
• Are we not clever enough to come up with something better?

• The algorithms for decomposing into BCNF guarantee a
lossless decomposition

But not the preservation of FDs

• A deeper reason?

• It is provably the case that FD preservation may be impossible
to achieve

• Exercise: Schema R(J,K , L), with JK → L and L → K

(a) Verify that it is not in BCNF

(b) Show that every decomposition will fail to preserve
JK → L

112 / 122

• Idea behind the decomposition algorithm for achieving BCNF:

1. If relation R(A,X,Y) that is not in BCNF due to X → Y

(that is, Y /∈ X, and X not a superkey)
Then:

2. Decompose R into R1(X,Y) and R2(A,X)

The FDs for R2 are the “projections of the original FDs” onto
the remaining attributes (see next example)

3. If one of the generated relations is not in BCNF, go back with
that relation to Step 1.

113 / 122

Example: R(A,B,C ,D) with

F0: A → B, B → C , CD → A, AC → D

It is not in BCNF due to B → C (B not a superkey)

Decompose into:

1. R1(B,C) with B → C , i.e. R1(B,C)

2. R2(A,B,D) with FDs that are the projections of F0 onto
{A,B,D}
That is; All the FDs of the form Z → W that can be derived
from F0 and Z,W ⊆ {A,B,D}
F+

0 = {A → B, B → C , CD → A, AC → D, A → C , BD → A, A → D}
(plus some trivial ones)

The projections have the “two sides” in {A,B,D}

A → B, BD → A, A → D

Candidate keys for R2: {A} and {B,D}
3. The two schemas are in BCNF, so we stop

114 / 122

Exercise: (about projected FDs) In the decomposition

Wine(Vineyard ,Region,Country) ;

Wine1(Vineyard ,Region), Wine2(Region,Country)

With FDs for Wine: Vineyard ,Country → Region
Region → Country

Verify that Vineyard → Region IS NOT a projection of
Vineyard ,Country → Region onto schema Wine1

Not entailed: So, projection is not just about dropping
attributes

115 / 122

Example: (running example, c.f. page 109) FDs as before plus:

emp name → #emp (*)
(no repeated names)

We also have the relation:

emp skill3(#emp, emp name, #skill, skill date, skill level)

Two candidate keys: {#emp,#skill} and {emp name,#skill}

With (*) attribute emp name is prime: Belongs to candidate key

Schema is in 3NF: No transitive dependencies via non-prime attributes

Not in BCNF: {#emp,#skill} ⫌ {#emp} and
#emp → emp name (**)

Then, the FD (**) does not invalidate the 2NF (emp name is
prime now), but does invalidate BCNF for emp skill3

BCNF is more demanding than 2NF

A decomposition: (based on the problematic FD)

emp skill3.1(#emp, #skill, skill date, skill level)

emp skill3.2(#emp, emp name)

116 / 122

Final Remarks

• In the decompositions shown in this chapter, we did not care
about introducing referential and foreign-key constraints

We should do so

Exercise: Revisit the decompositions we made and introduce
those constraints where natural and expected

• Normal forms were present at the very inception of the
relational model

3NF was introduced by Codd in 1972

BCNF by Boyce and Codd in 1974

• In practice, one usually settles for 3NF

In most common cases, a decomposition can be found
efficiently (NP-completeness of deciding 3NF refers to the
worst-case)

117 / 122

• With 3NF, data redundancy is reduced, information is
preserved under decompositions that achieve it, and
dependencies too

• With BCNF there may be additional reduction of data
redundancy, information is still preserved, but dependencies
may not be preserved

• There are other normal forms we haven’t covered

• Most prominent one among them is the 4th Normal Form
(4NF)

Introduced by Ron Fagin in 1977

• 4NF deals with a different kind of dependencies:
Multi-Valued Dependencies (MVDs)

118 / 122

• MVDs are important to model and guarantee “independence”
of attributes

• They are also used to connect DBs with the probabilistic
notions of (stochastic) independence

Quite useful in Data Science, ML, AI
(we will come back if time permits)

• Data redundancy and updates anomalies are not independent
parameters

Data redundancy is likely to lead to update anomalies and
inconsistencies

• We can concentrate on data redundancy as a “measure” of
good design

Actually, NFs are usually justified in terms of avoiding data
redundancy

119 / 122

• For quite a long time and very surprisingly, no research
provided a solid justification for these normal forms (along
these lines)

• In the sense that a particular normal form is the best one can
have considering what is achieved and missed

There was the belief and assumption that this was the case,
but no proof

• Any justification for these normal forms should be given in
terms of “information contents” and its theory

Namely “Information Theory” (as started by C. Shannon in 1948)

• This research has been carried out quite recently by
M. Arenas, L. Libkin, S. Kolahi
- Marcelo Arenas, Leonid Libkin. An Information-Theoretic Approach to
Normal Forms for Relational and XML Data. J. ACM, 2005, 52(2):246-283

- Solmaz Kolahi. Dependency-Preserving Normalization of Relational and XML
Data. J. Comput. Syst. Sci., 2007, 73(4):636-647

120 / 122

• The notion of “good design” (or well-designed schema with
dependencies) is formulated in information-theoretic terms

• Now a theorem tells us that a schema is well-designed iff it is
in BCNF

• If one wants to preserve dependencies, with 3NF one pays the
lowest price in terms of data redundancy

• Recent applications of DBs in ML have made the “Sixth
Normal Form” (6NF) popular

Also due to use of “Graph DBs”
(sets of 2-ary relations)

john

“Ulysses” book

Is-abought

novel

subclass

mary

friend

bought

“Unbearable
Lightness of Being”

“Sentimental Education”

“Sleepwalkers”

similarTo

Is-a
josh

likes

milan

wrote

Is-a

novel

• Very informally, a relation schema is
in 6NF when the attributes are the
primary key, and at most one extra attribute

Very commonly, 2-attribute (binary) relation schemas

121 / 122

• The Graph DB (or Knowledge Graph) could be strored in a
relational DB

• 6NF avoids the use of null values

If you do not have a value associated to an identifier, simply
skip that entry in the table

Helping to represent semi-structured data in structured terms

• Number of joins grows (for query-answering and other tasks)

There are ways to handle them

For example, what about a query asking for “the books that
are similar to those bought by friends of Joe”?

• There is quite recent and relevant research on join
optimization

Still a very important research topic (and implementation efforts)

122 / 122

Data Management and
Databases

Chapter 3: Databases and
Query Languages

Leopoldo Bertossi
Universidad San Sebastián

Facultad de Ingenieŕıa y Ciencias

General Observations

• Having covered DB design, we will go now into the logical
interface of a RDBMS and RDBs

• As discussed several times, the main characteristics of
RDBMSs are determined by Codd’s proposal

• Codd proposed the “12 Rules of RDBs”

Providing guidelines for building and assessing Relational
DBMSs

• They are a good starting point for this chapter ...

2 / 31

Codd’s 12 Rules for RDBs:

1. The Information Rule:
All information in a relational database is represented explicitly at the logical

level in exactly one way by values in tables.

2. Guaranteed Access Rule:
Each and every datum (atomic value) in a relational database is guaranteed to

be logically accessible by resorting to a table name, primary key value, and

column name.

3. Systematic Treatment of Null Values:
Null values (distinct from empty character string or a string of blank characters

and distinct from zero or any other number) are supported in the fully relational

DBMS for representing missing information in a systematic way, independent of

data type.

4. Dynamic On-line Catalog Based on the Relational Model:
The database description is represented at the logical level in the same way as

ordinary data, so authorized users can apply the same relational language to its

interrogation as they apply to regular data.
3 / 31

5. Comprehensive Data Sublanguage Rule:
A relational system may support several languages and various modes of

terminal use (for example, the fill-in-blanks mode). However, there must be at

least one language whose statements are expressible, per some well-defined

syntax, as character strings and whose ability to support all of the following is

comprehensible: data definition, view definition, data manipulation (interactive

and by program), integrity constraints, and transaction boundaries (begin,

commit, and rollback).

6. View Updating Rule:
All views that are theoretically updateable are also updateable by the system.

7. High-level Insert, Update, and Delete:
The capability of handling a base relation or a derived relation as a single

operand applies nor only to the retrieval of data but also to the insertion,

update, and deletion of data.

8. Physical Data Independence:
Application programs and terminal activities remain logically unimpaired

whenever any changes are made in either storage representation or access

methods.
4 / 31

9. Logical Data Independence:
Application programs and terminal activities remain logically unimpaired when

information preserving changes of any kind that theoretically permit

unimpairment are made to the base tables.

10. Integrity Independence:
Integrity constraints specific to a particular relational database must be

definable in the relational data sublanguage and storable in the catalog, not in

the application programs.

A minimum of the following two integrity constraints must be supported:

- Entity integrity: No components of a primary key is allowed to have a null
value.

- Referential integrity: For each distinct non-null foreign key value in a

relational database, there must exist a matching primary key value from the

same domain.

11. Distribution Independence:
A relational DBMS has distribution independence. Distribution independence

implies that users should not have to be aware of whether a database is

distributed.
5 / 31

12. Nonsubversion Rule:
If a relational system has a low-level (single-record-at-a-time) language, that

low-level language cannot be used to subvert or bypass the integrity rules or

constraints expressed in the higher-level (multiple-records-at-a-time) relational

language.

• In addition to the above rules, one might also add the
following rule Rule Zero:

Data Management via Relational Capability:
For any system that is claimed to be a relational database management system,

that system must be able to manage data entirely through its relational

capabilities. http://itsy.co.uk/ac/0405/Sem3/44271 DDI/Lec/3 CoddsRules.htm

6 / 31

• The Architecture of a RDBMS:
DBMS

Engine

metada
plus
...ta

Engine

basic
data

data definition, query processor,
view management, updates,
trigger executions,
transaction processing

schema ICs triggers procedures

transaction processing,
communication, ...

schema, ICs,
users, ...

triggers, procedures,
statistics, indices, ... API

users, application programs

• There may be several DBs run by the RDBMS

• A RDBMS interacts with the external computational world

For that there are specialized “Application Program
Interfaces” (APIs)

• Metadada (schema, ICs. etc.) are stored in the DB

• One can also store procedures, and triggers in particular

There are standardized languages for specifying them (and
vendors’ proprietary languages)

7 / 31

• Integrity constraints (ICs) are prominent in Codd’s Rules

We have discussed a few classes of ICs

• Only some classes of ICs can be defined with the DB schema

Becoming part of the schema

And the RDBMS takes care of maintaining them (satisfied)

• Some classes of ICs cannot be declared at that stage

And they are not automatically supported (maintained)

• This is the case of general functional dependencies

Among FDs, only Key Constraints can be declared (and
automatically maintained)

• Those non-declarable/maintainable have to be enforced and
maintained from the user’s side:

• Active rules (or triggers)

• Application programs that interact with the RDBMS

• In both cases, violation views can be useful
8 / 31

• Some RDBMSs (vendors) support Informational Constraints

They are ICs declared by the user, but not checked or
maintained by the DBMS

So as every IC, they capture more semantics of the application
domain

The RDBMS assumes they are true (trusting the DB creator),
and can use them

What for?

• A RDBMS can use ICs (maintained or assumed to be true) for
semantic query optimization

Optimization of QA through the use of ICs

In contrast with syntactic query optimization mentioned in
Chapter 1

9 / 31

• Example: Schema: Person(Name,Address, Job)

FD: Name → Address defined as informational constraint
(this FD would not be maintainable by the RDBMS; not a key)

• Query about people with more than one address (in RC; not essential)

Q(x) : ∃y∃u∃v∃w(Person(x , y , v) ∧ Person(x , u,w) ∧ y ̸= u)

• Answer using the FD: Empty! (∅) No need to see the data!

• Example: Emp(Name,Position,Project), Sal(Name,Salary)

Range or check constraint: CEOs make more than 100K

∀̄(Emp(x , y , z) ∧ Sal(x , u) ∧ y = ceo → u > 100K)

• Query: Employees with salary lower than 50K

Q′(x) : ∃y∃z∃u(Emp(x , y , z) ∧ Sal(x , u) ∧ u < 50K)

• The join for CEOs can be avoided!

10 / 31

• More about null values: One can declare NOT NULL

Constraints

Some attributes cannot take the value NULL

• A value NULL is used to represent a missing, unknown,
non-applicable, datum

The SQL Standard is unclear the semantics (meaning) of
NULL values

• Different RDBMSs differ in the way they operate with NULL
values, which is problematic

•
Emp Name Position Salary Age

john clerk 40 K 35
mary CEO 85 K NULL
ken account. 60 K 40
carol NULL 90 K 19

This instance satisfies the
“NOT NULL” constraint for
Name, but not for Age

• When a constraint declares a set of attributes as a key, they
cannot take the value NULL

• Key constraints and “NOT NULL” constraints go together
11 / 31

• If Name is declared a key, it cannot take the value NULL

• This has to do with the way NULL values are treated by the
DBMS

It does not know if it represents a value that is equal or
different from the other certain (or null) values

Emp Name Position Salary Age
john clerk 40 K 35
NULL CEO 85 K NULL
ken account. 60 K 40
carol NULL 90 K 19

If Name is the key, it should be an
identifier: How could NULL be
compared with certain values, e.g.

“john”?

Emp Name Position Salary Age
john clerk 40 K 35
NULL CEO 85 K NULL
NULL account. 60 K 40
carol NULL 90 K 19

Or worse: We cannot say that two
NULL values are the same, i.e. they

represent the same (uncertain)

value

• To all the (certain) data items, DBMSs apply the “unique
names assumption” (UNA): Different names in the DB
denote different outside-world objects; so they are treated as
different The UNA does not apply to NULL

12 / 31

Relational Algebra (revisited)

• Two relations with the same schema
WINE1 W# GRAPE VINTAGE PERCENTAGE

100 Volnay 1978 12.5
110 Chablis 1979 12.0
120 Sancerre 1980 12.5
130 Tokay 1980 12.5

WINE2 W# GRAPE VINTAGE PERCENTAGE

130 Tokay 1980 12.5
140 Chenas 1981 12.7
150 Volnay 1978 12.5

• The union of them: WINE1
⋃

WINE2
WINE3 W# GRAPE VINTAGE PERCENTAGE

100 Volnay 1978 12.5
110 Chablis 1979 12.0
120 Sancerre 1980 12.5
130 Tokay 1980 12.5
140 Chenas 1981 12.7
150 Volnay 1978 12.5

• No duplicates, as usual in set-union

• The intersection of them: WINE1
⋂

WINE2

WINE4 W# GRAPE VINTAGE PERCENTAGE

130 Tokay 1980 12.5

13 / 31

WINE1 W# GRAPE VINTAGE PERCENTAGE

100 Volnay 1978 12.5
110 Chablis 1979 12.0
120 Sancerre 1980 12.5
130 Tokay 1980 12.5

WINE2 W# GRAPE VINTAGE PERCENTAGE

130 Tokay 1980 12.5
140 Chenas 1981 12.7
150 Volnay 1978 12.5

• The difference of them: WINE1 ∖ WINE2
WINE4 W# GRAPE VINTAGE PERCENTAGE

100 Volnay 1978 12.5
110 Chablis 1979 12.0
120 Sancerre 1980 12.5

• The difference is a “relative complement”

That is, relative to another relation

• This keeps the result sensible and within the finite

• In RA there is only this form of limited complement

14 / 31

• Two relations, not necessarily with same schema
GRAPE GRAPE AREA COUNTRY

Chenas Beaujolais France
Volnay Bourgogne France

Chanturgues Auvergne France

YEAR VINTAGE QUALITY

1979 Good
1980 Average

• The product of them: GRAPE × YEAR
GY GRAPE AREA COUNTRY VINTAGE QUALITY

Chenas Beaujolais France 1979 Good
Chenas Beaujolais France 1980 Average
Volnay Bourgogne France 1979 Good
Volnay Bourgogne France 1980 Average

Chanturgues Auvergne France 1979 Good
Chanturgues Auvergne France 1980 Average

• Possibly a huge table, and many combinations that do not
make much sense

• The product is an expensive operation we may want to avoid

Or apply only after we have reached smaller tables using other
operations

15 / 31

• Usually it makes more sense from the application point of
view to combine tables via a join

• Essential binary operator of RA

WINE W# GRAPE VINTAGE QUALITY

100 Chenas 1977 Good
200 Chenas 1980 Excellent
300 Chablis 1977 Good
400 Chablis 1978 Bad
500 Volnay 1980 Average

LOCATION GRAPE AREA AVG-QUALITY

Chenas Beaujolais Good
Chablis Bourgogne Average
Chablis California Bad

• The natural join: WINE 1GRAPE LOCATION

WL W# GRAPE VINTAGE QUALITY AREA AVG-QUAL

100 Chenas 1977 Good Beaujolais Good
200 Chenas 1980 Excellent Beaujolais Good
300 Chablis 1977 Good Bourgogne Average
300 Chablis 1977 Good California Bad
400 Chablis 1978 Bad Bourgogne Average
400 Chablis 1978 Bad California Bad

• Relations are composed via the values in common taken by
attributes in common (or the same data type)

• There are other forms of join

16 / 31

• The join is a common but expensive operation in RDBS

• One can apply more complex join conditions

• The join above used the join condition as follows:

WINE 1
WINE.GRAPE=LOCATION.GRAPE

LOCATION

Values for GRAPE attribute in the two tables coincide

• We could also do the join:

WINE 1
WINE.QUALITY=LOCATION.AVG-QUAL

LOCATION

Maybe not sensible, but still doable

WINE.QUALITY and LOCATION.AV-QUAL have the same domain

• There are other join conditions and forms of join (later)

17 / 31

• Projection:
WINE W# GRAPE VINTAGE PERCENTAGE QUALITY

100 Volnay 1979 12.7 Good
110 Chablis 1980 11.8 Average
120 Tokay 1981 12.1 Excellent
130 Chenas 1979 12.0 Good
140 Volnay 1980 11.9 Average

Π
VINTAGE,QUALITY

YEAR VINTAGE QUALITY

1979 Good
1980 Average
1981 Excellent

• A unary operator
• No duplicates (sets do not have duplicate elements)

• A tuple t is in the result (the projection) iff there is a tuple t′

in the original relation that, restricted to the attributes
indicated in Π gives t: t′[VINTAGE,QUALITY] = t

• For example, (1979,Good) ∈ Π
VINTAGE,QUALITY

(WINE)

because there there exist values, say x , y , z for attributes
W#,GRAPE , PERCENTAGE (which we do not care about),
such that tuple (x , y , 1979, z ,Good) belongs to relation
WINE

18 / 31

• Selection: σ
<condition>

WINE W# GRAPE VINTAGE PERCENTAGE QUALITY

100 Volnay 1979 12.7 Good
110 Chablis 1980 11.8 Average
120 Tokay 1981 12.1 Excellent
130 Chenas 1979 12.0 Good
140 Volnay 1980 11.9 Average

σ
QUALITY=Good

GOOD-WINE W# GRAPE VINTAGE PERCENTAGE QUALITY

100 Volnay 1979 12.7 Good
130 Chenas 1979 12.0 Good

• Original attributes are kept

Here the condition is very simple

• It is possible to express more complex selection (and join)
conditions with a language that involves

• Attribute names

• Logical, boolean (propositional) operations (AND,OR,NOT)

• Built-in relations (=, <,≤, >,≥, ̸=) applied to attribute names
and domain elements

E.g. above: WINE.GRAPE = LOCATION.GRAPE ;
QUALITY = Good

19 / 31

• Built-in relations have a fixed semantics, and fixed and
possibly infinite extensions

• In contrast to relation predicates in the schema that have
variable extensions depending on the application and the state
of the DB

• E.g. the < built-in relation on the data type integer has an
infinite, fixed extension that the DBMS can simply use

• For example: < Smaller Bigger
0 1
0 2

· · · · · ·
1000 1500
· · · · · ·

̸= String String
john peter
peter mary
· · · · · ·
mary john
· · · · · ·

• A selection could be: σ
VINTAGE>1980 OR QUALITY=Good

(WINE)

• This boolean language can be used to express more complex
join conditions: 1

<condition>

WINE 1
W.GRAPE=L.GRAPE AND W .QUALITY=L.AVG-QUALITY

LOCATION

20 / 31

