
Queries: Interlude on Extensions

• We just saw that some natural queries are not expressible in
RC or RA

Such an example was the Transitive Closure

• Sometimes SQL allows to express queries that are not
expressible in RC or RA

This is the case of the TC (as an SQL view, coming ...)

• We will analyze some of those query extensions in the light of
RC and RA

Coming back to SQL after that ...

• We will (re)visit:

1. Compositionality

2. Safe queries

3. Duplicates

4. Aggregate queries

64 / 92

• Compositionality:

• Query evaluation (QE) is compositional

• The truth value of a query on a DB depends on the truth
values of its components (sub-queries)

This is used to provide a semantics to QE, and to design/use
compositional algorithms for QE

• Example: Names and manufacturer of beers Fred likes (see page 58)

Beers(name, manf) Likes(drinker, beer)

• In RC: Q(x , y) : (Beers(x , y)︸ ︷︷ ︸
Q1(x,y)

∧ Likes(fred, x)︸ ︷︷ ︸
Q2(x)

)

• For an instance D, ⟨a, b⟩ is an answer to Q in D iff
- ⟨a, b⟩ is an answer to Q1 in D, and
- ⟨a⟩ is an answer to Q2 in D

• Similarly for the whole of RC and SQL (based on Predicate Logic)

65 / 92

• Safe Queries:

• Me mentioned that in RA there is only Difference (∖)

As a relative complement; relative to another given relation

Or relative to a virtual relation already defined by a (sub)query

• There is no absolute complement

The complement of a relation is considered to be meaningless

One would have to peek inside the infinite and unspecified
data domain

• Difference takes the form of EXCEPT in SQL

• For RC to be in line with RA, consider only safe queries

Safe with respect to the use of negation (¬)

It is with negation that we capture RA’s Difference:

Q(x , y) : Beers1(x , y) ∧ ¬Beers2(x , y)
This is perfectly fine ...

66 / 92

• However, this is not fine

Q1(x , y) : ¬Beers(x , y)
“beeers (or anything) that are not in table Beers”

• No way to know without looking outside the table ...

Not a safe query, not part of RC

(but O.K. as a formula of Predicate Logic)

Not expressible or acceptable in SQL either

• Another example: Q2(y) : ∀x(Beers(x , y))
“manufactures that make all beers (or anything)”

We would have to go outside the table to know what are “all”

Not safe, not part of RC, not acceptable in SQL

• Notice the hidden negation: ∀xBeers(x , y) ≡ ¬∃¬Beers(x , y)

• There is a syntactic characterization of safe queries

Just be alert and careful ...
67 / 92

• Duplicates:

• Example:
WINE W# GRAPE VINTAGE PERCENTAGE QUALITY

100 Volnay 1979 12.7 Good
110 Chablis 1980 11.8 Average
120 Tokay 1981 12.1 Excellent
130 Chenas 1979 12.0 Good
140 Volnay 1980 11.9 Average

Projection query: Π
VINTAGE,QUALITY

YEAR VINTAGE QUALITY

1979 Good
1980 Average
1981 Excellent

• Some tuples in the query answer have different origins, i.e.
same projection of different tuples

For example, ⟨1979,Good⟩ (two different “provenances”)

• The set-theoretic semantics of RA and RC do not capture the
“duplicates”

The answer is the set represented as table YEAR

• We could think of representing and collecting duplicates

In bags or multisets: (order does not matter)
YEAR = {{ ⟨1979,Good⟩, ⟨1979,Good⟩, ⟨1980,Average⟩, ⟨1980,Average⟩, ⟨1981,Excellent⟩ }}

68 / 92

• Exercise: Find the multiset answer to the join of the tables
through GRAPE plus some extra projection

WINE GRAPE VINTAGE QUALITY

Chenas 1977 Good
Chenas 1980 Excellent
Chablis 1977 Good
Chablis 1978 Bad
Volnay 1980 Average

LOCATION GRAPE AREA AVG-QUALITY

Chenas Beaujolais Good
Chablis Bourgogne Average
Chablis California Bad

• One could extend the semantics of RA and RC to deal with-
and represent duplicates

• SQL does support duplicates and multiset semantics (coming)

• To “deduplicate” one could introduce tuple identifiers, as a
“surrogate key”

WINE GRAPE VINTAGE QUALITY

Chenas 1977 Good
Chenas 1980 Excellent
Chenas 1977 Good
Chablis 1977 Good
Chablis 1978 Bad
Volnay 1980 Average
Chablis 1978 Bad

WINE TID GRAPE VINTAGE QUALITY

1 Chenas 1977 Good
2 Chenas 1980 Excellent
3 Chenas 1977 Good
4 Chablis 1977 Good
5 Chablis 1978 Bad
6 Volnay 1980 Average
7 Chablis 1978 Bad

69 / 92

• Aggregations:

• Example: Sells(bar,beer,price) bar beer price
Joe’s Bud 5
Sue’s Miller 6
Leo’s Duvel 8
Sue’s Duvel 6
Roe’s Miller 7

• “Average price of a beer at Sue’s Bar?”

“How many different beers does Leo’s Bar sells?”

“What’s the maximum price for Miller?”

“How much tasting every beer at Joe’s Bar?

• Some of these queries cannot be expressed in RC or RA

• There is not counting in RC; nor arithmetic operations

• SQL does offer support for this kind of queries

Going beyond RC and RA (coming)

70 / 92

Back to SQL: Extensions

• Multi-Set Semantics:

• A relation constructed with SQL is not really a set, but a bag

• A bag or multiset may contain a tuple more than once

The tuples in it have no specific order (not a list)

• Example: {1; 2; 1; 3} (or {{1, 2, 1, 3}}) is a bag, not a set

• BAG UNION: The number of times an element appears has
to be considered

• Example: {1; 2; 1} ∪ {1; 2; 3} = {1; 1; 1; 2; 2; 3}

• BAG INTERSECTION: Considers the smallest number of
times the element appears in each bag

• Example: {1; 2; 1} ∩ {1; 2; 3} = {1; 2}

71 / 92

• BAG DIFFERENCE: Subtract the number of times the
element appears in each bag

• Example: {1; 2; 1}∖ {1; 2; 3} = {1}
{1; 2; 3}∖ {1; 2; 1} = {3}

• Algebraic laws for bags differ from those for sets

Some are shared: Commutative and Associativity

• Distributivity is not:

Example: R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T) true for sets

Not for bags: R = S = T = {1}

S ∪ T = {1; 1} R ∩ (S ∪ T) = {1}
R ∩ S = R ∩ T = {1}
(R ∩ S) ∪ (R ∩ T) = {1; 1} ̸= {1}

72 / 92

• SQL Enforcing Set/Bag Semantics:

• Default is bag for select-from-where

It takes time to find repeated answers (tuples)

• Set semantics enforced with: DISTINCT after SELECT

If it is worth doing ...

• Example: Find the different prices charged for beers

Sells(bar, beer, price)

SELECT DISTINCT price

FROM Sells;

• Default is set for Union, Intersection, and Difference

Bag semantics enforced with: ALL

After UNION, INTERSECT or EXCEPT

73 / 92

• Example: (bank example, see page 62)

The same queries using set operators

1. Find all customers who have both an account and a loan at
the bank

(SELECT customer-name FROM Depositor)

INTERSECT

(SELECT customer-name FROM Borrower);

No duplicates

2. Find all customers who have a loan but not an account at the
bank

(SELECT customer-name FROM Borrower)

EXCEPT

(SELECT customer-name FROM Depositor) ;

No duplicates

The relational difference operator provides safe negation

74 / 92

• SQL Aggregation:

• Aggregation operators do not belong to RC or RA

They extend them

• We find: SUM, AVG, MIN, MAX, COUNT

They apply to attributes (columns)

• However, MIN, MAX can be defined using RA/RC (cf. page 61)

RA = RC
SUM
AVG
COUNT

MAX
MIN

RA = RCDatalog
Stratified
Datalog

recursion,
no negation/difference

Coming:

RA = RC
SUM
AVG
COUNT

MAX
MIN

RA = RCDatalog
Stratified
Datalog

recursion,
no negation/difference

• COUNT(⋆) also applies to tuples, including duplicates

• Use them in lists following SELECT

75 / 92

• Example: Find the average price of Bud

Sells(bar, beer, price)

SELECT AVG(price)

FROM Sells

WHERE beer = ’Bud’;

• Every tuple that sells Bud is considered

• If there are duplicates, the same bar will be considered more
than once

• Duplicates can be eliminated before aggregation

Example: Number of different prices at which Bud is sold

Sells(bar, beer, price)

SELECT COUNT(DISTINCT price)

FROM Sells

WHERE beer = ’Bud’;

• DISTINCT can be used with any aggregation, but it is
generally used with COUNT

76 / 92

• Grouping:

• GROUP BY follows “select-from-where” with a list of
attributes

• The relation resulting with the FROM and WHERE clauses is
grouped according to the values of those attributes

• Aggregations take place only within each group

• Example: Find the average sales price for each beer

Sells(bar, beer, price)

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer;

miller joe’s miller 5.0
pete’s miller 7.0
riviera miller 5.5

coors joe’s coors 5.5
natan coors 7.5
riviera coors 5.0

bud joe’s bud 5.0
leo’s bud 7.0

5.83

6.00

5.83

leo’s loewen 7.0
joe’s loewen 9.0

bud 6.00

loewen 8.00

Beer AVG(price)

based on these 4 implicit groups
(not returned in answer)

77 / 92

• Example: Find, for each drinker, the average price of Bud at
the bars he/she frequents

Sells(bar, beer, price) Frequents(drinker, bar)

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = ’Bud’ AND Frequents.bar = Sells.bar

GROUP BY drinker;

• Notice the grouping occurring after applying the join
(Frequents.bar = Sells.bar) and selecting (beer = ’Bud’)

• When rows (tuples) are grouped, one line of output is
produced for each group

• Query above without the GROUP BY would have unclear
semantics

Average price per drinker or overall?

78 / 92

• Restriction on SELECT Lists With Aggregation:

When aggregation is used, each element of a SELECT clause
must either be aggregated or appear in a group-by clause
(if a WHERE clause is present)

• The previous example is fine:

SELECT drinker, AVG(price)

FROM Frequents, Sells

WHERE beer = ’Bud’ AND Frequents.bar = Sells.bar

GROUP BY drinker;

SELECT clause has two attributes: drinker and price

The former is in the GROUP BY, and the latter in AVG

• What about finding the bar that sells Bud the cheapest?

Using the MIN aggregate function

79 / 92

• Example: Find the bar that sells Bud the cheapest

Sells(bar, beer, price)

• What about this?

SELECT bar, MIN(price)

FROM Sells

WHERE beer = ’Bud’;

• It is illegal in most SQL implementations

• Compare with aggregations on page 76

• Alternative:

SELECT bar

FROM Sells

WHERE beer = ’Bud’ AND price =(

SELECT MIN(price)

FROM SELLS

WHERE beer = ’Bud’)

• Exercise: Express this query without using MIN or MAX
80 / 92

• HAVING Clauses:

• HAVING clauses are selections on groups

Just as WHERE clauses are selections on tuples

• The HAVING condition deletes groups

Those for which the condition after the HAVING is false

• Condition in HAVING can use the tuple variables (alias for a
relation) or relations in the FROM and their attributes

Just like in the WHERE clause

But the tuple variables range only over the group

• The same applies to aggregations

They can be used in the condition

But they apply to the group

• Condition in HAVING applies locally to each group

81 / 92

• Example: Find the average price of those beers that are either
served in at least 3 bars or manufactured by Anheuser-Busch

Beers(name, manf) Sells(bar, beer, price)

SELECT beer, AVG(price)

FROM Sells

GROUP BY beer

HAVING COUNT(*) >= 3 OR beer IN (

SELECT name

FROM Beers

WHERE manf = ’Anheuser-Busch’);

• COUNT(*) counts the whole tuple
(within a group)

The AVG aggregation applies to a
single attribute (column)

(Bud is made by AB)

miller joe’s miller 5.0
pete’s miller 7.0
riviera miller 5.5

coors joe’s coors 5.5
natan coors 7.0
riviera coors 5.0

bud joe’s bud 5.0
leo’s bud 7.0

avg = 5.83

• With condition “HAVING COUNT(*) >= 3”
only, last group would be ignored

82 / 92

