NULL [Cs:

NOT

Effﬂlﬂzkﬁ, CREATE TABLE Drinkers(

name CHAR(30) PRIMARY KEY,
phone CHAR(16) NOT NULL);

Otherwise, without the NOT NULL IC, we get:

INSERT INTO Drinkers(name)
VALUES(°Sally’); name phone
' Sally NULL

Other specifications:

- NOT NULL: every tuple must have a real value for this
attribute

- DEFAULT value: a value to use whenever no other value for
this attribute is known

Example: CREATE TABLE Drinkers (

— name CHAR(30) PRIMARY KEY,

addr CHAR(50) DEFAULT ’123 Sesame St’,
phone CHAR(16));

45/63

e With the insertion:

INSERT INTO Drinkers(name) name ‘ addr ‘ phone
VALUES(°Sally’);

Sally | 123 Sesame St. | NULL

- Primary key is by default NOT NULL

- This insertion is perfectly legal
It is OK to list a subset of the attributes, and values for only
this subset

- Had we declared

“phone CHAR(16) NOT NULL",
the insertion could not be done

46/63

Changing Columns of a Schema:

e Add an attribute to relation R with
ALTER TABLE R ADD <column declaration>;
e Example:
ALTER TABLE Bars ADD phone CHAR(16)
DEFAULT ’unlisted’;
e Columns may also be dropped:

ALTER TABLE Bars DROP license;

47/63

SQL: Queries

e Basic Syntax:) _
———— SELECT desired attributes
FROM tuple variables - range over relations
WHERE condition about tuple variables
e Example: Schema: Beers (name, manf)
Bars(name, addr, license)
Drinkers(name, addr, phone)
Likes(drinker, beer)
e Query: What beers are Sells(bar, beer, price)
made by Anheuser-Busch? Frequents(drinker, bar)
SELECT name
FROM Beers
WHERE manf = ’Anheuser-Busch’; (notice the single quotes for strings)
e Answer: name
ud
Bud Lite
Michelob
e Conditions in WHERE capture RA selection

SELECTing only some attributes captures RA projection
48 /63

Extensions of the Basic Syntax:

A star can be used to retrieve all the attributes:

Beers(name, manf)

SELECT *
FROM Beers
WHERE manf = 'Anheuser-Busch’;

Answer:

name | manf

Bud Anheuser-Busch
Bud Lite | Anheuser-Busch
Michelob | Anheuser-Busch

Renaming Columns: ‘name’ into ‘beer’ in Beers(name, manf)

Answer:

SELECT name AS beer
FROM Beers
WHERE manf = ’Anheuser-Busch’;

beer
o Table useful by itself
Michelob Can be combined with other queries

49/63

e Expressions as Values in Columns:

e Sells(bar, beer, price)

SELECT bar, beer, price*150 AS pricelnYen

FROM Sells;
‘price¥150": expression ‘pricelnYen’: name for it
e Answer: bar | beer | pricelnYen
Joe's Bud 300
Sue's | Miller 360
e Answers with a particular string in each row: use that
constant as an expression Likes(drinker, beer)

SELECT drinker, ’likes Bud’ AS wholLikesBud
FROM Likes
WHERE beer = ’Bud’;

‘likes Bud': expression ‘wholikesBud': name for it
e Answer: drinker | wholikesBud
Sally likes Bud
Fred likes Bud

50/63

Example: Find the price Joe's Bar charges for Bud

Sells(bar, beer, price)

SELECT price
FROM Sells
WHERE bar = ’Joe’’s Bar’ AND beer = ’Bud’;

Two single-quotes in a string represent a single quote

Conditions in WHERE clause can use logical connectives
AND, OR, NOT and parentheses as usual

SQL is case insensitive
Keywords like SELECT or AND in upper or lower case

Only inside quoted strings does case matter

51/63

Patterns:

‘%' stands for any string

stands for any (single) character

“Attribute LIKE pattern” is a condition that is true if the
string value of the attribute matches the pattern

Also NOT LIKE can be used
Example: Find drinkers whose phone starts with 555

Drinkers(name, addr, phone)

SELECT name
FROM Drinkers
WHERE phone LIKE ’%555-____7;

Patterns must be quoted, like strings

52/63

Multi-Relation Queries:

A list of relations in FROM clause

Notation: Relation.Attribute
Disambiguates shared attributes from several relations

Example: Find the beers that the frequenters of Joe's Bar like
Likes(drinker, beer) Frequents(drinker, bar)

‘drinker’ is in two different tables

SELECT beer

FROM Frequents, Likes

WHERE bar = ’Joe’’s Bar’ AND
Frequents.drinker = Likes.drinker;

We can express products and joints of RA
Here: Likes X Frequents, selection, projection (on beer)

The common class of “select-project-join” (SPJ) queries

Also known as ‘“conjunctive queries”
53 /63

Explicit Tuple Variables:

Sometimes we need to refer to two or more copies of a relation

E.g. for comparing values within a same relation

Use explicit variables for copies of relations (or tuples thereof)
Intuitively: Use tuple variables as aliases for the relations

Example: Find pairs of beers by the same manufacturer
Beers (name, manf)
SELECT bl.name, b2.name Beer Boer
— FROM Beers bl, Beers b2 4 [—name [_manf name | _manf

WHERE bl.manf = b2.manf AND Y - DL
bl.name <> b2.name; : \

b1.manf = b2.manf ?

b1, b2: tuple variables, aliases for relations
In FROM clause: selection from copies b1l and b2 of Beers
‘bl.name <> b2.name' needed to avoid producing (Bud,

Bud), and a same pair in both orders

54 /63

Before we used AS to rename attributes or expressions

SQL permits AS between a relation and its tuple variable:
SELECT bl.name, b2.name

FROM Beers AS bl, Beers AS b2
WHERE b1l.manf = b2.manf AND bl.name <> b2.name;

Same query in RC:
Ans(x,u): Jy(Beer(x,y) A Beer(u,y) A x # u)
A conjunctive query in RC, with a built-in (#)

Exercise: Pose the query in RA

55/63

Sub-Queries:

Result of a select-from-where query can be used in the WHERE

clause of another query

The Simplest Case: Sub-query returns a single tuple

Example: Find bars that serve Miller at the same price Joe

charges for Bud

Sells(bar, beer, price)

First we find what Joe charges for Bud

Next, the bars that sell Miller for that same price

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND price =
(SELECT price
FROM Sells

WHERE bar = ’Joe’’s Bar’ AND beer

)
Nested SELECTs

56 /63

SELECT bar
FROM Sells
WHERE beer = ’Miller’ AND price =
(SELECT price
FROM Sells
WHERE bar = ’Joe’’s Bar’ AND beer = ’Bud’
);

Scoping rule: An attribute refers to the closest nested
relation with that attribute

Parentheses around sub-queries are essential

price is uniquely determined (by the key)

The sub-query returns a single value

What if the sub-query returns a set of tuples?
Use “IN" instead of ‘=’

It is true iff the tuple is in the extension of the relation defined
by sub-query

57/63

e Example: Find the name and manufacturer of beers that Fred

likes
Beers(name, manf) Likes(drinker, beer)

SELECT *
FROM Beers
WHERE name IN
(SELECT beer
FROM Likes
WHERE drinker = ’Fred’);

e Main (final) selection is on Beers, with attributes
(name ,manf)

But the condition depends on table Likes (in the sub-query)

e The sub-query creates a set (a unary relation of names)

Main query checks if name belongs to it

e In general (not here), NOT IN can also be used

58/63

e Quantifiers:
e Inherited from Relational Calculus
“EXISTS (Relation)” is true iff Relation is non-empty
e Example: Find the beers that are the only beer made by its

company Beers(name, manf)

SELECT Dbl.name “Choose the name of the
FROM Beers bl beers such that there is no
WHERE NOT EXISTS(other beer produced by

SELECT * the same manufacturer”

FROM Beers
WHERE manf = bl.manf
AND name <> bl.name);

e Think of having a generic, variable, tuple in Beers, b1, and
checking a condition on it
A condition in terms of a quantifiers (NOT EXISTS) applied to
a sub-query
Keep the bis that satisfy the condition (their names)

59/63

SELECT bl.name
FROM Beers bl
WHERE NOT EXISTS(
SELECT *
FROM Beers
WHERE manf = bl.manf
AND name <> bil.name);

Variable bl goes over tuples in Beers (alias for Beers)
bl.name is just another name to refer to name

In the subquery, with b1 fixed (as a variable outside the subquery):
We get the tuples (name, manf) with:
manf = bl.manf & name #* bl.name

Scoping rule: To refer to external Beers in the sub-query,
give to the external tuple a variable (b1 in this example)

A subquery that refers to values from a surrounding query is
called a correlated sub-query

Exercise: Express the query in RC and RA

60/63

ANY and ALL behave as existential and universal quantifiers,
respectively

Beware: In English, “any” and “all’ sometimes act as
synonyms

For example, “l am fatter than any of you" vs. “l am fatter
than all of you” Not in SQL!

They can be used to express numerical maxima and minima

“A value is a maximum if all values are not higher”

Example: Find the beers sold for the highest price

Sells(bar, beer, price)
SELECT beer

FROM Sells
WHERE price >= ALL(SELECT price (the sub-query returns real numbers)
FROM Sells);

Exercise: Find the beers not sold for the lowest price
(use ANY)

61/63

Bank Example: Schema:

Branch(branch-name, branch-city, assets)

Customer (customer-name, customer-street, customer—city)
Account (branch-name, account#, balance)
Depositor(customer-name, account#)

Loan(branch-name, loan#, amount)

Borrower (customer-name, loan#)

Example 1: Find all customers who have both an account and a loan at
the bank

SELECT customer-name

FROM Borrower

WHERE customer-name IN (SELECT customer-name
FROM Depositor);

Example 2: Find all customers who have a loan but not an account at
the bank

SELECT customer-name

FROM Borrower

WHERE customer-name NOT IN (SELECT customer-name
FROM Depositor);

Example 3: Find the customers at the “First Street” branch with the
highest account balance at that branch

SELECT customer-name
FROM Depositor, Account
WHERE Depositor.account#=Account.account AND
branch-name= ’First Street’ AND
Account.balance >= ALL
(SELECT balance
FROM Account
WHERE branch-name=’First Street’);

62/63

Union, Intersection, Difference:

One can bring RA operators explicitly into SQL

UNION, INTERSECT as usual
EXCEPT for the difference of the two relations

They require a shared schema

Example: Find the drinkers and beers such that the drinker
likes the beer and frequents a bar that serves it

Likes(drinker, beer) Sells(bar, beer, price)
Frequents(drinker, bar)

(SELECT * FROM Likes)

INTERSECT . . (a way to pick tuples from LIKES
(SELECT drinker, beer with conditions coming from other relations)
FROM Sells, Frequents) i
WHERE Frequents.bar = Sells.bar); (selection of drinkers that frequent a bar where

those beers are served)
In SELECT: A join between Sells and Frequents, and a
projection over drinker and beer (so, same schema as LIKES)

Exercise: Solve it without INTERSECT
63/63

