
Queries Expressed in RA:

• A query can be expressed as a sequence of operations of RA
applied to the original tables and/or intermediate results

• Example: Schemas
DRINKER DRINKER# SURNAME FNAME TYPE

DRINKS DRINKER# WINE# DATE QUANTITY
(DATE at day level)

WINE WINE# GRAPE VINTAGE PERCENTAGE

• Query 1: Percentages of alcohol in Morgon wines, vintage
1979? R1 := σ

GRAPE=Morgon
(WINE)

R2 := σ
VINTAGE=1979

(WINE)
R3 := R1 ∩ R2
ANS := Π

PERCENTAGE
(R3)

• A fixed algebraic query (expression), independent from
instance, applicable to any instance; depends only on schema

• ANS = Π
PERCENTAGE

(σ
GRAPE=Morgon

(WINE) ∩ σ
VINTAGE=1979

(WINE))

21 / 53

• A procedural (imperative) query: We are telling the system
how to compute the desired answers

• Another solution (equivalent to the first one)

ANS = Π
PERCENTAGE

(σ
GRAPE=Morgon AND VINTAGE=1979

(WINE))

• An algebraic formula that can be used to compute the answers

It can be applied to every particular instance of the DB

• Notice the correspondence between the set-theoretic and
logical operations

Query 2: Last and first names of drinkers of Morgon or
Chenas? R1 := σ

GRAPE=Morgon
(WINE)

R2 := σ
GRAPE=Chenas

(WINE)
R3 := R1 ∪ R2
R4 := R3 1

WINE#
DRINKS (R3 is smaller than WINE)

R5 := R4 1
DRINKER#

DRINKER (all attributes of all tables together)

ANS := Π
SURNAME,FNAME

(R5)

22 / 53

• Notice the useful selection before the join

The other way around would be semantically the same, but
less efficient

• Beware: Do not project too early or too much since you may
lose information for additional selection/join conditions

Keep carrying attributes you may need later on

• Query 3: Last and first names of drinkers who have tried in
one day more than 10 samples of Chablis, vintage 1976,
together with the percentage of alcohol of the wine

R1 := σ
QUANTITY>10

(DRINKS)
R2 := σ

GRAPE=Chablis
(WINE)

R3 := σ
VINTAGE=1976

(WINE)
R4 := R2 ∩ R3
R5 := R1 1

WINE#
R4 (all attributes for DRINKS and WINE here)

R6 := Π
DRINKER#,PERCENTAGE

(R5) (keep DRINKER# for next join)

R7 := R6 1
DRINKER#

DRINKER
ANS = Π

SURNAME,FNAME,PERCENTAGE
(R7)

23 / 53

• RA is based on set-theoretic operations, i.e. that take and
produce sets

By default, the results do not show duplicates

That is, no multiple occurrences of the same tuple

• It is possible to extend RA operations to deal with multi-sets
or bags

They may have duplicates

• Exercise: Illustrate the computations for queries 1-3 using a concrete initial
instance; and producing all the intermediate relations that lead to the final
answer

Exercise: Schema: Frequents(Drinker ,Bar), Serves(Bar ,Beer),

Likes(Drinker ,Beer) Express in RA the following queries:

1. Which bars serve the beer John likes?

2. Which drinkers frequent at least one bar that serves some beer they like?

3. Which drinkers frequent only bars that serve at least one beer they like?

4. Which drinkers do not frequent any bar that serves some beer they like?

24 / 53

On Query Optimization:

• With RA, to speed up query processing, the system applies
products and joins once tables have been reduced using other
RA operations (such as intersection, difference, selection and
projection reduce relations)

• This Syntactic Query Optimization rearranges a query, as a
sequence of RA operations, into a new sequence that leads to
less expensive joins

Still obtaining an equivalent query

• In contrast, for Semantic Query Optimization (see page 10),
the original query is rewritten into a new, less expensive query

The rewriting depends on the syntactic, symbolic interaction
of the IC and the original query

There is a general mechanism that relies on the representation
in Relational Calculus (the logical counterpart of RA) of the
query and the ICs

25 / 53

• An optimized query resulting from the rearrangement of RA
operations is syntactically different but semantically
equivalent to the original query

They have the same semantics (meaning)

• Space is always an issue since DBs can be very large and
computations take place in main memory

RDBMSs have built-in query optimizers that are automatically
invoked

• The notion of “semantic equivalence” of queries, in particular
of relational expressions, is well-defined and precise

• Two RA queries are equivalent if for every instance of the
given schema they produce the same answer

• A strength of RA: The semantics of the language is clear,
precise, formal and well-studied

It is grounded on set theory and predicate logic
26 / 53

Some Final Remarks:

• There are other RA operations we haven’t presented

In particular, there are other forms of join (later)

• It is possible to define new RA operations on the basis of the
already defined operations (and nothing else)

• Example: The “symmetric difference” of two similar relations

R1 ∆ R2 := (R1∖ R2) ∪ (R2∖ R1)

Equivalently:

R1 ∆ R2 = (R1 ∪ R2)∖ (R1 ∩ R2)

D

D R2 R1 R2
R1

• The new operation (∆) is defined by means of a fixed
algebraic formula that uses already defined operations (∖,∪)

• A definition applicable to any instance

That is, the definition is independent from the instance at
hand

27 / 53

• Two relations with the same schema
WINE1 W# GRAPE VINTAGE PERCENTAGE

100 Volnay 1978 12.5
110 Chablis 1979 12.0
120 Sancerre 1980 12.5
130 Tokay 1980 12.5

∆
WINE2 W# GRAPE VINTAGE PERCENTAGE

130 Tokay 1980 12.5
140 Chenas 1981 12.7

=
WINE5 W# GRAPE VINTAGE PERCENTAGE

100 Volnay 1978 12.5
110 Chablis 1979 12.0
120 Sancerre 1980 12.5
140 Chenas 1981 12.7

• Some of RA operations we introduced can be defined in terms
of the others

They are theoretically redundant (but not necessarily
practically redundant)

• For example, the natural join can be defined in terms of
product, selection, and projection (and possibly the
“attribute renaming” operation) Check it!

28 / 53

• There are useful operations on relations that we haven’t
considered as RA operations

• There is a purely “logical counterpart” to the RA: the
Relational Calculus (RC) (see Chapter 1)

• RC is a declarative query language that is based directly on
predicate logic

• Example: Query Q1 above can be expressed in RC

Ans(x) : ∃wWine(w ,morgon, 1979, x)

Declaratively expressing what we want, not how to compute it

We are collecting values for the last attribute, i.e. percentages

morgon and 1979 are constants from the tables

The answers to the query are those constants that make the
formula true in the DB

• RA or RC query formulation does not require looking into the
instance; the schema is good enough

29 / 53

• RA and RC are equivalent in terms of the queries they can
express (more on this later)

They are equally expressive

Something that can be proved

• Idea of the connection between both:

Introduce a new logical predicate Ans to collect the result

Next, define it by a logical formula

1. Selection: σφ(R(A1, . . . ,An))

R a relation predicate, and φ a condition on attribute values

∀x1 · · · ∀xn(Ans(x1, . . . , xn) :←→ R(x1, . . . , xn) ∧ φ)

E.g. σA=aR(A,B) can be defined by

∀x∀y(Ans(x , y) :←→ R(x , y) ∧ x = a)

30 / 53

2. Intersection: R(A,B) ∩ S(A,B)

∀x∀y(Ans(x , y) :←→ R(x , y) ∧ S(x , y))

3. Union: R(A,B) ∪ S(A,B)

∀x∀y(Ans(x , y) :←→ R(x , y) ∨ S(x , y))

4. Projection: ΠA(R(A,B))

∀x(Ans(x) :←→ ∃yR(x , y))

5. Join: R(A,B) 1B=C S(C ,D)

∀x∀y∀z(Ans(x , y , z) :←→ R(x , y) ∧ S(y , z))

6. Cartesian Product: R(A,B)× S(C ,D)

∀x∀y∀z∀w(Ans(x , y , z ,w) :←→ R(x , y) ∧ S(z ,w))

7. Difference: R(A,B)∖ S(A,B)

∀x∀y(Ans(x , y) :←→ R(x , y) ∧ ¬S(x , y))

• The standard query language for RDBs, SQL, is close to
(based on) RC

31 / 53

• A very useful operation we have not considered as a part of
RA (or RC) is the Transitive Closure of a binary relation

• Example: Paternity Father Son
Eric Luis
Eric Juan
Juan Carlos
Juan Sergio
Luis Tomas
Tomas Pedro

• We want to define and compute a new
relation Ancestry that contains all (and only)
the tuples that can be obtained by transitive
paternity

Ancestry Ancestor Descendant
Eric Luis
Eric Juan
Juan Carlos
Juan Sergio
Luis Tomas
Tomas Pedro
Eric Tomas
Eric Carlos
Eric Sergio
Luis Pedro
Eric Pedro

• Ancestry is the transitive closure
of Paternity

The TC is the “smallest” transitive
relation that includes Paternity

• “smallest” refers to set-inclusion

There is not proper subset of Ancestry
that is transitive and includes Paternity

32 / 53

• Computation?

An iterative procedure computes it

Ancestry Ancestor Descendant
Eric Luis
Eric Juan

step 0 Juan Carlos
Juan Sergio
Luis Tomas
Tomas Pedro
Eric Tomas

step 1 Eric Carlos
Eric Sergio
Luis Pedro

step 2 Eric Pedro

• The first step can be computed
with Paternity 1Son=Father Paternity

A self-join, obtaining the
Grandfather/Grandson relation

Partial result is joined with Paternity, etc., until nothing new

Each step of the iteration can be computed with a join of RA

• However, the length of the iteration depends on the initial
instance

It is not bounded a priori (for every instance)

• Can we define the TC using a general and fixed formula of
RA?

• Theorem: It is not possible to define the TC of a relation by
means of a fixed and general formula of RA

33 / 53

• The TC is not part of the RA

• As a consequence, the TC cannot be expressed in RC either

Actually, one usually proves this first for the RC

• In order to compute the TC in a RDB, an iterative procedure
can be programmed in interaction with (or stored in) the DB

• The SQL99 Standard started supporting TC as a query

Actually, as a recursive view definition

Recursion is the counterpart of iteration

We will come back to this ...

• We will have extend RC and RA in different ways

To be in position to pose (and answer) some common and
useful queries

Some of those extensions will make it into SQL

34 / 53

SQL: Preliminaries

• Recall: Codd’s model became widely accepted as the
definitive model for RDBMS

• The Structured English Query Language (SEQUEL) developed
by IBM Corporation, Inc., to use Codd’s model

SEQUEL became SQL

• 1979: Relational Software Inc. (now Oracle Corporation)
introduced Oracle V2

First commercially available implementation of SQL

Today it is accepted as the standard language for RDBMS

• The SQL standard created by committees of specialists from
companies and universities

A history of versions of the standard

35 / 53

• Vendors of RDBMSs have their own implementations of SQL

Loosely following the standard

• SQL is a language with a precise syntax

Used with/by RDBMs for several tasks:

• For manipulating data and metadata in a RDBMS

• Creation and modification of schemas

• Population of a DB

• Insertion, modification or deletion of tuples

• Declaration of ICs (some)

• Formulation of queries to the DB

Mostly declarative

• Definition of views

• Creation of triggers and stored procedures

36 / 53

• Main (original) purpose: Querying data

Most of the query part of SQL can be translated into
relational calculus (or RA)

From where it gets a precise semantics (mostly)

• Operations on data are internally compiled into RA operations

• Allows to work with data at the logical level

Specifying conditions that data must satisfy

• SQL query commands are taken by the query optimization
modules of the DBMS

They determine the best way to access and process the
specified data

37 / 53

SQL: Initial Declarations

Defining and Populating a Database Schema:

• “CREATE TABLE name (list of elements)”

Principal elements are attributes and their types

Also declarations of key and constraints

“DROP TABlE deletes the created relation element

• Example: CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL);

DROP TABLE Sells;

• Data Types:

1. INT or INTEGER
2. REAL or FLOAT
3. CHAR(n) = fixed length character string
4. VARCHAR(n) = variable-length strings up to n characters
5. DATE. SQL form is DATE ’yyyy-mm-dd’

6. TIME. Form is TIME ’hh:mm:ss[.ss...]’ Etc.

38 / 53

Declaring Keys:

• Use PRIMARY KEY or UNIQUE

But only one primary key, many UNIQUEs allowed

• SQL instructs implementations to create an index in response
to PRIMARY KEY only

(data structure to speed up access given a key value)

Oracle and DB2 create them for both (i.e. also for “uniques”)

• SQL does not allow nulls in a primary key

But allows them in “unique” columns (with some restrictions)

• Two places to declare keys:

- After an attribute’s type, if the attribute is the key

- As a separate element if key has more than one attribute

39 / 53

• Example: Relation schemas:

Bars(name, addr, license)

CREATE TABLE Bars (

name CHAR(20) PRIMARY KEY,

addr VARCHAR(20),

licence VARCHAR(20)

);

Sells(bar, beer, price)

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

PRIMARY KEY(bar,beer)

);

• These are different:

CREATE TABLE Sells (

bar CHAR(20),

beer VARCHAR(20),

price REAL,

UNIQUE(bar,beer)

);

CREATE TABLE Sells (

bar CHAR(20) UNIQUE,

beer VARCHAR(20) UNIQUE,

price REAL,

);

40 / 53

Referential ICs and Foreign Keys:

• Example: Attribute name is primary key in Beers

Beers sold in table Sells must appear in the table of beers

CREATE TABLE Beers (

name CHAR(20) PRIMARY KEY,

manf CHAR(20));

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20) REFERENCES Beers(name),

price REAL);

beer (in Sells) indirectly declared as foreign key of Sells

Referencing/pointing to Beers.name

• Explicit alternative: Add a new declaration element

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY beer REFERENCES Beers(name));

41 / 53

CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY beer REFERENCES Beers(name));

• This alternative is essential if the primary key (in the other
table) contains more than one attribute

• Sells.beer is allowed to take null values without forcing
Beers.name to have them

As expected for a primary key

This is allowed still satisfying the created RIC

• When is a FKC (or RIC) violated?

What can be done?

What does the RDBMS does (or can do)?

42 / 53

• Two kinds of violation:

1. Insertion or update of a tuple in Sells that refers to a
non-existing beer in Beer.name

Transaction is always rejected

2. Deletion or update of a tuple in Beers that is being
referenced by a tuple in Sells.beer

- Default: transaction is rejected

- Cascade effect: Propagate the changes to tuples in Sells

that make reference to the updated tuples in Beers

- Set NULL in all referencing tuples in Sells

• Example: (a) Deletion of Bud from official table Beers:
Delete from Sells all tuples containing Bud

(b) Update of Bud to Budweiser in Beers: Change in all
tuples in Sells, Bud by Budweiser

43 / 53

• Example: (a) Deletion of Bud in Beers: All tuples in Sells

that had Bud now have NULL instead

Those nulls do not have to appear in Beers.name to satisfy
the RIC

(b) Update of Bud to Budweiser: Same change

• With last two cases in Item 2. above, some changes are
triggering other changes

With the purpose of maintaining the consistency of the DB

• Can we specify any of these IC maintenance policies?

• With FKC declaration: ON [DELETE, UPDATE] [CASCADE, SET NULL]

• Example: CREATE TABLE Sells (

bar CHAR(20),

beer CHAR(20),

price REAL,

FOREIGN KEY beer REFERENCES Beers(name)

ON DELETE SET NULL

ON UPDATE CASCADE);

(this is application
dependent)

44 / 53

