
NOT NULL ICs:

• Example: CREATE TABLE Drinkers(

name CHAR(30) PRIMARY KEY,

phone CHAR(16) NOT NULL );

• Otherwise, without the NOT NULL IC, we get:

INSERT INTO Drinkers(name)

VALUES(’Sally’);
name phone

Sally NULL

• Other specifications:

- NOT NULL: every tuple must have a real value for this
attribute

- DEFAULT value: a value to use whenever no other value for
this attribute is known

• Example: CREATE TABLE Drinkers (

name CHAR(30) PRIMARY KEY,

addr CHAR(50) DEFAULT ’123 Sesame St’,

phone CHAR(16) );

45 / 63



• With the insertion:

INSERT INTO Drinkers(name)

VALUES(’Sally’);
name addr phone

Sally 123 Sesame St. NULL

- Primary key is by default NOT NULL

- This insertion is perfectly legal

It is OK to list a subset of the attributes, and values for only
this subset

- Had we declared
“phone CHAR(16) NOT NULL”,

the insertion could not be done

46 / 63



Changing Columns of a Schema:

• Add an attribute to relation R with

ALTER TABLE R ADD <column declaration>;

• Example:

ALTER TABLE Bars ADD phone CHAR(16)

DEFAULT ’unlisted’;

• Columns may also be dropped:

ALTER TABLE Bars DROP license;

47 / 63



SQL: Queries

• Basic Syntax:
SELECT desired attributes
FROM tuple variables - range over relations
WHERE condition about tuple variables

• Example: Schema: Beers(name, manf)

Bars(name, addr, license)

Drinkers(name, addr, phone)

Likes(drinker, beer)

Sells(bar, beer, price)

Frequents(drinker, bar)

• Query: What beers are
made by Anheuser-Busch?

SELECT name

FROM Beers

WHERE manf = ’Anheuser-Busch’; (notice the single quotes for strings)

• Answer: name
Bud

Bud Lite
Michelob

• Conditions in WHERE capture RA selection

SELECTing only some attributes captures RA projection
48 / 63



• Extensions of the Basic Syntax:

• A star can be used to retrieve all the attributes:

Beers(name, manf)

SELECT *
FROM Beers
WHERE manf = ’Anheuser-Busch’;

• Answer: name manf

Bud Anheuser-Busch
Bud Lite Anheuser-Busch
Michelob Anheuser-Busch

• Renaming Columns: ‘name’ into ‘beer’ in Beers(name, manf)

SELECT name AS beer

FROM Beers

WHERE manf = ’Anheuser-Busch’;

• Answer: beer

Bud
Bud Lite

Michelob

Table useful by itself

Can be combined with other queries
49 / 63



• Expressions as Values in Columns:

• Sells(bar, beer, price)

SELECT bar, beer, price*150 AS priceInYen

FROM Sells;

‘price*150’: expression ‘priceInYen’: name for it

• Answer: bar beer priceInYen

Joe’s Bud 300
Sue’s Miller 360

• Answers with a particular string in each row: use that
constant as an expression Likes(drinker, beer)

SELECT drinker, ’likes Bud’ AS whoLikesBud

FROM Likes

WHERE beer = ’Bud’;

‘likes Bud’: expression ‘whoLikesBud’: name for it

• Answer: drinker whoLikesBud

Sally likes Bud
Fred likes Bud

50 / 63



• Example: Find the price Joe’s Bar charges for Bud

• Sells(bar, beer, price)

SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’ AND beer = ’Bud’;

• Two single-quotes in a string represent a single quote

• Conditions in WHERE clause can use logical connectives

AND, OR, NOT and parentheses as usual

• SQL is case insensitive

Keywords like SELECT or AND in upper or lower case

Only inside quoted strings does case matter

51 / 63



• Patterns:

• ‘%’ stands for any string

• ‘ ’ stands for any (single) character

• “Attribute LIKE pattern” is a condition that is true if the
string value of the attribute matches the pattern

Also NOT LIKE can be used

• Example: Find drinkers whose phone starts with 555

Drinkers(name, addr, phone)

SELECT name

FROM Drinkers

WHERE phone LIKE ’%555- ’;

• Patterns must be quoted, like strings

52 / 63



• Multi-Relation Queries:

• A list of relations in FROM clause

• Notation: Relation.Attribute

Disambiguates shared attributes from several relations

• Example: Find the beers that the frequenters of Joe’s Bar like

Likes(drinker, beer) Frequents(drinker, bar)

‘drinker’ is in two different tables
SELECT beer

FROM Frequents, Likes

WHERE bar = ’Joe’’s Bar’ AND

Frequents.drinker = Likes.drinker;

• We can express products and joints of RA

• Here: Likes 1 Frequents, selection, projection (on beer)

• The common class of “select-project-join” (SPJ) queries

Also known as “conjunctive queries”
53 / 63



• Explicit Tuple Variables:

• Sometimes we need to refer to two or more copies of a relation

E.g. for comparing values within a same relation

• Use explicit variables for copies of relations (or tuples thereof)

Intuitively: Use tuple variables as aliases for the relations

• Example: Find pairs of beers by the same manufacturer
Beers(name, manf)

SELECT b1.name, b2.name
FROM Beers b1, Beers b2
WHERE b1.manf = b2.manf AND

b1.name <> b2.name;

→

.

.

.

name manf
Beer

.

.

.

name manf
Beer

b1
b2

b1.manf = b2.manf ?• b1, b2: tuple variables, aliases for relations

In FROM clause: selection from copies b1 and b2 of Beers

• ‘b1.name <> b2.name’ needed to avoid producing (Bud,
Bud), and a same pair in both orders

54 / 63



• Before we used AS to rename attributes or expressions

• SQL permits AS between a relation and its tuple variable:

SELECT b1.name, b2.name

FROM Beers AS b1, Beers AS b2

WHERE b1.manf = b2.manf AND b1.name <> b2.name;

• Same query in RC:

Ans(x , u) : ∃y(Beer(x , y) ∧ Beer(u, y) ∧ x ̸= u)

• A conjunctive query in RC, with a built-in (̸=)

• Exercise: Pose the query in RA

55 / 63



• Sub-Queries:

• Result of a select-from-where query can be used in the WHERE
clause of another query

The Simplest Case: Sub-query returns a single tuple

• Example: Find bars that serve Miller at the same price Joe
charges for Bud

Sells(bar, beer, price)

• First we find what Joe charges for Bud

Next, the bars that sell Miller for that same price

SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND price =

(SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’ AND beer = ’Bud’

);

• Nested SELECTs
56 / 63



SELECT bar

FROM Sells

WHERE beer = ’Miller’ AND price =

(SELECT price

FROM Sells

WHERE bar = ’Joe’’s Bar’ AND beer = ’Bud’

);

• Scoping rule: An attribute refers to the closest nested
relation with that attribute

• Parentheses around sub-queries are essential

• price is uniquely determined (by the key)

The sub-query returns a single value

• What if the sub-query returns a set of tuples?

• Use “IN” instead of ‘=’

It is true iff the tuple is in the extension of the relation defined
by sub-query

57 / 63



• Example: Find the name and manufacturer of beers that Fred
likes

Beers(name, manf) Likes(drinker, beer)

SELECT *

FROM Beers

WHERE name IN

(SELECT beer

FROM Likes

WHERE drinker = ’Fred’);

• Main (final) selection is on Beers, with attributes
(name,manf)

But the condition depends on table Likes (in the sub-query)

• The sub-query creates a set (a unary relation of names)

Main query checks if name belongs to it

• In general (not here), NOT IN can also be used

58 / 63



• Quantifiers:

• Inherited from Relational Calculus

“EXISTS (Relation)” is true iff Relation is non-empty

• Example: Find the beers that are the only beer made by its
company

Beers(name, manf)

SELECT b1.name

FROM Beers b1

WHERE NOT EXISTS(

SELECT *

FROM Beers

WHERE manf = b1.manf

AND name <> b1.name );

“Choose the name of the

beers such that there is no

other beer produced by

the same manufacturer”

• Think of having a generic, variable, tuple in Beers, b1, and
checking a condition on it

A condition in terms of a quantifiers (NOT EXISTS) applied to
a sub-query

Keep the b1s that satisfy the condition (their names)

59 / 63



SELECT b1.name

FROM Beers b1

WHERE NOT EXISTS(

SELECT *

FROM Beers

WHERE manf = b1.manf

AND name <> b1.name );

• Variable b1 goes over tuples in Beers (alias for Beers)

• b1.name is just another name to refer to name

• In the subquery, with b1 fixed (as a variable outside the subquery):

We get the tuples (name, manf) with:

manf = b1.manf & name ̸= b1.name

• Scoping rule: To refer to external Beers in the sub-query,
give to the external tuple a variable (b1 in this example)

• A subquery that refers to values from a surrounding query is
called a correlated sub-query

• Exercise: Express the query in RC and RA
60 / 63



• ANY and ALL behave as existential and universal quantifiers,
respectively

• Beware: In English, “any” and “all” sometimes act as
synonyms

For example, “I am fatter than any of you” vs. “I am fatter
than all of you” Not in SQL!

• They can be used to express numerical maxima and minima

“A value is a maximum if all values are not higher”

• Example: Find the beers sold for the highest price

Sells(bar, beer, price)
SELECT beer

FROM Sells

WHERE price >= ALL(SELECT price

FROM Sells);

(the sub-query returns real numbers)

• Exercise: Find the beers not sold for the lowest price
(use ANY)

61 / 63



• Bank Example: Schema:

Branch(branch-name, branch-city, assets)

Customer(customer-name, customer-street, customer-city)

Account(branch-name, account#, balance)

Depositor(customer-name, account#)

Loan(branch-name, loan#, amount)

Borrower(customer-name, loan#)

• Example 1: Find all customers who have both an account and a loan at
the bank

SELECT customer-name

FROM Borrower

WHERE customer-name IN (SELECT customer-name

FROM Depositor);

• Example 2: Find all customers who have a loan but not an account at
the bank

SELECT customer-name

FROM Borrower

WHERE customer-name NOT IN (SELECT customer-name

FROM Depositor);

• Example 3: Find the customers at the “First Street” branch with the
highest account balance at that branch

SELECT customer-name

FROM Depositor, Account

WHERE Depositor.account#=Account.account AND

branch-name= ’First Street’ AND

Account.balance >= ALL

(SELECT balance

FROM Account

WHERE branch-name=’First Street’);

62 / 63



• Union, Intersection, Difference:

• One can bring RA operators explicitly into SQL

UNION, INTERSECT as usual

EXCEPT for the difference of the two relations

• They require a shared schema

• Example: Find the drinkers and beers such that the drinker
likes the beer and frequents a bar that serves it

Likes(drinker, beer) Sells(bar, beer, price)
Frequents(drinker, bar)

(SELECT * FROM Likes)

INTERSECT

(SELECT drinker, beer

FROM Sells, Frequents

WHERE Frequents.bar = Sells.bar );

(a way to pick tuples from LIKES
with conditions coming from other relations)

(selection of drinkers that frequent a bar where
those beers are served)

• In SELECT: A join between Sells and Frequents, and a
projection over drinker and beer (so, same schema as LIKES)

• Exercise: Solve it without INTERSECT

63 / 63


