Relational Databases

(A) The Schema:

An underlying data domain (data items/values as elements)
U = {peter, mary, $23, $30, cd, book, cdWarehouse, chapters,
Jjohn, ...} (usually implicit, and possibly infinite)

A binary (relational) predicate, ParHood, used to denote
properties of two individuals at a time

Its arguments are called “attributes”, and usually have names:
ParHood(Parent, Child)

Attributes have (sub)domains, e.g. for ParHood:

Dom(Parent) = Dom(Child) = {peter, mary, sue, stu, joe, ...}
cu

Sales(Customer, Price, Article, Store), a 4-ary relational
predicate (represents the structure of the table on page 24)

A name for a property that applies to 4 individuals at a time

e Up to here, no data!

26/71

(B) The Relational Instance: D for (compatible with) the schema

e D is a structure with domain U
e With finite extensions for the predicates in the schema, i.e.

For each n-ary predicate P(A;,...,A,) in the schema, a finite
n-ary relation PP

That is, PP C Dom(A;) x --- x Dom(A,)
e The extension of predicate ParHood is exactly the relation
shown in the table on page 24
The extension of predicate Sales is given by the table above,
i.e. a finite set of 4-tuples:
Sales® C
Dom(Customer) x Dom(Price) x Dom(Article) x Dom(Store)

e Both relations are usual, classical, set-theoretic relations as
seen in a discrete math course!

e The relational model can be provided in set-theoretic and

logical terms
27/71

e Notice the separation between the relational schema and the
relational database (the instance)

e The schema does not have data, but it is metadata, i.e. data
about the data

In this case, how the data is organized and structured

e The schema specifies the domain, relation names (database
predicates), attributes (and other things ...)

e The schema can be seen in some sense as the conceptual
model of data

e The extensions for the predicates in the schema provide,
together, an instance for the schema

e The database (instance) is said to be compliant (consistent)
with the schema if it has the structure specified by the schema

e Page 17 shows a database instance for the schema defined on
page 26

28/71

e A RDB provides a clear and nice “logical view of data”

e The user should be confronted with that logical view

e Without having to care much about how the material, physical
data is really stored in the computer

e Nor about what internal data structures, access methods, or
underlying algorithms for processing data

e This separation is crucial!

An the big innovation proposed by E. Codd

e Relational databases are computationally represented and

processed through relational database management systems
(RDBMSs)

29/71

Data are organized and represented in terms of relations

Relations of fixed format (schema)

Appropriate for representing highly “structured data”

Data are processed via set-theoretic operations on relations

Through the set-theoretic algebra of relations, a.k.a.
Relational Algebra (RA)

Languages of predicate logic, say Relational Calculus (RC),
are used to specify relational predicates, schemas, constraints,
queries, etc.

A declarative language

It expresses what we want, not how to achieve (compute) it

In contrast, Relational Algebra is imperative

We specify how to compute things

30/71

Queries

e Query: "Want the customers who have bough a CD”
o (Sales))

Algebraic (operations with sets), imperative

e Relational algebra: Tl o

Customer (Article =

e Intuitively (for now):

- First, select from relation Sales all the tuples (rows) where
attribute Article takes value “CD"

- Next, project the result on attribute Customer (that is,
forget the other attributes and their values)

e Relational calculus: Jy3z Sales(x, y, ‘cd’, z)

A logical formula, declarative
e Variable x is free (it is not quantified)

Its possible values -when the formula becomes true in the

instance- are the query answers
31/71

° Jdy dz Sales(_ x , y ,'cd', z)
N =~ <~ =~ <~

exists value for y €Xists value for z free variable a constant quantified variable

e Query expresses what we want to retrieve, not how ...
e Variables y, z are existentially quantified

They matter as long as there are values for them

But we do not care about the values themselves ...

Positions of (variables and constants in) relational predicate
stay in correspondence with the relation schema, e.g. x in
that position stand for an article

e RDBMSs have internal mechanisms for query evaluation
e As users we do not have to worry about them
e Well, not quite true ...

Some internal operations may be costly, and it may be useful

to know about that
32/71

For an example, the previous query in RA can be expressed in
a different, but equivalent form:

mn Sales)))

If table Sales were too wide, it may be better to apply the
projection first

I_l Customer (UArticIe = 'CD’ (Customer ,Article (

RDBMSs have internal query optimizers

They can reformulate the query posed by the user, to reduce
use of resources (space, time)

A query posed by the user in SQL (usually close to RC), is
reformulated into an optimized query in RA

Extra Example (RC): “children of parents who bought a CD"

dx 3Jydz (Sales(_x ,y,'cd’,z) _A ParHood(x, w))

quantified now used to “join” the tables and the free var now

33/71

Example: Supply | Company | Receiver | ltem Articles | Item | Class
C D, h h K
D D, b b K

e A schema with an underlying domain, two relational

predicates, of arities 3 and 2, resp.; and four attributes

e The extensions for the relational predicates are the relations

shown in the tables

e |s this model capturing our outside reality?

The “meaning” of the data as found in the application

domain?

e If we understand that every item in relation Supply always

belongs to a class in relation Articles, then our model is

correctly reflecting this

e How to enforce that this is always the case (under updates)?

34/71

Relational Constraints

e We cannot emphasize enough: A database is a model of an
external reality
Outside world
correspondence
Database with relations
mjj il

e As a model it can be good or bad according to how well it
represents and captures the external reality

e Integrity Constraints (ICs) help capture the meaning, the
semantics, of data

e ICs (are intended to) keep the semantic correspondence
between the world and the model of the world (the database)

35/71

e In the example, if we perform the update “insert tuple

(C, Ds, Iy) into Supply’, we obtain

Supply | Company | Receiver | Item Articles | Item | Class
C Dy h h K
D D, b I K
C D3 Iy

e This may not be admissible as a model of the real world

e Not every supplied item is an official item ...

e How can we prevent this from happening?

The data model, i.e. the given relational schema, is not
prohibiting this behavior

We need more ...

The previously mentioned ICs (a.k.a. consistency or semantic

constraints)

Conditions that instances of the schema should satisfy

36/71

In this case we need an IC that is a referential IC:

“items in table Supply refer to items in table Articles’
Or better:

“every item appearing in table Supply appears in table

Articles (assigned to some class)"

There are languages for expressing ICs as a part of the
relational schema

In the example, if this IC is a part of the schema and has to
be satisfied, the update should not be accepted

Usually (some kinds of) ICs become part of the schema

Only some classes of ICs can be defined in SQL as a part of
the schema (more later)

37/71

Same example

Now with extensions:

Supply | Company | Receiver | Iltem Articles | Item | Class
C Dy h h K
D D; b b K
b H

If in the outside world every item belongs to at most one
class, this is not a correct model

If we want “every item belongs to at most one class’ to hold,

it has to be stated as an IC, with the schema

A cardinality constraint, namely a functional dependency:

e classes are a function of the items, or, equivalently

e jtems functionally determine the classes

Notation:

Articles :

Item — Class

(not logical implication)

38/71

Relational Models/Databases: Where From?

e The data model usually created before the DB is created

e Usually the design of a database starts with a conceptual
model in ER form

More intuitive, closer to the outside reality
A high level model

Considering the participating classes (concepts, entities) to
which data are associated

It is less of a model of the DB to come, but of the external
reality

A conceptual abstraction that allows to understand, visualize,
describe, ..., how data are organized

It describes the conceptual structure of the data stored in the
DB: the concepts (classes, entities) and their relationships

This part does not involve the specific data items (values)

39/71

Later, in the DB design phase, the conceptual model is
transformed into a logical model, usually a relational model

Some techniques are used to produce a set of relational
predicates from the ER model

A description of the relations (tables), etc., that will be
created in the DBMS

The relational schema emerges from the data model, before
creating the DB

A relational model can also be seen as a conceptual model

But concepts and and relationships are rather implicit

The schema is (represents) data of a different kind: data
about data, i.e. metadata

Metadata (schema, etc.) are stored in the DB and can be
accessed (queried)

40/71

e The initial set of obtained relational predicates is “improved
by additional transformations”

e A new, right collections of tables and their logical connections
e A normalization process via ICs

e Avoiding, e.g. redundancy of data or updates anomalies

e Obtaining a second set of tables

e Next, the resulting relational model is implemented in a
RDBMS

By creating the schema

e Finally, the database is populated (with data)
Obtaining an instance

e Instances change frequently
Schemas not so much

When they do, we have the problem of “schema evolution”

41/71

ER model
(conceptual)

: : design
— 4

usually not a single
step, involves relational
model

“normalization” | (logical)

process ﬂ
— Ej Ej RDB implementation

data appears here

RDBMS

42/71

