s UNIVERSIDAD
& &) SAN SEBASTIAN

Data Management and
Databases

Chapter 4: Recursion, Datalog,
Active Rules

Leopoldo Bertossi
Universidad San Sebastian

Facultad de Ingenieria y Ciencias

Recursion and Query Languages

e The “blocks world”:

e We can represent this blocks world
as a RDB

e We can describe and query the piso
“blocks world” with RC
(a fragment of Predicate Logic)

e Introduce Relational Predicates: Block(-), On(-,-), Color(-,-),

LeftOf (-, -)
Block On Color LeftOf
a c b a rojo a | d
b b a b verde d | e
c a piSO < amarillo (for immediate left)
d d | piso d | purpura
e e | piso e azul

base tables

2/42

We can use RC to define new relational predicates

What we usually call a view definition in RDBs

Example: Define the predicate (view) ClearBlock(-)

Intended to apply to those blocks that are clear, with nothing
on top
Vx(ClearBlock(x) :— (Block(x) A—=3yOn(y,x))) (**)

A new predicate symbol introduced in the language with its
definition: the query on the RHS
On the LHS, the newly defined predicate is introduced

On the RHS side we have already available relations

Now the DB can be used together with the formula in (**)

We obtain {ClearBlock(c), ClearBlock(d), ClearBlock(e)} as
possibly virtual extension

No matter what are the contents of the base tables, the view
definition will always give the intended contents

3/42

Now we want to define the predicate (view) Above(-,-)

To be true when an object is above another on the same
stack, maybe with other objects in between

For example, block ¢ should be above block a

Can we use RC to define this view?)

A difficulty: We cannot bound a priori
the number of vertical dots

Above

Above

A recursive definition seems to be needed

Notice that Above is meant to be the o
Transitive Closure (TC) of On

Are we not clever enough to come up with a definition in RC?

Theorem: It is not possible to define in Predicate Logic the
TCof a binary relation (the smallest transitive binary relation that includes the given one)

Then, the same applies to RC and RA (the latter would need

unbounded iteration)
4/42

Datalog

e Datalog is a logic-based language that extends (part of) RC
with recursion

e As a "Datalog program”, used to define queries and views on
top of relational tables

e Proposed and investigated in the mid 80s

e Constructs of Datalog found their way into commercial
RDBMSs (coming)

e After some dormant period, it is back, healthy and strong

As the basis for many applications inside and outside RDBs
e Can be seen as enabling a “deductive” extension of RDBS
e There are newer “ontological’ extensions of Datalog

5/42

Example: The DB of the blocks world

The view RightOf, for immediate right, defined by a
Datalog rule:

RightOf (x,y) «— LeftOf(y, x)
Variables are all implicitly universally quantified (V)

Notation from Logic Programming tradition (Prolog)
What is being defined in on the LHS (the “head” of the rule)

It is an implication, from right to left, but applied as- and
with the semantics of a double implication

RightOf (e, d) becomes true, because the instantiated “body
of the rule”, LeftOf(d,e), is true in the underlying DB

A head is true only if the corresponding body is true (an “iff then)

6/42

EXa m ple: Salaries Name Salary Positions Name Position

J.Page 5K J.Page manager

V.Smith 3K V.Smith secretary

M.Stowe 7K M.Stowe manager
Data base D K.Stein 4K K.Stein accountant

Datalog rule defining view TopManager, managers who make
more than 4K

TopManager(x) < Positions(x,z) , Salaries(x,y) , z = manager , y > 4K

Here, comma stands for A, and the variables that appear only

in the body are implicitly existentially quantified

So, think of the rule as: TopManager(x) « 3z3y(Positions(x,z) - -

We can compute extension of the view by forward-propagating

what is true on the RHS to the LHS, and nothing more:
TopManager[D] = {(JPage), <I\/l5towe>} (the extension of the view on D)

“nothing more": a form of minimization (more coming ...)

For V.Smith the implication is true (body is false), but it is not collected

7/42

It is common to list the contents of the underlying DB as a
set of facts (or ground atoms) (as a part of the program)
TopManager(x) <— Positions(x, z), Salaries(x,y), - -
Salaries(J.Page, 5, 000) — (usually omitted, true w/o conditions)
Positions(K .Stein, accountant).
The program can be seen as an extension of the RDB

The RDB or, equivalently, the set of facts is called the
extensional database (EDB) of the program

The rules form the intentional database (IDB), and can be
seen as a set of view definitions or queries

TopManager(x) < Positions(x,z), Salaries(x, y),z = manager, y > 4K

what's being defined query to virtually extended DB

Exercise: Actually, Datalog not needed to define the views
seen so far: Define them in RC and RA and SQL

8/42

Example: Relational DB D = {Arc(b, c), Path(b, b), Path(c, c)}

This corresponds to: T Path

E1l

E2

Arc
b c

For most of this chapter we will

represent RDBs as sets of ground atoms (tuples), as above

Datalog program [1 on top of D:

Path(x,z) < Arc(x,y), Path(y,z) *)

recursive “call”

A recursive definition of Path

b
c

C

Actually, a recursive extension of Path (it already has atoms in D)

This is the “intended meaning” of the program

It produces a virtual extension of D:
Path(b,c) < Arc(b,c), Path(c,c)
—_——— —
v v

MN[D] := {Arc(b,c), Path(b, b), Path(c, c), Path(b,c)} (the intended model)

Path’ | E1 | E2
b b
c c
b c

9/42

What is the semantics of a Datalog program?

As an extension of an EDB
What world is N describing?
Is there a precisely defined intended model for 17

We will give a “model-based” semantics to Datalog programs

In terms of the intended models of the program

In the case of Datalog, the potential, candidate models will be
sets of ground atoms

That is, RDBs as in the previous example

For illustration, the semantics of 1 above?

10/42

Example: (continued) Given D and [1

Herbrand Universe: H := {b,c}, formed by all the constants

Herbrand Base: in D or T

HB(M) := {Arc(b, b), Arc(c, c), Arc(b, c), Arc(c, b), Path(b, b), Path(c, c),
Path(b, c), Path(c, b)}

Instantiate all relational predicates of D or 1 on H, in all

possible ways

HB contains all the possible ground atoms that can be built
with the program’s language (considering D as a part of it)

Each subset of HB is a candidate to be an intended model of
nubD

28 subsets, each of them looking like a RDB
What conditions should intended models satisfy?

11/42

e Given MU D and S C HB, what conditions should S satisfy?
1. DCS: A model must extend the given EDB (the given facts)
2. Each instantiated rule of Il must be true in S (as a usual implication)

When the instantiated body becomes true in S, the head must
be true in S

Equivalently, when all the atoms in the body belong to S, the
atom in the head must be in S as well

3. Maybe more?
e By definition, a model satisfies conditions 1. and 2. above
e Let us check possible candidates ...
- 51 = {Arc(b, c), Path(c, c), Path(c, b)}
It does not satisfy 1.: D Z S discarded!
- S, = {Arc(b, c), Path(b, b), Path(c, c), Path(c, b)}
D C S,, but 2. not satisfied:

Instantiated rule: Path(b,c) « Arc(b,c), Path(c,c) discarded!
—— ——— ——
X v v

12/42

- 53 = {Arc(b, ¢), Path(b, b), Path(c, c), Path(c, b), Path(b, c)}
D C S3, what about 2.7

Instantiated rule: Path(b,c) « Arc(b,c), Path(c,c)
———r ——— ——
v v v
What about the “unjustified” presence of Path(c, b)?
It does not violate any implication, but is not implied by any

Actually, all instantiated rules are true in Ss
S3 is a model! not discarded! (yet)

Notice: Path(c,b) « Arc(c,b), Path(b,b)
—— —_——— ——
v X v

X

The implication is still true: it has a false body

13/42

- S4 = {Arc(b, c), Path(b, b), Path(c, c), Path(b, c)}
D C S, what about 2.7

(same as on page 9)

Instantiated rule: Path(b,c) « Arc(b,c), Path(c,c)
—_——— —_—— ——
v v v

Easy to check that S, is a model!

e Which of S3, S4 is better (or preferred)?

14/42

e Given MU D and S C HB, what conditions should satisfy to
be a preferred (or intended) model?
1. As before
2. As before

3. S must be minimal model, i.e. a model, and no proper subset
can be a model
e So, an intended model must:

- Contain D
- Make true all the possible instantiated rules:

Path(b, b) < Arc(b, b), Path(b, b)
Path(b, c) Arc(b, b), Path(b, c)

Path(c, c)

«
—
Path(b, b) <
P
Arc(b, c) —

- Be minimal
e The program has many other models (find/check them!)

e How many of them are minimal?
15/42

Theorem: A Datalog program 1 U D has exactly one minimal
model Denoted: M(IMU D)

By definition, the semantics of MU D is given by M(M U D)
What is true w.r.t. to MU D is exactly what is true in M(I1)

We can say that the program [N U D describes the world
MM u D)

Minimality is what will make recursive definitions (and TC)
work!

Minimality is consistent with remark at the bottom of page 7

In the previous example, (D) turns out to be the single
minimal model

How can we compute the minimal model?

16 /42

Exercise: Datalog program I with D = {P(a), Q(b)}
R(x) < P(x)

Verify that M; = {P(a), Q(b), R(a), R(b)} is a model
And also that it is not minimal

Verify that the HB itself is (always) a model
Verify the following:

o MOdeIS (among others) Non-Models: (idem)

* {P(a),Q(b), R(a), R(b), P(b)} o {P(a), R(a), R(b), P(b)}

o {P(a), Q(b),R(a), R(b)} o {P(a), Q(b), R(b)}

e Mo = {P(a), Q(b), R(a)} e {Q(b),R(a), R(b)}
Check: M; is a model, but R(b) is “unjustified”

My is the minimal model

17/42

Finding the minimal model by comparison w.r.t. set inclusion
with other models is not efficient

Number of potential models in exponential is the size of HB
There is a better, actually efficient alternative

Theorem: Given MU D, the minimal model M(MU D) can
be iteratively computed by bottom-up forward-propagation
from the underlying EDB D

We illustrate the algorithm by means of examples

18/42

Example: Datalog program 1 with EDB D

That two rules share variables does not R(x) < Px)
matter (they are implicitly quantified) P(X) < (?(X7 y)
We could replace the second one by Q(a,a) <«
P Q(z,
(2) + Q(z,y) Q(a,b) «

Computation of M(MU D)):

Propagate the facts through the
rules, from right to left (forward-propagation), iteratively:

1. Q(aa), Q(a,b) € M(NMUD)
2. P(a) € M(NuD)
3. R(a) € M(NuUD)
A fix-point has been reached; nothing new is obtained
M(n U D) = {Q(av a)v Q(av b)7 ’D(a)7 R(a)}
This is general, even with recursion

The minimal model of a Datalog program can be obtained as
the fix-point of the bottom-up evaluation we just described

19/42

Example: Datalog program [T defining two intentional
(virtual) relations on top of an EDB D

P(x,y) <+— Q(x,y),R(x,z,v) R

B

Qlx,y) = S(xu),M(u,y)

a
d

b
c

Create extensions for predicates P and Q (if wanted):
- Propagate data from EDB to the RHSs of the rules

- Next, to the LHSs of the rules

Evaluate RHS of Q's rule posing RA query: Mac(S Xg M)

Propagate tuples to Q's extension: Q = {(a,c),(a,e),(d,e)}

Compute P’s extension with body query: Mac(Q Xa R)

A minimal way of making implications true

Making true what is forced to be true

pP= {(‘37 C)7 (37 e)}

Inserting tuples with a justification (the truth of a body)

20/42

We can also pose a query to the extended DB:
Ans(x) <+— P(x,y), Q(x,z)
P(x,y) +— Q(x,y),R(x,z,v)
Q(x,y) <+— S(x,u),M(u,y)

A program extended with a query
It is computed as before (an additional iteration step)

We already have the extensions:
Q@ ={(a;c),(a,e),(d,e)} and P={(a c) (ae)}

Evaluating the first rule, we obtain the answer: Ans = {(a)}

21/42

Example: A Datalog program defining three intentional
predicates:

Person(x) < Parent(x,y)
Person(y) < Parent(x,y)
Grandparent(x,z) < Parent(x,y), Parent(y, z)
Ancestor(y, X) — Parent(y, X) (base case of recursion)
Ancestor(y,x) < Ancestor(y, z), Parent(z, x)
On top of the EDB: —==T = c) \ e
juan pablo Parent
adam cain N
adam | abe N\
Propagate data from oo | cam AN \
pablo luis

S Ancestor Jy

right to left, creating

(virtual) extensions for intentional predicates

For Ancestor, apply first second last rule (base case)

Moving all the data from Parent into a partial extension:
Ancestor’ = {(juan, pablo), (adam, cain), (adam, abel), (eve, cain), (pablo, luis)}

Now, evaluate the body of the last recursive rule, i.e. the

query: I'IA,,CALC(Ancestor’ X Parent) (at this stage, a self-join of Parent)

22/42

