IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

V. CONCLUSION

In this note, a class of new observation problem, called simultane-
ous observation problem, is introduced and studied. This is achieved
by using the coprime factorization approach. Necessary and sufficient
conditions for the existence of simultaneous observation are derived.
It was shown that a general solution for the simultaneous observation
problem reduces the problem of observing n plants using a common
observer to one of observing n — 1 plants using a common observer.

REFERENCES

[11 M. Vidyasagar, Control Systems Synthesis: A Factorization Approach.
Cambridge, MA: MIT Press, 1985.

P. Saeks and J. Murray, “Fractional representation, algebraic geometry
and the simultaneous stabilization problem,” IEEE Trans. Automat.
Contr., vol. AC-27, pp. 895-903, 1982.

M. Vidyasagar and N. Viswanadham, “Algebraic design techniques for
reliable stabilization,” /EEE Trans. Automat. Contr., vol. AC-27, pp.
1085-1095, 1982.

X. Ding, P. M. Frank, and L. Guo, “Robust observer design for
dynamical systems under unknown disturbances,” in Proc. First IFAC
Symp. Design Methods Contr. Syst., ETH Zurich, Switzerland, 1991,
pp. 290-295.

J. O’Reilly, Observer for Linear Systems. London: Academic, 1983.
X. Ding and P. M. Frank, “Fault detection via factorization approach,”
Syst. Cont. Lett., vol. 14, pp. 431-436, 1990.

[2

(3]

[4

T

An Algorithm for Computing the Mask Value of the
Supremal Normal Sublanguage of a Legal Language

Michel Barbeau, Guy Custeau, and Richard St-Denis

Abstract—We consider the problem of finding the mask value of the
supremal normal sublanguage L of some given language L. We describe
a straightforward algorithmic solution that can be applied to existing off-
line procedures for determining the supremal controllable and normal
sublanguage of L and that does not require an explicit calculation of
L . This problem is fundamental because it is related to the supervisory
control problem under partial observation. Our algorithm applies only
to closed languages.

I. INTRODUCTION

One of the basic problems in supervisory control is to design a
controller whose task is to enable and disable the controllable events
of a discrete-event system (DES) such that the control requirements
expressed as a legal language L are satisfied. A unifying theory
has been developed by Ramadge and Wonham [11] to define and
solve this problem. Lin and Wonham [10] and Cieslak er al. [6] have
studied, in the framework of Ramadge and Wonham, the supervisory
control problem under partial observation. Following the theory of
Ramadge and Wonham, the uncontrolled DES is represented by a
generator, which is a deterministic automaton G = (Q. . 6. qo. Q.),
where @ is a set of states, ¥ a finite set of events, §: © x Q — Q

Manuscript received December 20, 1993; revised August 1, 1994. This
work was supported in part by the Natural Sciences and Engineering Research
Council of Canada and the Fonds pour la Formation de Chercheurs et 1’Aide
a la Recherche (FCAR).

The authors are with the Département de mathématiques et d’informatique,
Université de Sherbrooke, Sherbrooke, Québec, Canada JIK 2R1.

IEEE Log Number 9408778.

699

a transition function, go € () an initial state, and Q,, C Q a
set of marked states. Let I' = {0.1}E be the set of all binary
assignments to the elements of ¥, and let 1 € Tand ¢ € Z. If
(o) = 1 then o is enabled; otherwise, o is disabled. Let =, and
Y, be fixed disjoint subsets of & denoting the sets of controllable
and uncontrollable events respectively, such that ¥ = S, U Z,. A
controller is a pair C' = (5,0), where S = (Y. A.(.y0,Y0) is
a deterministic automaton and ¢: ¥ — T is a feedback function
satisfying: i) ¢(y)(c) = 1, if ¢ € T,; and ii) 6(y)(s) € {0.1},
otherwise.

To control a DES, Ramadge and Wonham introduced a transition
function é.: T x ¥ x) — Q defined by

by 0.¢q)
_ {6(a.q).
undefined,
The controlled discrete-event system (CDES) is then the generator
G. = (Q.T xX. 6., q0.Q.) obtained from G by specifying the sets
Y. and &,.

Following the extensions proposed by Cieslak et al. [6], we
consider the case in which (" observes all the events of G, through
a mask or observation function M that maps each event in ¥ into
an observed event in A U {<}. The events in M ~'(<) are those that
cannot be seen by C'. If C' cannot distinguish between o, and o2,
then M (o) = M(o2). If M is the identity function, then A = ©
and all the original events are observed by C'. The special case in
which M simply erases some of the events in & occurs frequently
and is called a natural projection [12] or natural mask [14].

Finally, the CDES and controller are embodied in a closed-
loop system to constitute a supervised discrete-event system (SDES)
C'/G., which is defined to be the generator (Y x Q.T.(C o M) x
b0y (Y0-90), Yo X Qu,), where the function

if 6(o.q) is defined and 7 (o) = 1
if (o, q) is undefined or (o) = 0.

(CoM)X8.:SXxY xQ =Y xQ

is defined as ((Co M) X 8.)(0.y.q) = (((M(a), y), b.(0(y), 0.q)),
if 6(a.q) and ((M(c),y) are defined, and ¢(y)(c) = 1, and is
undefined, otherwise.

Let W C L C L(G)C =" and &' C . We recall that a language
K is closed if K = K, the prefix closure of K. In this paper,
we assume that all languages are closed and denote by 5 the prefix
closure of a string s € ©*. Language I is (X'. L(G))-controllable
if (Vs € ')(Vo € ©)[sec € L(G) = so € K. Language K is
(M. L(G))-normal if (Vs € K)(Vs' € L(G))[M(s) = M(s') =
s' € K. Finally, I is (X', L(G))-observable if (Vs.s' € K)(Vo €
EH(M(s)=M(s'YAsoc € K As'o € L(G)) => s'o € K.

The supervisory control problem under partial observation is
formally stated as follows. Given a CDES G.., its legal behavior L C
L(G), and a mask function M, find a controller C' = (S. &) such that
L(C'/G.) is the largest sublanguage of L that is closed, (.. L(G))-
controllable and (M. L(G'))-normal. This problem is slightly different
from the supervisory control and observation problem (SCOP) first
formulated by Lin and Wonham [10], in which M is a natural
mask and L(C'/G..) is constrained to contain a minimal acceptable
language.

Let us consider a simple example. Fig. 1 depicts generator G of
the language of a plant and automaton R of its legal language L. The
observation function is shown in Table 1. Note that the illegal event
c of the plant is observed as the legal event b. Note also that the
words adef and bde f of the plant are observed as the legal words

0018-9286/95%04.00 © 1995 IEEE

700

Automata R and G.

Fig. 1.

ade and bde, respectively, but that ade f and bde f are not admitted.
The largest normal sublanguage of L clearly is: Lr = {a.ad}. To
make R an automaton for L g, the transition from xo to x1 on event
b must be removed as well as state 3 with the incoming transition
from 2. In this way, indistinguishable behaviors of the plant are all
permitted by the controller if they are all legal, or all rejected if at
least one of them is illegal.

Cieslak ef al. [6] proved, under the assumption that M LML)
- {z}) C =, that K'r, the supremal controllable and normal
language contained in L, can be computed as follows:

Step 1) Compute L, the largest (M., L{G))-normal sublanguage

of L.
Compute M(Lg). M(L(G)),and A, = M(Z,) - {=}.
Compute I, the largest (A,, M(L(G)))-controllable
sublanguage of M (LR), by using the algorithm developed
by Ramadge and Wonham [15].

Step 4) Compute 'r = M~YK)yn L(G).

This paper presents an alternate procedure for computing the
supremal controllable and normal sublanguage A'g, in which Step
1) above is omitted. That is to say, our procedure does not require
an intermediate representation of L. It includes a new algorithm for
computing directly the mask value M(Lg) of the supremal normal
sublanguage L. Indeed, L(G). M(Lg), and M(L(G)) are the only
languages required for completing the last two steps of the procedure.
Compared with the approach of Cieslak et al. [6], our procedure
provides a simpler and more straightforward algorithmic solution.

This paper is organized as follows. Section II presents a review
of known related algorithms. Section III gives a description of
our algorithm and a proof of its correctness. Section IV provides
a comparison with existing algorithms and contains concluding
remarks.

Step 2)
Step 3)

II. RELATED WORK

The supervisory control problem under partial observation has
received much attention, and several algorithms for computing the
supremal controllable and normal sublanguage of a given language
have been proposed in the literature [4]-[6], [14]). They can all
be used for the off-line derivation of a controller, but the worst-
case computational complexity of all these algorithms is theoretically
exponential because there is no polynomial-time algorithm for the
SCOP unless P = NP [13]. The exponential-time complexity

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

TABLE 1
THE OBSERVATION FUNCTION M

4 a|b|c|d]e]|f
M) |a|b|b|e|e]e

results from the construction of one or more deterministic automata
from nondeterministic automata. But, it should be noted that in
practice the worst-case occurs rarely [1]. An on-line approach was,
however, suggested by Heymann and Lin [7] for improving this
bound. They consider the required control action to be calculated
at each step of the actual execution of the closed-loop system. The
basic idea behind their algorithm is that a controller that has been
designed for operation under full observation can be modified to
operate under partial observation. The computational complexity at
each step is polynomial in the product of the number of states in
automaton R for the legal language L and the number of states in G.
Furthermore, the closed-loop behavior thus achieved is a controllable
and observable sublanguage larger than the supremal controllable and
normal sublanguage. It should be noted, however, that the normality
and observability properties are equivalent under the assumptions that
the language is controllable and all controllable events are observable
[91.

Nevertheless, the off-line approach is useful when there is a need
to design a full controller because the plant is highly time-critical
or the closed-loop system must be verified prior to its execution. In
addition to the off-line procedure of Cieslak et al. [6], Brandt er al.
[4], [14] propose the algebraic formula L — M “YM(L(G)—L)) for
the off-line computation of L z. These operations can be interpreted as
follows. Take the set of illegal words, that is, L(G)— L. Compute how
the illegal words are observed, that is, M (L(G) — L). Compute the
set of words, legal or illegal, that are observed as illegal words, that
is, M~Y(M(L(G) — L)). Reject from L the legal words for which
there are illegal words observed the same way. This formula can be
effectively computed with the TCT tool [14] under the hypothesis
that M is a natural mask. The computation of Lr includes, however,
the construction of six intermediate automata.

Cho and Marcus [5] give two algorithms for computing Lr. The
first one is based on a graphical characterization of the notion of
normal language. Indeed, they prove, under the assumption that R is
a strict-subautomaton of G, that a language L is normal if and only
if T, is a subautomaton of 7', where T" and T, are the deterministic
automata for M (L(G)) and M (L), respectively. The main step of
this algorithm consists of the elimination, from T, of states and edges
s0 that the resulting automaton T. is the largest subautomaton of T'.
Language Lk equals LNM ~1(L(T%)). In comparison, our algorithm
constructs a single intermediate nondeterministic finite automaton,
that is, the one for T,. Needless to say, elimination of states and
edges is performed according to a different procedure.

The second algorithm provided by Cho and Marcus [5] constructs
a nondeterministic automaton for the language Lg directly from G,
R, and T, under the stronger assumption that G has a property called
M -recognizable. If this assumption is satisfied, the cardinality of the
state set of T is less than or equal to the cardinality of the state
set of G. Unfortunately, G does not always exhibit this structural
property, and the computational effort required for obtaining an M-
recognizable nondeterministic automaton from G is equivalent to that
of their first algorithm.

III. THE ALGORITHM FOR COMPUTING M (LR)

In this section, an algorithm is presented for going from R, an
automaton for the legal language L, to (2, an automaton for the

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

Automaton for M(L)

Fig. 2. Automaton for language A/(L), and automaton C';.

projection M (Lg), with respect to a plant ' and an observation
function M. The algorithm comprises two steps.

In the first step, a deterministic automaton C, is constructed by
applying the observation function M to every transition label of R
and translating the result into a deterministic automaton. The states of
(', are subsets of the states of R, and L(C) = M(L). The algorithm
of Lewis and Papadimitriou [8] can be used for this purpose.

Fig. 2 shows the automaton for language M (L) and automaton 1,
for the automaton R introduced in Section I and illustrated in Fig. 1.

Before describing the second step which computes Af(Lg) from
G. R and M, let us state some easy-to-satisfy properties that ¢ and
R must have.

Let T = (X1.Z. fiuxo1. Xy) and Tb = (X2. 5. fo, w02, X0)
be two deterministic automata of regular languages L; and L,
respectively, with L; C L,. We say that T} refines 15 if

(Vs.t € L1)[f1(s.001) = fi(t.v01)
= fa(s.x02) = folt.wo2))].

If Ty refines T>, then it can be shown [6] that there exists a unique
correspondence function h :X; — X5 such that

(Vs € Li)[ho fi{s.r01) = fa(s.202)]-

The correspondence function i can be intuitively interpreted as
follows. Given a state + of Ty reached after the occurrence of string
s, h(x) yields the state in which 7> would be after encountering the
same string.

For example, in Fig. 1, R refines G, and the correspondence
function from the states of R to the states of G is

hx;) = qi(i =0.1.2.3).

In the sequel,' let G = (Q.$.6.¢0.Q). R = (X.T.£, 0. X),
and M: T — AU {c}. We assume, without loss of generality, that
R refines G. Moreover, let h: X — () denote the correspondence
function, and C1 = (¥7. M. ¢i. yo. Y1) with ¥; C 27,

A. The Concept of Normal Transition

A transition of C'1, from a state y to a state y’, labeled with an
event A € (AU {=}), is normal if there is no state .; € y and event
7 € ¥ such that:

* instate h(r;) of the plant, event T is active, that is, 6(7. hr)%

« event 7 is observed as A, that is, M (1) = \; and

 event 7 is not admitted from .r;, that is, £(7, ;) is undefined.

'In this paper, every state is marked and every language is closed.
28(7.h(x;))! means that &(7.h(x;)) is defined.

701

Intuitively, C'; is an intermediate structure that mirrors the legal
language as observed through the mask function. A transition of C';
labeled A, from state y to state y', is on the path leading to the
acceptance of a word of the form uAe, where u.v € A™. Such a
word corresponds to a word in the legal language of the form st
with s.t € ¥*.7 € S.M(s) = w.M(7) = A, and M(t) = v.
If there exists another word s'7'¢' in L(G) but not in L, with
M(s') = u,M(7) = X, and M(t') = v, this word is illegal and
observed the same way as the legal word s7¢. A normal transition is
one for which such a word s'7't does not exist. A normal transition
labeled X is called a normal A-transition.

In the second step of the algorithm, generator C' is obtained from
C'1 by pruning states and transitions. Pruned states are those for which
nonnormal :-transitions are active, and pruned transitions are those
that do not have the normal property. The language of C> is M (Lg).

The concept of normal transition is stated in an operational fashion
as follows (let ¥ denote the set of events in ¥ observed as A, and
y el C2Y

function normal (y.)
{precondition: (1 (A, y)!}
forall x; € y do
forall 7€ X, do
if 6(7. h(x;))! and not £(7, x;)!then
return false
return true

B. The Computation of C»

In this section, we present an algorithm for deriving a deterministic
automaton C'> from C; such that a word ¢ in the language of Co: i)
is the projection of some word s in L; and ii) any word s’ in L(G)
for which the projection is also ¢, is in L as well. More formally, the
following two results will be proved (Lemmata 1, 2, 3, and Theorem

1)
1) L(C2) = {M(s): s € L A(Vs' € 5)(Vs" € L(G))
[M(s")= M(s") = s" € L]}
and

2) L(C;) = M(Lg).

The algorithm consists of two loops. The first one inspects every
state y € Y1 of C'1. By convention, the transition (i (<. y) is always
defined. If this c-transition is normal, then state y is copied into
set Y>. Otherwise, the =-transition is disabled by rejecting state y,
because it is impossible to act on nonobservable transitions.

The second loop inspects every event A € A that is active from
a state y € 5. If the transition on that event is defined in (1, is
normal, and leads to a state in Y7, then it is also defined in Cs.

If the initial state yo of C'; is in 1%, then the algorithm returns
an automaton C> = (Y2, A. (2. y0. Y2). Otherwise, it returns ®, the
empty automaton for the empty language, which has as its set of
states the empty set. The computation of Cy is performed by the
following procedure

function step2 (M.G.R.h.C,)
{Selection of states with normal =-transition}
¥ e {}
forall y € }1 do
if normal(y. <) then ¥, «— Y, U {y}
{Selection of normal A-transitions, with A € A, from
states in Y2}
if yo € Y5 then

702 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995
TABLE 1I
COMPARISON OF THE ALGORITHMS
Alg. Authors Restrictions Number of Number of Ease of
intermediate intermediate understanding
automata for automata for
producing Lr | producing M(Lr)
1 Cieslak et al. 3 4 Low
2 Brandt et al. M is a natural projection 6 7 High
3 Cho and Marcus (1) 4 3 Intermediate
4 Cho and Marcus (2) 3 4 Intermediate
5 Our algorithm 3 2 Intermediate
Let #; € y and 7 € I such that (7. h(x;)) is defined and
“’@ @ M(7) = = From Fact 1), (3t € T7) [€(t.x0) = &N b6(t.qo)
= h(x;) AM(t) = M(s)]. Thus, if we let s' = t7, 8(s'. q) =
Fig. 3. Automaton Cs. 8(t T.qo) = 8(7. 8(t.qo)) = 8(7.h(x;)) is defined. Furthermore,

forall (\.y) € (A x Y3) do
if (i (M. y)! and normal(y.) and (;(\, y) € Y5 then
Ca(A, y) is equal to C1(A, y)
else
C2(A. y) is undefined

return (2. A. (2. 0. Y2)
else

return ¢
end

We first discuss an application of our algorithm, using the example
presented in Figs. 1 and 2, then formally demonstrate its correctness.

Example: Referring to Figs. 1 and 2, it is easy to see that
normal(y;. =) returns true for / = 0. 1. This is not the case for i = 2,
however, since we have M(f) = =, 6(f,h(xs)) defined (that is,
&(f.q3)") and £(f. x3) undefined. Hence, state y» must be eliminated
as well as the incoming transition on event e.

Similarly, normal(yo.) is true. The result of normal(yo. b) is false,
however, because we have M(c) = M(b), é(c. h(xo)) defined (that
is, &(c.qo)!) and &(c.xo) undefined. Thus, the transition from yo
to y1 on event b must be removed. The resulting automaton C- is
shown in Fig. 3. Another application of our algorithm can be found
in Barbeau et al. [3].

C. Demonstration of Correctness

We now formally demonstrate the correctness of our algorithm. We
first introduce the following two facts:

Fact 1) By construction of Cy. giveny € Y7, 2, € X,ands € T*
G(M(s).yp)=yAzi€y
= (3t € T)[€(t.w0) = i Ab(t.qo)
= h{x;) A M(t) = M(s)].
Fact2) Given s € L (that is, £(s,xo) is defined) such that
(Vs' € LIGNH[M(s").= M(s) => s € L]
if 8(s'. qo) is defined and M(s') = M (s), then £(s'. 0)
is defined.
Given s € L,
(Vs' € LIG)[M(s') = M(s) = 5" € L]
= normal({; (M (s),y0).2).

Lemma 1:

Proof: Since C is a deterministic automaton for M (L), then,
for an s in L. C1(M(s).yo) is defined (it is denoted by y in the
sequel).

M(s')y = M(tt) = M(t)M(r) = M(t) = M(s).

It follows from the hypothesis of Lemma 1 and Fact 2) that
£(s'. o) is defined. Therefore, &(7.2i) = &(7. (¢, xo)) = &(t,
ro) = &(s'.x0) is defined and, by definition, normal({1 (M(s). yo).
<) is true. O

Lemma 2: Given s € L

(Vs' € 5)(Vs" € LIGN[M(s") = M(s') = s" € L]
& M(s) € L(Cy).

The proof is by induction on the length of s.
Proof of = (Basis step) Let s be such that |s| = 0. Then, s = <.
By Lemma 1, normal({y (M (s), yo). =) is true. Since M (<) = < and
Ci(2.90) = yo, then normal(yo,) is true. By construction of C2,
yo € Ya. Therefore, M(=) € L(C3).
(Induction step) Let s be such that |s| = n + 1, with n > 0. We
may write 5 as «o for some v € ©* and some ¢ € I, with [u] = n.
By hypothesis, s is such that (Vs' € 5)(Vs" € L(G)) [M(s") =
M(s') = s" € L]. In particular, u is such that (Vu' € @)(Vu" €
LIGH[M(") = M(u') = u" € L]. By the induction hypoth-
esis, M(u) € L(C,). Therefore, (2(M(u),yo) is defined. For
C2(M(uo),yo) to be defined, we have to show:

5

1) that normal({, (M (ueo).yo). <) is true; and
2) that the transition from state (i (M(u).yo)
G (M(ue),yo) labeled M(c) is normal.

The first assertion follows from Lemma 1. The second assertion
is verified by using an argument similar to the one developed
in Lemma 1. Let x; € (i (M(u),yo) and 7 € X such that
(. h(x;)) is defined and M(7) M(s). From Fact 1),
(3t € St x0) = 2 Ab(t.qo) = k(i) AM(t) = M(u)]. Then,
ifwelets’ =tr, 86(s".q0) = 8(t7.qo) = &6(7.6(t. qo0)) = (7. h(x;))
is defined. Furthermore, M (s') M (t7) M(t)M(T)
M(u)M(o) = M(us) = M(s). It follows from the hypothesis
and Fact 2) that &(s’..xo) is defined. Therefore, &(7..r;)
E(T.E(t o)) = E(tT.w0) = E(s'.10) is defined and, by definition,
normal((y (M (u). yo). M(e)) is true. By construction of (.
G (M(ua),yo) € Yo and G(M(0).(2(M(u).yo)) is defined.
Therefore M(s) € L(C2).

Proof of < (Basis step) Let s be such that |s| 0. Then
s = =z, 5 = {s}, and M(s) = =. Let us suppose that there
exists an s/ € L(G) such that M(s") = M(s). We may write
s'=rnmn-rpand M(m) = M(n)=---=M(r,) ==

Since M (s) € L(('), then normal(yg. =) is true, by construction
of C'». Furthermore, since 6(7, qo) is defined and M (7;) = =, then
&(T1.00) is defined and &(my.r0) = A7 (8(T1.q0)) € yo. In the

to state

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995

same way

(2. &(T1,20)) € Yoo E(Tu E(.. . E(Ty 20) - -

Therefore, £(s".20) is defined and s € L.

(Induction step) Let s € L, with |s|] = n+ 1 (n > 0), and
M(s) € L(C2). Since L and L(C') are closed, for all proper prefixes
s of s.s' € L, M(s') € L(C%), and the conclusion is immediate by
the induction hypothesis. It remains to be shown that the conclusion
holds for s’

We may write s as to for some t € ©* and some ¢ € ¥, with
|t| = n. Assume that there is an s” € L(G) with M(s”) = M(s).
There are two cases: M (o) = = and M(o) # =

If M(o) = <, then to is observed as ¢t which is a proper prefix of
s and the conclusion is immediate.

Consider the case where M (¢ ;é . We may write 5" = t"7u",
where t".u" € T, 7 € T, M) = M(t). M(r) = M(s),
and JI(u") = =z. Since L(G) is closed, t' € L(G) and by
the induction hypothesis ' € L. Let y = (a(M(t).y0). By
construction of Ca. £(t".x0) € y. Since (o(M(ta),yo) is defined,
then normal(y.M(c)) is true, which implies that £(#"7..xo) is
defined, and normal((2(M(0).y), <) is true, which implies that
E(u".E(t"1.x0)) is defined. Consequently, s” = "7 € L. O

Lemma 3:

)) € yo-

= 8.

(Vi € TH)[t € L(C2) = (Is € L)[M(s) = #]].

Proof: Trivially true since C’ is derived from ('}, a determinis-

tic automaton for M/ (L), solely by pruning states and transitions. [

Theorem 1: 1If L is the largest (11, L(G))-normal sublanguage
of L, then M(Lg) = L(C5).

Proof: We must show that:

1) if s € Lg, then M(s) € L(C2), that is, M(Lgr) C L(Ch);
and conversely,

2) ift € L{C), then there exists an s € Lg such that M(s) = ¢,
that is, L(Cy) C M(Lp).

Proof of 1: Let s € Lr. Since L is closed and (M. L(G))-
normal, we have that s € L and (Vs' € 5)(Vs” € L(G))[M(s") =
M(s') = s € L]. From Lemma 2, we may conclude that
M(s) € L(Cy).

Proof of 2: let t € L(C2). From Lemma 3, there exists an
s € L such that M (s) = ¢, and, from Lemma 2, (Vs' € 5)(Vs" €
LIGH[M(s") = M(s') = s" € L] (that is, M~ Al(s') N L(G) C
L). From Proposition 3.3 of Cieslak et al. [6], we may conclude that
s € Lg. O

IV. CoNnCLUSION

Table II gives the results of an analysis, conducted in [2], compar-
ing the characteristics of our algorithm with those of the four other
off-line algorithms mentioned in Section II.

As mentioned in the Introduction, the computation of (M, L(G))-
normal languages is significant because it is related to the problem
of supervisory control under partial observation. The computation of
Lr is an intermediate step in the solution of this problem.

Any of the algorithms listed in Table II for computing Lr can
be used in combination with either of the two main algorithms for
computing a controller C', namely, that of Wonham and Ramadge
[15] and Cho and Marcus [5].

The algorithm in [15] is used in [6] for computing the largest
(Ay. M(L(G)))-controllable sublanguage of J[(LR) and works
under the assumption that M~ '(1(Z,) — {=}) That is,
no controllable event can be observed as an uncontrollable event.
Furthermore, it takes as input the projection of Lg, that is, M (L)
rather than Lg. Therefore, the most suitable algorithm in that

—u

703

context is the one which produces M(Lpg) with less effort. This is
Algorithm 5 because it computes an automaton for M (Lg) through
the construction of only two automata.

The algorithm in Cho and Marcus [5] is more general than
that in Wonham and Ramadge [15]. Indeed, the assumption that
M7YAM(E.) - {z}) C T, is not necessary. The former is based
on the application in alternation of the algorithm of Wonham and
Ramadge and an algorithm for computing an automaton that generates
Lg. This process is therefore iterative, and generality is obtained
at the price of a longer run-time. Any of the algorithms listed in
Table II can be used for computing Lr. The most suitable one is
Algorithm 4, however, because it does not require reconstruction of
any intermediate automaton after the first iteration [5].

ACKNOWLEDGMENT

The authors wish to thank M. Wonham and K. Rudie for their
guidance and encouragement. They would also like to thank the
referees for their comments and suggestions.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques and Tools. Reading, MA: Addison-Wesley, 1986.

M. Barbeau, G. Custeau, and R. St-Denis, “On the computation of
normal languages,” in Proc. Thirty-first Annual Allerton Conf. Communi-
cation, Contr. Computing, Univ. of Illinois at Urbana-Champaign, Sept.
1993.

———, “Requirements engineering and synthesis of a control system,”
Automat. Contr. Production Syst., vol. 28, no. 1, pp. 37-52, 1994,

R. D. Brandt, V. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M.
Wonham, “Formulas for calculating supremal controllable and normal
sublanguages,” Syst. Contr. Lett., vol. 15, no. 2, pp. 111-117, 1990.
H. Cho and S. I. Marcus, “On supremal languages of classes of
sublanguages that arise in supervisor synthesis problems with partial
observation,” Mathematics Contr., Signals Syst., vol. 2, pp. 47-69, 1989.
R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory
control of discrete-event processes with partial observations,” IEEE
Trans. Automat. Contr., vol. 33, no. 3, pp. 249-260, 1988.

M. Heymann and F. Lin, “On-line control of partially observed discrete
event processes with partial observation,” Dept. Computer Science,
Technion-Israel Institute of Technology, Haifa, Israel, Tech. Rep. CIS-
9310, 1993.

H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of
Computation. Englewood Cliffs, NJ: Prentice-Hall, 1981.

F. Lin and H. Mortazavian, “A normality theorem for decentralized
control of discrete event systems,” IEEE Trans. Automat. Contr., vol.
39, no. 5, pp. 1089-1093, 1994.

F. Lin and W. M. Wonham, “On observability of discrete-event sys-
tems,” Inform. Sciences, vol. 44, pp. 173-198, 1988.

P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM J. Contr. Optim., vol. 25, no. 1, pp.
206-230, 1987.

—, “The control of discrete event systems,” Proc. IEEE, vol. 77, no.
1, pp. 81-98, 1989.

J. N. Tsitsiklis, “On the control of discrete-event dynamical systems,”
Mathematics of Contr., Signals Syst., vol. 2, no. 1, pp. 95-107, 1989.
W. M. Wonham, “Notes on control of discrete-event systems,” Dept.
Electrical Engineering, University of Toronto, June 1993.

W. M. Wonham and P. J. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM J. Contr. Optim., vol. 25, no.
3, pp. 637-659, 1987.

[2]

[3]

(4]

6

[71

(8]
9l

(101

{11]

[12]
[13]
[14]

[15]

