
Data Management and
Databases

Chapter 4: Recursion, Datalog,
Active Rules

Leopoldo Bertossi
Universidad San Sebastián

Facultad de Ingenieŕıa y Ciencias

Recursion and Query Languages

• The “blocks world”:
c

b

a d e
pis
o

__________________________________ppiso

• We can represent this blocks world
as a RDB

• We can describe and query the
“blocks world” with RC
(a fragment of Predicate Logic)

• Introduce Relational Predicates: Block(·), On(·, ·), Color(·, ·),
LeftOf (·, ·)

Block
a
b
c
d
e

On
c b
b a
a piso
d piso
e piso

Color
a rojo
b verde
c amarillo
d purpura
e azul

LeftOf
a d
d e

(for immediate left)

base tables

2 / 42

• We can use RC to define new relational predicates

What we usually call a view definition in RDBs

• Example: Define the predicate (view) ClearBlock(·)
Intended to apply to those blocks that are clear, with nothing
on top

∀x(ClearBlock(x) :←→ (Block(x) ∧ ¬∃yOn(y , x))) (**)

A new predicate symbol introduced in the language with its
definition: the query on the RHS

• On the LHS, the newly defined predicate is introduced

On the RHS side we have already available relations

• Now the DB can be used together with the formula in (**)

We obtain {ClearBlock(c),ClearBlock(d),ClearBlock(e)} as
possibly virtual extension

• No matter what are the contents of the base tables, the view
definition will always give the intended contents

3 / 42

• Now we want to define the predicate (view) Above(·, ·)
To be true when an object is above another on the same
stack, maybe with other objects in between

• For example, block c should be above block a

• Can we use RC to define this view?

.

.

.

y

z

x

Above

On

Above

• A difficulty: We cannot bound a priori
the number of vertical dots

• A recursive definition seems to be needed

• Notice that Above is meant to be the
Transitive Closure (TC) of On

• Are we not clever enough to come up with a definition in RC?

• Theorem: It is not possible to define in Predicate Logic the
TC of a binary relation (the smallest transitive binary relation that includes the given one)

• Then, the same applies to RC and RA (the latter would need

unbounded iteration)

4 / 42

Datalog

• Datalog is a logic-based language that extends (part of) RC
with recursion

• As a “Datalog program”, used to define queries and views on
top of relational tables

• Proposed and investigated in the mid 80s

• Constructs of Datalog found their way into commercial
RDBMSs (coming)

• After some dormant period, it is back, healthy and strong

As the basis for many applications inside and outside RDBs

• Can be seen as enabling a “deductive” extension of RDBS

• There are newer “ontological” extensions of Datalog

5 / 42

• Example: The DB of the blocks world

• The view RightOf , for immediate right, defined by a
Datalog rule:

RightOf (x , y) ←− LeftOf (y , x)

• Variables are all implicitly universally quantified (∀)

• Notation from Logic Programming tradition (Prolog)

What is being defined in on the LHS (the “head” of the rule)

• It is an implication, from right to left, but applied as- and
with the semantics of a double implication

• RightOf (e, d) becomes true, because the instantiated “body
of the rule”, LeftOf (d , e), is true in the underlying DB

• A head is true only if the corresponding body is true (an “iff” then)

6 / 42

• Example: Salaries Name Salary
J.Page 5K
V.Smith 3K
M.Stowe 7K
K.Stein 4K

Positions Name Position
J.Page manager
V.Smith secretary
M.Stowe manager
K.Stein accountant

Database D

• Datalog rule defining view TopManager , managers who make
more than 4K

TopManager(x) ← Positions(x , z) , Salaries(x , y) , z = manager , y > 4K

• Here, comma stands for ∧, and the variables that appear only
in the body are implicitly existentially quantified

So, think of the rule as: TopManager(x) ← ∃z∃y(Positions(x , z) · · ·

• We can compute extension of the view by forward-propagating
what is true on the RHS to the LHS, and nothing more:

TopManager [D] = {⟨J.Page⟩, ⟨M.Stowe⟩} (the extension of the view on D)

• “nothing more”: a form of minimization (more coming ...)

For V.Smith the implication is true (body is false), but it is not collected

7 / 42

• It is common to list the contents of the underlying DB as a
set of facts (or ground atoms) (as a part of the program)

TopManager(x) ←− Positions(x , z), Salaries(x , y), · · ·
Salaries(J.Page, 5 , 000) ← (usually omitted, true w/o conditions)

· · ·
Positions(K .Stein, accountant).

• The program can be seen as an extension of the RDB

• The RDB or, equivalently, the set of facts is called the
extensional database (EDB) of the program

• The rules form the intentional database (IDB), and can be
seen as a set of view definitions or queries

TopManager(x)︸ ︷︷ ︸
what’s being defined

← Positions(x , z), Salaries(x , y), z = manager , y > 4K︸ ︷︷ ︸
query to virtually extended DB

• Exercise: Actually, Datalog not needed to define the views
seen so far: Define them in RC and RA and SQL

8 / 42

• Example: Relational DB D = {Arc(b, c),Path(b, b),Path(c, c)}

This corresponds to: Arc V1 V2

b c

Path E1 E2

b b

c c• For most of this chapter we will
represent RDBs as sets of ground atoms (tuples), as above

• Datalog program Π on top of D:

Path(x , z) ← Arc(x , y), Path(y , z)︸ ︷︷ ︸
recursive “call”

(*)

• A recursive definition of Path

Actually, a recursive extension of Path (it already has atoms in D)

• This is the “intended meaning” of the program

• It produces a virtual extension of D: Path′ E1 E2

b b

c c

b c
Path(b, c) ← Arc(b, c)︸ ︷︷ ︸

√

, Path(c, c)︸ ︷︷ ︸
√

• Π[D] := {Arc(b, c),Path(b, b),Path(c, c),Path(b, c)} (the intended model)

9 / 42

• What is the semantics of a Datalog program?

As an extension of an EDB

• What world is Π describing?

• Is there a precisely defined intended model for Π?

• We will give a “model-based” semantics to Datalog programs

In terms of the intended models of the program

• In the case of Datalog, the potential, candidate models will be
sets of ground atoms

That is, RDBs as in the previous example

• For illustration, the semantics of Π above?

10 / 42

• Example: (continued) Given D and Π

• Herbrand Universe: H := {b, c}, formed by all the constants
in D or Π• Herbrand Base:

HB(Π) := {Arc(b, b),Arc(c, c),Arc(b, c),Arc(c, b),Path(b, b), Path(c, c),

Path(b, c),Path(c, b)}

Instantiate all relational predicates of D or Π on H, in all
possible ways

• HB contains all the possible ground atoms that can be built
with the program’s language (considering D as a part of it)

• Each subset of HB is a candidate to be an intended model of
Π ∪ D

28 subsets, each of them looking like a RDB

• What conditions should intended models satisfy?

11 / 42

• Given Π ∪ D and S ⊆ HB, what conditions should S satisfy?

1. D ⊆ S : A model must extend the given EDB (the given facts)

2. Each instantiated rule of Π must be true in S (as a usual implication)

When the instantiated body becomes true in S , the head must
be true in S

Equivalently, when all the atoms in the body belong to S , the
atom in the head must be in S as well

3. Maybe more?

• By definition, a model satisfies conditions 1. and 2. above

• Let us check possible candidates ...

- S1 = {Arc(b, c),Path(c, c),Path(c, b)}

It does not satisfy 1.: D ⊈ S1 discarded!

- S2 = {Arc(b, c),Path(b, b),Path(c, c),Path(c, b)}

D ⊆ S2, but 2. not satisfied:

Instantiated rule: Path(b, c)︸ ︷︷ ︸
×

← Arc(b, c)︸ ︷︷ ︸
√

, Path(c, c)︸ ︷︷ ︸
√

discarded!

12 / 42

- S3 = {Arc(b, c),Path(b, b),Path(c, c),Path(c, b),Path(b, c)}

D ⊆ S3, what about 2.?

Instantiated rule: Path(b, c)︸ ︷︷ ︸
√

← Arc(b, c)︸ ︷︷ ︸
√

, Path(c, c)︸ ︷︷ ︸
√

What about the “unjustified” presence of Path(c , b)?

It does not violate any implication, but is not implied by any

Actually, all instantiated rules are true in S3

S3 is a model! not discarded! (yet)

• Notice: Path(c, b)︸ ︷︷ ︸
√

← Arc(c, b)︸ ︷︷ ︸
×

, Path(b, b)︸ ︷︷ ︸
√︸ ︷︷ ︸

×

The implication is still true: it has a false body

13 / 42

- S4 = {Arc(b, c),Path(b, b),Path(c, c),Path(b, c)}
(same as on page 9)

D ⊆ S4, what about 2.?

Instantiated rule: Path(b, c)︸ ︷︷ ︸
√

← Arc(b, c)︸ ︷︷ ︸
√

, Path(c, c)︸ ︷︷ ︸
√

Easy to check that S4 is a model!

• Which of S3, S4 is better (or preferred)?

14 / 42

• Given Π ∪ D and S ⊆ HB, what conditions should satisfy to
be a preferred (or intended) model?

1. As before

2. As before

3. S must be minimal model, i.e. a model, and no proper subset
can be a model

• So, an intended model must:

- Contain D

- Make true all the possible instantiated rules:
Path(b, b) ← Arc(b, b), Path(b, b)

Path(b, c) ← Arc(b, b), Path(b, c)

· · · ← · · ·
Path(b, b) ←
Path(c, c) ←
Arc(b, c) ←

- Be minimal

• The program has many other models (find/check them!)

• How many of them are minimal?
15 / 42

• Theorem: A Datalog program Π ∪ D has exactly one minimal
model Denoted: M(Π ∪ D)

• By definition, the semantics of Π ∪ D is given by M(Π ∪ D)

What is true w.r.t. to Π ∪ D is exactly what is true in M(Π)

• We can say that the program Π ∪ D describes the world
M(Π ∪ D)

• Minimality is what will make recursive definitions (and TC)
work!

• Minimality is consistent with remark at the bottom of page 7

• In the previous example, Π(D) turns out to be the single
minimal model

• How can we compute the minimal model?

16 / 42

• Exercise: Datalog program Π with D = {P(a),Q(b)}
R(x) ← P(x)

• Verify that M1 = {P(a),Q(b),R(a),R(b)} is a model

And also that it is not minimal

• Verify that the HB itself is (always) a model

• Verify the following:

• Models: (among others)

• {P(a),Q(b),R(a),R(b),P(b)}
• {P(a),Q(b),R(a),R(b)}
• M0 = {P(a),Q(b),R(a)}

Non-Models: (idem)

• {P(a),R(a),R(b),P(b)}
• {P(a),Q(b),R(b)}
• {Q(b),R(a),R(b)}

• Check: M1 is a model, but R(b) is “unjustified”

• M0 is the minimal model

17 / 42

• Finding the minimal model by comparison w.r.t. set inclusion
with other models is not efficient

Number of potential models in exponential is the size of HB

• There is a better, actually efficient alternative

• Theorem: Given Π ∪ D, the minimal model M(Π ∪ D) can
be iteratively computed by bottom-up forward-propagation
from the underlying EDB D

• We illustrate the algorithm by means of examples

18 / 42

• Example: Datalog program Π with EDB D

R(x) ← P(x)

P(x) ← Q(x , y)

Q(a, a) ←
Q(a, b) ←

• That two rules share variables does not
matter (they are implicitly quantified)

We could replace the second one by
P(z)← Q(z, y)

• Computation of M(Π ∪ D)):

Propagate the facts through the
rules, from right to left (forward-propagation), iteratively:

1. Q(a, a), Q(a, b) ∈ M(Π ∪ D)

2. P(a) ∈ M(Π ∪ D)

3. R(a) ∈ M(Π ∪ D)

A fix-point has been reached; nothing new is obtained

M(Π ∪ D) = {Q(a, a),Q(a, b),P(a),R(a)}
• This is general, even with recursion

• The minimal model of a Datalog program can be obtained as
the fix-point of the bottom-up evaluation we just described

19 / 42

• Example: Datalog program Π defining two intentional
(virtual) relations on top of an EDB D

P(x , y) ←− Q(x , y),R(x , z, v)

Q(x , y) ←− S(x , u),M(u, y)

S A B

a b
a c
d c

M B C

a b
b c
c e

R A D E

a b t
e f h
c a s

• Create extensions for predicates P and Q (if wanted):

- Propagate data from EDB to the RHSs of the rules

- Next, to the LHSs of the rules

• Evaluate RHS of Q’s rule posing RA query: ΠAC (S 1B M)

Propagate tuples to Q’s extension: Q = {(a, c), (a, e), (d , e)}

• Compute P’s extension with body query: ΠAC (Q 1A R)

P = {(a, c), (a, e)}
• A minimal way of making implications true

Making true what is forced to be true

Inserting tuples with a justification (the truth of a body)
20 / 42

• We can also pose a query to the extended DB:

Ans(x) ←− P(x , y),Q(x , z)

P(x , y) ←− Q(x , y),R(x , z, v)

Q(x , y) ←− S(x , u),M(u, y)

• A program extended with a query

• It is computed as before (an additional iteration step)

• We already have the extensions:

Q = {(a, c), (a, e), (d , e)} and P = {(a, c), (a, e)}

• Evaluating the first rule, we obtain the answer: Ans = {⟨a⟩}

21 / 42

• Example: A Datalog program defining three intentional
predicates:

Person(x) ← Parent(x , y)

Person(y) ← Parent(x , y)

Grandparent(x , z) ← Parent(x , y),Parent(y , z)

Ancestor(y , x) ← Parent(y , x) (base case of recursion)

Ancestor(y , x) ← Ancestor(y , z),Parent(z, x)

• On top of the EDB: Parent P C
juan pablo
adam cain
adam abel
eve cain

pablo luis

x
Ancestor<

Parent

y

z

Ancestor

• Propagate data from
right to left, creating
(virtual) extensions for intentional predicates

• For Ancestor , apply first second last rule (base case)

Moving all the data from Parent into a partial extension:

Ancestor ′ = {(juan, pablo), (adam, cain), (adam, abel), (eve, cain), (pablo, luis)}

• Now, evaluate the body of the last recursive rule, i.e. the
query: ΠAnc.1,C (Ancestor

′ 1 Parent) (at this stage, a self-join of Parent)

22 / 42

