IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 1992

Analysis and Testing of Application Layer
Protocols with an Application to FTAM

Behget Sarikaya, Vassilios Koukoulidis, Srinivas Eswara, and Michel Barbeau

Abstract—An experience is presented with formal specification,
analysis and testing of application layer protocols. The protocol
chosen as an example is the ISO file, transfer, access, and
management (FTAM) protocol due to its potential for widespread
use. The specification language used was the ISO standard Estelle,
which was chosen to facilitate the analysis and test sequence
generation of FTAM using a tool previously developed. This tool
generates control and data flow graphs of the specification and de-
rives unparameterized test sequences for each function identified
by the user. We describe formal specification of application layer
protocols in Estelle and translation of ASN.1 data definitions into
Estelle data types. Test design tool is used to obtain functional
decomposition of the control and data flow graphs. This way
unparameterized test sequences are obtained. These sequences
lead to a complete test suite obtained by parameterization which
must be the next step. Analysis of the control and data flow
graphs leads to the derivation of several properties that most
of the application layer protocols must possess. The identified
properties are shown to simplify the test design process.

1. INTRODUCTION
PROTOCOL SPECIFICATION AND TESTING

ORMAL specifications of protocols such as in the stan-

dard language Estelle [7] are important as the basis
of semiautomatic verification, analysis and test generation.
ISO has recently defined an application layer model [9]
in which fits the actual description of FTAM. This model
is shown in Fig. 1 Any protocol specification must define
the interactions exchanged between two peer entities called
protocol data units (PDU’s). For application layer PDU’s
the CCITT/ISO standard language called abstract syntax
notation-1 (ASN.1) is used in all the informal standards.
We establish an association between ASN.1 and Estelle in
Section IL

File transfer and access management (FTAM) is a layer
seven protocol for transferring, accessing, and managing data
files between open computer systems. FTAM also defines a
common model, for files and their attributes, called the virtual
file store (VFS). This model permits transfer, access, and man-
agement of files between systems of different manufacturers
as well as of different level of sophistication. An earlier file

Paper approved by the Editor for Communications Protocol of the IEEE
Communications Society. Manuscript received October 17, 1988; revised
August 25, 1989 and May 15, 1990. This work was supported in part by the
Natural Sciences and Engineering Research Council of Canada. This paper
was presented in part at INFOCOM ’89, Ottawa, Ont., Canada, April 1989.

B. Sarikaya is with Department of Computer and Information Sciences,
Bilkent University, Bilkent, Ankara, Turkey 06533.

V. Koukoulidis and S. Eswara are with the Department of Electrical
and Computer Engineering, Concordia University, Montreal, P.Q. H3G IM8,
Canada.

M. Barbeau is with the Department de Mathematics, Université de Sher-

brooke, Faculié des Sciences, et d’informatique, Sherbrooke, P. Q., Canada.
IEEE Log Number 9105171.

| Multiple Association Control Function |
Single Association Single Association
Object Object
ASE1 ASE1
S S
a| ASE2 a| AsE2
| ases Cl ases
F F
ACSE ACSE
- .
. .
. .
— Presentation Address —
. .
Fig. 1. Application layer model.
Open System 1 Open System 2
-
Local [ FTAM Usa e
File
System Initiator Responder
protocol machine protocol machine
>
Presentation Service

Fig. 2. Architecture of the FTAM service.

transfer protocol design is described in [2]. Fig. 2 depicts the
architecture of the FTAM service.

ISO has recently defined a methodology and a framework
for conformance testing [8]. Parts 1 and 2 define the termi-
nology and architectures to be used for conformance testing
of the implementations under test (IUT). Part 3 defines a
test specification notation called TTCN and the other parts
are about test laboratory operations. Conformance testing
for application layer can be done using two external test
architectures depicted in Fig. 3.

II. FORMAL SPECIFICATION OF
APPLICATION LAYER PROTOCOLS

Formal specifications of application layer protocols/services
enable automated analysis. The formal specification in Estelle
of FTAM was derived from the ISO document [5] and com-
prises two major parts. The first part describes data types and
structures used by FTAM, i.e., PDU’s and ASP’s. The module
representing the behavior of the FTAM ASE is defined in the
second part.

0090-6778/92$03.00 © 1991 IEEE



[ Test Coordination Procedures Test Operator J
o I
- ur
TESTER
Other Layers
Ner ASPs
y
NETWORK SERVICE PROVIDER
a)Distributed Single Layer Test Architecture-DS
N R —— : -
'
: Test Coordination Procedurcs ! UpperTester 1+ |
\
Lol LOWER  fomecccecaccmiiaicamccm e ! N
v
APDUs —
TESTER I g T
Other
Layers
4
Network | ASPs
NETWORK SERVICE PROVIDER

b) Remote Single Layer Test Architecture-RS

Fig. 3. Application layer test architectures.

A. Translation of ASN.1 into Estelle Data Structures

Estelle adopts from Pascal the notation for data type and
structure definitions. ISO specification of FTAM protocol uses
ASN.1 [6] for defining their PDU’s. Application layer service
primitives are defined in a notation free manner since the
implementation of a given service is a local issue. Since
application service primitives correspond one-to-one to the
PDU’s, we assume in what follows that the ASN.1 PDU
definitions can also be used for service primitives [3]. Given
the need to express the FTAM application protocol in Estelle,
it is necessary to translate ASN.1 definitions of PDU’s and
service primitives into Estelle.

ASN.1 integer is a simple type with positive and negative
whole numbers as distinguished values. It is either a single
or a (enumerated) list of values. In Estelle the distinguished
values are defined as Pascal constants whereas the main
type is defined of integer type. ASN.1 bitstrings are ordered
sequences of zero or more bits. As in the case of integer type, a
bitstring type can be a single or an enumerated list of values.
Pascal arrays of booleans are used for representing ASN.1
bitstrings. As in the case of integer type simple bitstring type
is represented as an array of boolean and the size of the array
is some predetermined maximum value.

An ASN.1 sequence defines a new type consisting of
ordered list of existing types. It structures a sequence of items
whose order is significant. A sequence type is expressed in
Estelle with a record type. ASN.1 sequence of defines, by
referencing a single existing type, a new type as an ordered

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 1992

specification FTAM_Initiator systemprocess;
(anwpesawmnmdﬂmumshwdﬁvaSNlllsmgthcn.llcsglvenm Section

(channel definitions }

chnnnch wcess_pam (User, Provider );
"AM Service Primitives—--—}
channclA _access_point(User, Provider)
-ACSE Service anmvn—-——-) '
channel P. aceess_pmm(User Provider)

( u-ansitions)

t_id, pres_cont_man,level,class,units,att_groups,
?zﬁb&ck,comems,m_;dm.fs_puwd,chdm wind,PDU);
Oll!
ut A, 0 (Vm 1}, CalledAET, CallingAET,
) outp .AASSI\]] Vet e
end;
{other transitions}
end FTAM _Initiator .

Fig. 4. Estelle specification of FTAM initiator.

list of zero, one or more values of the existing type. The
number of values in a sequence of is not limited. A sequence
of is mapped to an array type item and an integer type
item structured into an Estelle record. The array type item
stores the sequence of values whereas the actual number of
values in the sequence is assigned to the integer type item.
An implementation dependant maximum sequence length is
assumed. ASN.1 set structured type is like sequence type,
but the items order is not relevant. A mapping similar to
the one defined for sequence of is adopted. An ASN.1 set
of is a structured type defined as the unordered list of zero,
one or more values of an existing type. In Estelle, types of
set elements are restricted to simple types and therefore can
not be considered in general for mapping ASN.1 set or set of
structured types. Here again we make use of a record structure
similar to the one defined for sequence of. ASN.1 choice data
type defines a new type from a given list of distinct types. A
value can be chosen from any one of them. Choice structures
are mapped into Pascal variant records.

B. FTAM Behavior Description

The EFSM of FTAM Initiator Entity was obtained by first
translating in Estelle the transition tables that are provided
in the ISO document. The result is a skeleton for the EFSM
where from/to clauses, when clauses and output statements are
defined for each transition. Specification of such behaviors as
sending a PDU as a result of an incoming ASP is facilitated
in Estelle by defining procedures in which parameter mapping
is expressed. We consider the Basic FTAM Initiator protocol
and specify it in two ways: a single module specification for
full FTAM Initiator and a three-module specification with each
module corresponding to the functional units kernel, read, and
write. Fig. 4 gives an overall description of the specifications
with one complete transition.

III. FUNCTIONAL ANALYSIS OF
APPLICATION LAYER PROTOCOLS

We use the tool Contest—Estl [12] to functionally analyze
the FTAM specification. The resulting control and data flow

m



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO.

I, JANUARY 1992

7,21.35,
49,63

5 dxiridle lq

16,30,44,
58,72

15.29.43
B7.71

o]
85

Fig. 5. FTAM initiator entity control graph.

characteristics are shown to validate the (ad-hoc) observations
reported in the literature [3], [4].

Contest—Estl takes an Estelle specification and analyses it
for the purpose of identifying control and data flows in the
specification. Its main use is in semiautomatically producing
unparameterized tests for the system described.

A possible use of the control graph is in selection of test
sequences. Finite-state machine based test sequence selection
techniques include transition tours, distinguishing sequences,
and UIO sequences [1], [10]. The data flow graph is algorith-
mically partitioned into blocks. A block generally represents
the data flow over a single variable or an input node and an
output node (Fig. 6). If there are n» nodes and k arcs, the
complexity of the block generation process is O(nk) since
every node and arc are considered at most once for possible
inclusion in a block.

A. Control Flow in Application Layer Protocols

Property 1) Provided clauses do not contain references to
context variables.

Property 1 is the result of the fact that application layer
protocols are interaction oriented, all the entity does is to
respond to the interactions from the environment.

Property 2a) In a sequence of interactions, the order of
service primitives and PDU’s depends on PDU/ASP result
parameters.

Property 2b) Admitted parameter values can be very
complex.

Properties 1) and 2a) imply that test sequences obtained
from the control graph will not contain paths that are infea-
sible.

Property 3) There is a one-to-one mapping between the set
of ASP’s and the set of PDU’s.

Example of correspondence is F-INITIALIZE-request ser-
vice primitive which corresponds to Initialize-request PDU.

Property 4) Transition tours do not contain any synchroniza-
tion problems. The problem of nonsynchronizable tests does
not arise in the case of FTAM because of the correspondence
between ASP’s and PDU’s.

B. Data Flow in Application Layer Protocols

Property 1) Blocks of the data flow graph exhibit a simple
structure, i.c., in general values from an I-node flow directly,
without internal transformations, to an O-node. In some cases,
values of the O-nodes are determined from constant D-nodes
(see Fig. 6).

Property 2) After block merging every data flow graph has
no incoming arcs from other functions., Specifically, block
merging ecliminates data flow dependencies among the data
flow functions.

The control and data flow properties stated above imply
the following important aspect of test generation: The control
and data flow in application layer protocols can be tested
independently of each other. This is very helpful since in most
application layer protocols both control and data flow graphs
are large and control graphs exhibit a complex structure (see
Fig. 5).

IV. FUNCTIONAL TESTING OF
APPLICATION LAYER PROTOCOLS

A. Block Merging and Test Generation

A block Bi consists of a collection of nodes and associated
arcs. In application layer data flow graphs due to the properties
stated in Section III, there is no arc shaped by more than two
blocks, blocks are independent of each other. We define the
set SIN(Bi) (SON(B1)) as the set of all I-nodes (O-nodes)
belonging to block Bi. We also call SIL the set of labels
associated with the input arcs of a node. For each block Bi,



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 1992

Slock-167 Seck-i0e
f—."_w) Topury_ren_coat.val

|(( P¥stra cpary.we_int .vid.rem_cont. mummam (.

-us_187.vil.cen_cont.val

Bleck-118
K Lect 1d) e

) ﬁ?)k—ns

Peatre_sparq.us_inf. vis.ect_i6)j( pdatrq oparg.us_int.vis.prd

Fig. 6. An example data flow graph.

Fig. 7. FTAM initiator kernel unit control graph.

SIL(B) is the set obtained by the union of the SIL of the
block’s nodes.

Rule 1: If SON(B1) and SON(Bj) contain parameters of
the same data type #hen Bi and Bj are merged.

Rule 2: If SON(B1) and SON(Bj) both contain parameters
related to the same data flow function and SIL(Bj) D SIL(Bj)
holds then Bi and Bj are merged.

If there are initially m blocks, block merging takes no more
than m — 1 steps since at every step the number of blocks is
decreased by 1.

B. FTAM Test Design

FTAM initiator entity control graph contains 18 states and
is given in Fig. 5. The kernel graph is given in Fig. 7. Table I
lists the number of transitions in the original and normalized
specifications.

Full FTAM Initiator DFG contains 261 blocks while the
kernel, read and write unit DFG’s contain 112, 141 and 141
blocks, respectively. We applied the rules of Section IV-A
to the data flow graph of full FTAM initiator, and the func-
tional units of kernel, read and write. Statistics about the
number of obtained data flow functions are in Table II.

Next, subtours are derived from the control graphs. A
subtour is a sequence of interactions that starts and ends in
the initial state. The lengths of the subtours are also given in

TABLE 1
CONTROL GRAPH STATISTICS

# of transition
# of normalized # of tour
transitions trans. states length
FTAM
Initiator 36 103 18 596
Kernel 16 26 7 92
Read 20 56 10 235
Write 20 56 10 235
TABLE II
DATA FLOW STATISTICS
# of Length of
Data Flow Unparameterized
Functions Test Sequences

FTAM Initiator 21 2616

Kernel 14 419

Read 12 1089

Write 13 1257

TABLE Il
SUBTOUR EXAMPLES
State Input Output Transition

closed FINIrq AASSrq_INIrq 1
initialize_pd AASScf_INIrp FINIcf 3
initialized FTERrq ARELrq_TER1q 5
terminate_pd ~ ARELcf TERrp FTERcf 6
closed FINIrq AASSrq_INIrq 1
initialize_pd =~ AASScf_INIrp FINIcf 4

Table II. Two of the kernel unit subtours are listed in Table III.
They can be used to test the type of service function.

V. CONCLUSION

Formal specification based analysis in its first step produces
a formal description of the protocol from the Standard’s semi-
formal specification. Data structure definitions are obtained
by applying to the ASN.1 specification in the standard our
ASN.1-to-Estelle mapping rules. For a protocol like FTAM
specifying functional units in individual modules gives a



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 40, NO. 1, JANUARY 1992

modular specification. The next step is the formal analysis
of that specification. We used the analysis tool Contest—Estl
to easily produce control and data flow graphs. Our graphs
have six important properties that simplify test generation. In
the third step we applied the data flow graphs to decompose
the FTAM protocol into individual data flow functions. From
those functions we again applied Contest—Estl to automatically
derive unparameterized test sequences.

Our investigation brings up several questions that should
also be studied. For example, test generation in TTCN form
and addition of a parameter enumeration tool are the topics
of further research.

REFERENCES

[1] A. Aho, A. Dahbura, D. Lee, and M.U. Uyar, “An optimization
technique for protocol conformance test generation based on UIO
sequences and rural Chinese postman tours,” [FIP PSTV VIII, Atlantic
City, NJ, June 1988, pp. 75-86.

[2] S. Aggarwal, K. Sabnani, and B. Gopinath, “A new file transfer
protocol,” AT&T Tech. J., vol. 64, no. 10, pp. 2387-2411, Dec. 1985.

[3] G.V. Bochmann, M. Deslauriers, and S. Bessette, “Application layer
testing and ASN.1 support tool,” in Proc. GLOBECOM '86.

{4} E. Cerny, G.V. Bochmann, and A. Carriére, “Testing implementations

of an application-level communication protocol,” Proc. Fault Tolerant

Comput. Syst. FTCS-15, June 1985.

ISO/TC 97/SC 21, File transfer, access and management, DIS 8571,

1987.

ISO/TC 97/SC 6, “Profile of abstract syntax notation one,” IS 8824,

1987.

ISO/TC 97/SC 21, “Estelle: A formal description technique based on an

extended state transition model,” IS 9074, 1988.

ISO/TC 97/SC21/WG1, “OSI conformance testing methodology and

framework parts 1, 2 &3,” IS 9646, 1991.

ISO/TC 97/SC21, “Application layer structure,” DP 9545, Feb. 1988.

K. Sabnani and A. Dahbura, “A new technique for generating protocol

tests,” in Proc. IEEE 9th Data Commun. Symp., Sept. 1985, pp. 36~-43.

B. Sarikaya, G. V. Bochmann, and E. Cerny, “A test design method-

ology for protocol testing,” IEEE Trans. Software Eng., vol. SE-13,

pp. 531540, May 1987.

B. Sarikaya, B. Forghani, S. Eswara, “An Estelle based test generation

tool,” Comput. Commun., Nov. 1991.

151
(6
7
8

[9]
(10]

[11]

(12]



