subtours

4.2.2 Data Flow Graphs

The data flow analysis step takes also as input a normal-
ized specification and generates the data flow graph and par-

titions it. The graph represents the flow of values from input
interaction parameters to context variables (internal vari-
ables of the protocol), and from context variables to output
interaction parameters. Internal data operations (actions of
the normalized transitions) of the protocol are also repre-
sented. In this graphical representation, inputs are placed in
the upper part of the graph, outputs in the bottom and all
others (operations, variables, etc.) are place in the middle.
Directional arcs indicate dependencies between elements of
the graph and they are labelled by the transition numbers in
which the corresponding statements appear. The data flow
graph is algorithmically partitioned into blocks. A block
generally represents the data flow over a single context vari-
able. In the case of FTAM we obtained a large number of
simple blocks, generally consisting of a single input parame-
ter interconnected by an arc to single output parameter. A
sample is given in Figure 4. Straight vertical lines represent
block-frontiers.
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4.2.3 Block Merging

Usually a very large number of blocks is obtained and
the data flow of one protocol function will be represented
by several blocks. With the help of a protocol test designer,
data flow representations for protocol functions are obtained
by merging blocks together. Functions can be identified as
data transfer for sending or receiving, flow control, etc. The
test designer is guided by a number of rules for merging
the blocks. The tool provides the facilities for modifying
the graphical representation in order to reflect the decisions
made by the test designer. Six rules for merging are pro-
vided in Reference 11. We applied those rules to the data
flow graph of functional units kernel, read and write. Statis-
tics are given in Table 2. It is important to note that the
same analysis realized by a different test designer may pro-
duce different data flow functions because of different possi-
ble subjective interpretations and applications of the rules.
Block merging of the FTAM data flow graph is further dis-
cussed in Reference 20.

4.2.4 Test Generation

Next is the test generation step. This step uses the con-
trol and data flow graphs to generate the transition subtours
to effectively test every function. Most of these functions can
be tested independently of each other.

Unit | Number of
Functions
kernel 14
read 12
write 12

Table 2 Result of Data Flow Analysis

The aim of test design using the tool is to obtain test se-
quences that guarantee coverage of each arc in the data flow
graph of each function. For this purpose a test sequence
generation module produces, given as input the control flow
graph and the result of functional analysis, subtours that
cover the arcs of each data flow function. It is the test de-
signer responsibility to compute appropriate values for in-
teraction parameters in the subtours. In general values of
output parameters will be determined from values of input
parameters, internal variables and operations. Subtours that
cover a given block will be applied several times to the im-
plementation under test, in order to realize partial or total
parameter domains enumeration and to try different combi-
nations of values.

5. Conclusion

We presented an experience that consists in obtaining
test suite skeletons for FTAM using the automated test de-




sign tool CONTEST-ESTL. We had to produce a formal de-
scription in Estelle of the protocol using the ISO standard.
This step was made easier by the fact that the standard pro-
vides well described transition tables.

Improvements over the previous tool version (CAD-PT)
are:

i) support of a larger Estelle language subset,

ii) speed increase (some phases of processing are now
implemented in C instead of Prolog), and

i) integration of a test sequence generation module with
the data flow graph editor (test sequences are now
automatically produced for each data flow function).

There is a need to investigate the integration of
CONTEST-ESTL to TTCN based tools and to further ex-
plore test design in the ASN.1 context.
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Appendix A: Transitions of Initiator
Side

A.1 Data Types and Structures

{FTAM PDU"’s}
{ INITIALIZE-request }
INIrqTyp=record
prot_id:ProtVers;
pres_cont_man:BOOLEAN;
level:Servlev;
class:ServClass;
units:FunctUn;
att_groups:AttGroups;
rollback:RollbAv;



contents:ContTypList;
in_id:UsId;
acc:Account;
fs_passw:Password;
checkp_wind:INTEGER;

end;

{ INITIALIZE-response }

INIrpTyp=record
stat_res:StatRes;
act_res:ActRes;
prot_id:ProtVers;
pres_cont_man:BOOLEAN;
units:FunctUn;
attr_groups:AttGroups;
rollback:RollbAv;
contents:ContTypList;
diag:Diagnostic;
checkp_wind:INTEGER;

end;

{ TERMINATE-response }

TERrpTyp=record
charg:Charging;

end;

{ FTAM-PDU }

FTAM_PDU_typ=(INIrq,INIrp,TERrq,TERIp) ;

FTAM_PDU=record

case tag:FTAM_PDU_typ of
INIrq:( vO:INIrqTyp);
INIrp:( vi:INIrpTyp);
TERrq:(); {no elements defined, shall be empty}
TERrp: ( v3:TERrpTyp);

end;
{---- FTAM Service Primitives ----}
channel F_access_point(User,Provider);
by User:
{ F-INITIALIZE request }
FINIrq(

CalledAET:AppTitl; { Called AE Title }
CallingAET:AppTitl; { Calling AE Title }
prot_id:ProtVers;
pres_cont_man:BOOLEAN;

level:Servlev;

class:ServClass;

units:FunctUn;

att_groups:AttGroups;
rollback:RollbAv;
contents:ContTypList;

in_id:UsId;

acc:Account;

fs_passw:Password;
checkp_wind:INTEGER) ;

{ F-TERMINATE request }
FTERrq;
by Provider:

{ F-INITIALIZE confirm }
FINIcE(

stat_res:StatRes;

act_res:ActRes;
prot_id:ProtVers;
pres_cont_man:BOOLEAN;
units:FunctUn;
attr_groups:AttGroups;
rollback:RollbAv;
contents:ContTypList;
diag:Diagnostic;
checkp_wind: INTEGER) ;
{ F-INITIALIZE confirm fail }
FINIcf_fail;
{ F-TERMINATE confirm }

FTERcE (

charg:Charging) ;
{---- ACSE Service Primitives ----}
channel A_access_point(User,Provider);
by User:
{ A-ASSOCIATE-request }
AASSrq(

protVers:integer; { Protocol Version }

CalledAET:AppTitl; { Called AE Title }
CallingAET:AppTitl; { CAlling AE Title }
app_cont:AppContNam; {Application Context Name}
us_inf :FTAM_PDU); { User Information }
{A-RELEASE-request }

ARELrq(

reas:RelReqReas; { Release Request Reason }
us_inf :FTAM_PDU); { User Information }
by Provider:

{ A-ASSOCIATE-confirm }
AASScE(

protVers:integer; { Protocol Version }
res:AssRes; { Result }

respAET:AppTitl; { Responding AE Title }
app_cont:AppContNam; {Application Context Name}
us_inf:FTAM_PDU); { User Information }

{ A-RELEASE-confirm }

ARELcf (

reas:RelRespReas; { Release Response Reason }
us_inf:FTAM_PDU); { User Information }

A.2 Transitions

trans

(*x 1 %)

when F.FINIrq

{ F-INITIALIZE primitive acceptable }

provided (level-usr_corr)and(class=transf_c1ass)

from CLOSED to INITIALIZE_PD

begin

INIrgPDU({ in } prot_id, pres_cont_man, level,
class, units, att_groups, rollback, contents,
in_id, acc, fs_passw, checkp_wind,
{ out } PDU);
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output A.AASSrq(0 { Versioni }, CalledAET,
CallingAET,IS0_8571_FTAM,PDU);
end;
(* 2 %)
{ F-INITIALIZE primitive not acceptable }
provided (level<>usr_corr) or
(class<>transf_class)
from CLOSED to CLOSED
begin
output F.FINIcf_fail;
end;
(* 3 x)
trans
when A.AASScf

{ ACSE conf. prim. indicates success of the op.
provided ({protVers=0) and (res=ass_acc) and

(us_inf.tag=INIrp) and
(us_inf.v1.stat_res=succ_res) and
(us_inf.v1l.act_res=succ_act))
from INITIALIZE_PD to INITIALIZED
begin
with us_inf.v1 do

output F.FINIcf(stat_res, act_res, prot_id,

pres_cont_man, units, attr_groups,

rollback, contents, diag, checkpnt_wind);

end;
(% 4 %)

{ ACSE conf. prim. indicates failure of the op. }

provided (us_inf.tag=INIrp) and
((protVers<>0) or (res<>ass_acc) or
(us_inf.v1.stat_res<>succ_res) or
(us_inf.vl.act_res<>succ_act))

from INITIALIZE_PD to CLOSED

begin

with us_inf.v1 do

output F.FINIcf(failure, act.res, prot_id,

pres_cont_man, units, attr_groups,

rollback, contents, diag, checkpnt_wind);

end;

(x 5 %)

{ request for termination of FTAM Regime }
trans

when F.FTERrq

from INITIALIZED to TERMINATE_PD
begin

TERrqPDU({ out } PDU);

output A.ARELrq(norm, PDU);
end;

(* 6 %)

trans

when A.ARELcf

provided (us_inf.tag=TERrp)

from TERMINATE_PD to CLOSED
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begin

with us_inf.v3 do
output F.FTERcf(charg);

end;

Appendix B: Normalized Transitions

trans

(x 1 %)
when f. finirq

provided (level=usr_corr)and(class=transf_class)
from closed to initialize_pd

begin

pdu_inirq.v0.prot_id:=prot_id;
pdu_inirq.v0.pres_cont_man:=pres_cont_man;
pdu_inirq.v0.level:=level;
pdu_inirq.v0.class:=class;
pdu_inirq.v0.units:=units;
pdu_inirq.v0.att_groups:=att_groups;
pdu_inirq.v0.rollback:=rollback;
pdu_inirq.v0.contents:=contents;
pdu_inirq.v0.in_id:=in_id;
pdu_inirq.v0.acc:=acc;
pdu_inirq.v0.fs_passw:=fs_passw;
pdu_inirq.v0.checkp_wind:=checkp_wind;
output a.aassrq_inirq(0,calledaet,callingaet,

iso0_8571_ftam,pdu_inirq)
end;

trans
(* 2 %)
when f.finirq
provided (level<> usr_corr)or(class<>transf_class)
from closed to closed
begin
output f. finicf_fail
end;
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