
• Database Modifications:

• Modification means insert, delete or update (change of
attribute values)

• Tuple Insertion: “INSERT INTO Relation VALUES (list of values)”

Inserts the tuple = list of values

• Values associated with attributes in the order in which they
were declared

Alternative, give list of attributes as arguments of the relation

If any of them is omitted, default value will be used, e.g. NULL

• Example: Insert the fact that Sally likes Bud

Likes(drinker, beer)

INSERT INTO Likes(drinker, beer)

VALUES(’Sally’, ’Bud’);

83 / 102

• Insertion of the Result of a Query:

INSERT INTO Relation (SubQuery)

• Example: Create a (unary) table of all Sally’s buddies, i.e.,
the people who frequent bars that Sally also frequents

Frequents(drinker, bar)

CREATE TABLE Buddies(

name char(30)

);

INSERT INTO Buddies

(SELECT DISTINCT d2.drinker

FROM Frequents d1, Frequents d2

WHERE d1.drinker = ’Sally’ AND

d2.drinker <> ’Sally’ AND d1.bar = d2.bar);

84 / 102

• Deletions: “DELETE FROM Relation WHERE Condition”

Deletes all tuples satisfying the condition from the named
relation

• Example: Sally no longer likes Bud

Likes(drinker, beer)

DELETE FROM Likes

WHERE drinker = ’Sally’ AND beer = ’Bud’;

• Example: Make the Likes relation empty

DELETE FROM Likes;

85 / 102

• Example: Delete all beers for which there is another beer by
the same manufacturer

Beers(name, manf)

DELETE FROM Beers b

WHERE EXISTS

(SELECT name

FROM Beers

WHERE manf = b.manf AND name <> b.name);

• Tuples of the form (name, manf) are deleted from Beers

Or better: Tuples of the form (b.name, b.manf) are
deleted from b

• In last line: manf and name correspond to Beers

b.manf and b.name are external variables

• Subquery evaluated once for each row of b

86 / 102

• Be careful with the deletion semantics

• What if AB makes Bud and Bud Lite (only)?

Does the deletion of Bud make BudLite not satisfy the
condition?

• The SQL semantics says that both should be deleted

• SQL Semantics: All conditions about modifications are
evaluated by the system before any changes are made

• In the previous example, both beers are first identified as
targets

Next, both are deleted

87 / 102

• Updates: “UPDATE Relation SET list of assignments WHERE Condition”

• To change values in existing tuples in the relation

• Example: Drinker Fred’s phone number is now 555-1212

Drinkers(name, addr, phone)

UPDATE Drinkers

SET phone = ’555-1212’

WHERE name = ’Fred’;

• Example: Make $4 the maximum price for beer

• Updates many tuples at once

Sells(bar, beer, price)

UPDATE Sells

SET price = 4.00

WHERE price > 4.00;

88 / 102

• NULL Values: Can be used in place of (as) a value for a
tuple’s attribute

• Many reasons why a NULL value is present

“missing value”, “value inappropriate”, “there exists a value
but it is not available”, “value doesn’t exist”, “default
value”, etc

• The semantics is not quite clear

Correspondingly, the same applies to the operational semantics

• Among other issues:

- If we do an operation of a NULL value with any other value
(NULL or not), we get NULL

- If a NULL is compared with another value (NULL or not) in a
condition, we obtain the third truth value: UNKNOWN

• A query only produces tuples if the WHERE-condition evaluates
to TRUE (UNKNOWN is not sufficient)

89 / 102

• Example: bar beer price

Joe’s bar Bud NULL

SELECT bar

FROM Sells

WHERE price < 2.00 OR price >= 2.00;

• Although “tautological”, the two conditions in the disjunction
evaluate to UNKNOWN

Therefore, the condition evaluates to UNKNOWN

Joe’s bar is not returned

• The combination of the classical values of truth, TRUE and
FALSE, with UNKNOWN follow its own logic, a three-valued logic

There are many more issues with NULL

• The SQL Standard is ambiguous/incomplete in this regard

• Different DBMSs may have differences at some point in their
operational semantics

90 / 102

• NULL Values and Joins:

• Issues with Natural Join: WINE 1
GRAPE

LOCATION?

WINE GRAPE VINTAGE QUALITY

Chenas 1977 Good
NULL 1980 Excellent
Chablis 1977 Good
Chablis 1978 Bad
Volnay 1980 Average

LOCATION GRAPE AREA AVG-QUALITY

Chenas Beaujolais Good
NULL Bourgogne Average

Zinfandel California Bad

• Tuple ⟨NULL, 1980, Excellent, Bourgogne, Average⟩ NOT returned

• ⟨Chenas, 1977, Good, Bourgogne, Average⟩ NOT returned either

Even when NULL could stand for Chenas

• The null values also have an application with Outer Joins

• Outer Join: Operation to report on the tuples that do not
match up

In the context of joins, a tuple is “dangling” if it does not pair
up with any other tuple

91 / 102

• Example: R A B

8 2

3 4

S B C

2 5

2 6

7 8

• Here tuple (3, 4) of R, and (7, 8) of S are dangling

• Through the natural join they get lost

• A full outer join of R and S does not lose them

It includes them filling with NULL

R −
1
− S A B C

8 2 5

8 2 6

3 4 NULL

NULL 7 8

• There are also “left and right outer joins”

Return third and fourth tuples, resp.

• Can be seen as extension of RA

• Different ways of specifying outer joins in SQL
92 / 102

• Joins in SQL:

• Joins can be specified with or w/o a select-from-where

clause

• Can be used to define a relation in FROM clause (cf. 3 below)

• R NATURAL JOIN S: Simplest join

A cross product requiring attributes in common to be equal

Attributes in common shown only once in the result

• Examples: (relative to preceding slide)

1) (Select A,B FROM R)

NATURAL JOIN

(Select B,C FROM S);

2) R NATURAL JOIN S;

3) Select A,B,C

FROM R NATURAL JOIN S

All of them produce the same result:

R 1 S A B C

8 2 5

8 2 6

93 / 102

• R JOIN S ON condition

Do cross product, and choose rows as specified by ON

• Example:

4) SELECT *

FROM R JOIN S ON

R.B = S.B

Result: R 1 S A B C

8 2 5

8 2 6

• This query can also be written w/o an explicit join:

5) SELECT *

FROM R, S

WHERE R.B =S.B;

• 4) and 5) produce same result as the natural join

94 / 102

• Conditions can be more complex than that for natural join

• This one compares other attributes:

6) SELECT R.B, R.A, S.B

FROM R JOIN S ON

R.A = S.C

Result: R.B R.A S.B

2 8 7

• R CROSS JOIN S: the cartesian product

7) SELECT *

FROM R CROSS JOIN S

Result: R.A R.B S.B S.C

8 2 2 5

8 2 2 6

8 2 7 8

3 4 2 5

3 4 2 6

3 4 7 8

• This query can also be written without an explicit join:
8) SELECT *

FROM R, S

95 / 102

• R OUTER JOIN S: Non-matching tuples added with NULLs

• Options:

- NATURAL optional at the beginning

- ON condition optional at the end

- LEFT, RIGHT, or FULL optional before the OUTER

- LEFT : only add the dangling tuples of R

- RIGHT : only add the dangling tuples of S

• Example:

9) SELECT *

FROM R LEFT OUTER JOIN S

ON R.B = S.B;

Result: A B C

8 2 5

8 2 6

3 4 NULL

96 / 102

• The outer join is useful and important:

• A view is defined through a query, e.g. V := R 1 S

• User, may want to (or only) have access to the data through
the view

• In particular, retrieving, e.g. the data of R through the view

• If is is not an outer join, then the user would be missing
information about R (and S)

• Important topics in DBs: Queries and updates using views

• In Oracle: Outer join can be specified in select-from-where

clause

By adding a (+) on one of the sides of the equality
condition

97 / 102

• Example: Give a list of all the beers sold in Joe’s Bar, with
the manufacturers

Include the names of the beers even if the name of the
manufacturer is unknown

Beers(name, manf) Sells(bar, beer, price)

SELECT beer, manf

FROM Sells, Beers

WHERE bar = ’Joe’’s Bar’ AND beer = name(+);

• A join of two tables

• Here, beers (i.e. names) from table Beers will also be
returned

They may not appear in table Sells

In that case, the manufacturer column (manf) of the result is
filled in with a NULL when its value is unknown

98 / 102

• Views:

• An expression that describes a table without creating that
table in the database (without physical materialization)

• The view is defined in terms of base (material) tables

• Creates a virtual table, defined by an expression

• The expression that creates the views is generally a query

• Useful when a query is going to be used frequently

• A view can be conceived as query with a name

• View definition form is:

CREATE VIEW < name > AS

< query >;

99 / 102

• Example: View CanDrink is the set of drinker-beer pairs
such that the drinker frequents at least one bar that serves
the beer CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;

• This is a “conjunctive view” or an SPJ view: defined by a
conjunctive query, i.e. expressed using joins, selections and
projections

• A virtual table with two attributes (inherited from base tables)

• Querying (with) Views: Treat the view as if it were a
materialized relation (can also be combined with other tables/views)

Example: What beers can Sally drink?

SELECT beer

FROM CanDrink

WHERE drinker = ’Sally’;

• This query can be posed after creating the view

100 / 102

• The view definition and its extension will survive during the
interaction session with the DB

• After that, everything will disappear

• Unless the user decides to materialize the view

Creating a new relation schema and storing its contents

• What about updates during a session?

• Updates on base tables used to define the view?

• Example: Sells(bar, beer, price) Frequents(drinker, bar)

CREATE VIEW CanDrink AS

SELECT drinker, beer

FROM Frequents, Sells

WHERE Frequents.bar = Sells.bar;

Sells bar beer price

Joe’s Bud 5
Sue’s Miller 6
Leo’s Duvel 8
Sue’s Duvel 6
Roe’s Miller 7

Frequents drinker bar

pete Joe’s
john Sue’s
john Leo’s
ric Sue’s

mary Roe’s
CanDrink drinker beer

pete Bud
john Miller
john Duvel
ric Miller
ric Duvel

mary Miller

• Relevant updates: May change view contents

- Insertions and deletions on Sells, Frequents
- All changes of attribute values (except for those in price)

101 / 102

• Exercise: Show how you would materialize the CanDrink view

• Virtual extension of a view must be kept up-to-date during a
session

Synchronized with changes on underlying base tables

• The is the View Maintenance Problem

• Very similar (and related) to the IC Maintenance Problem

Similar issues and techniques

• A brutal, undesirable approach to keep the view up-to-date:

Every time a relevant update on base tables is performed,
recompute the full view contents from scratch

• Better: Apply incremental view maintenance methods, as the
base table undergo updates

Again, very similar methods for IC maintenance ...

102 / 102

