
Example: From an ER model to a relational schema

Drinker WineDrinks

date quantity

drinker#

surname

fname

type

wine#

grape

vntage

percent

• In this ER model the attribute dinker# appears underlined

• This expresses a new kind of semantic constraint: this
attribute becomes a unique identifier

• In the sense that any two instances of entity Drinker share
the same value for attribute dinker#, then they have to share
the same values for all the other attributes of Drinker

• Similarly for Wine# in entity Wine

43 / 74

• ER model above transformed into a relational schema:12

DRINKER DRINKER# SURNAME FNAME TYPE

↑
DRINKS DRINKER# WINE# DATE QUANTITY

↓
WINE WINE# GRAPE VINTAGE PERCENTAGE

We have seen similar relational schemas before, they are com-
mon

E.g. in a data warehouse with a central table with numerical
values that are given context by dimensions, which in their turn
are further described in separate tables

• Arrows indicate referential ICs introduced with the schema

E.g. any drinker number in relation Drinks must appear also
in relation Drinker

With the use of shared attributes, we keep relations connected

• We can think relations Drinker and Wine as the official ones
for drinkers and wine, resp.

Hence, we expect values for them appearing in the Drinks
relation to also appear in the official ones

44 / 74

• Attribute Drinker# appears underlined in relation Drinker,
indicating a relational constraint (inherited from the ER model)

In this case, a key constraint: that attribute functionally
determines all the others in the relation

Drinker : Drinker# −→ Surname, FName, Type

• With the expected semantics:

There cannot be two tuples (rows) in Drinker with the same
drinker code that have different values for any of the three
attributes on the right-hand side (RHS)

• We are not forced to declare the attribute pair
{Drinker#,Wine#} a key for Drinks

A drinker could drink the same wine in different quantities on
different dates ...

45 / 74

• Why not a universal relation DRINKING?

Drinking Drinker# SURNAME FNAME TYPE WINE# GRAPE VINTAGE PERCENTAGE DATE QUANTITY

A broad relation

• In principle possible ...

• Several operational issues when working with populated DB

• Updates? (insertions, deletions, changes of attribute values)

• Redundancy of information

• Identifiers?

We miss the keys of the ER model

We could still use (more relaxed) functional dependencies

• Relational operations with broad relations (tables)

• We will come back to these issues ...

46 / 74

Queries Revisited

• DB instance: Deposit

branch acc# clientn balance
Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Client
clientn cladd neighcl
Jim 101 Queensbury Barrhaven

Sandy 40 Stone Nepean
Hernandez 15 Laurier Downtown

Alvin 17 Clyde Altavista
John 89 Case Centrepoint

• “Give me the balances and addresses of clients whose balance
is higher than 600”

• Answer:
cladd balance

40 Stone 700
17 Clyde 1300

• The answer is a set of tuples, a new relation (extension)

• We can say that a query is a mapping that sends DB instances
to new DB instances (possible with a different schema)

47 / 74

Several issues:

• How to specify a query?

How to write it?

In what language?

• How expressive is the chosen query language?

Can it express “common and useful” queries?

• What is the meaning of a query answer? (semantics)

• How to compute the answer?

• There are several query languages for RDBs

Some more used in practice than others

• Those of a more theoretic nature are the basis for the
languages most used in practice

48 / 74

• The distinction between declarative vs. procedural
(imperative) query languages is always relevant

• Declarative languages are used to express what the user wants
to obtain from the database

• Procedural languages express a particular way to compute the
query answer

• (Similar distinctions apply to programming languages, e.g.
Prolog or LISP vs. Python or Java)

49 / 74

Relational Algebra

• Relations are sets (subsets of cartesian products) constructed
on top of other sets (domain or subdomains)

• Query answers are new relations

• In order to obtain new relations (e.g. query answers) perform
set-theoretic algebra on existing relations

• Operate on sets and relations in order to obtain new sets and
relations

• Relational Algebra (RA) as a relational query language allows
to express those set-operations on set and relations

• Some of those operations come directly from set theory

Others are specific, ad hoc, for the RA, and are applicable to
relations (as opposed to general sets)

50 / 74

• RA provides a procedural query language for RDBs

• The RA is one of the strengths of the relational model

• RA has a precise, set-theoretic semantics

• A RA query becomes a sequence of algebraic (relational)
operations starting from -and applied to- the initial instance

• The sequence becomes an algebraic formula to be executed on
the given instance

• RA can be used to provide a semantics to other relational
query languages (via translations/compilations)

• RA can be used to compute a query specified in another, e.g.
declarative, query language (idem)

RDBMS offer different query languages, but in the end a
query is compiled into a sequence of RA operations on the DB

51 / 74

The Basic RA Operations:

• Union and Intersection: R1 ∪ R2, R1 ∩ R2

Applicable to compatible
relations as usual sets
(relations with the same
sub-schema, same arity,
same data types)

D

D
R1

R2

D

D R2
R1 U R2

R1 R2

R1

• Difference: R1 ∖ R2

Applicable to compatible
relations as usual sets

D

D
R1 R2

R1 \ R2

• Product: R1 × R2

The cartesian product of two
relations (as regular sets),
not necessarily compatible

R = {(a, b, c), (c, d , e)}
S = {(1, 2), (2, 3)}
R × S = {(a, b, c,1, 2), (a, b, c,2, 3),

(c, d , e,1, 2), (c, d , e,2, 3)}

52 / 74

• Projection: Π
A
R(· · · ,A, · · ·)

The projection of relation
R on attribute A

A

B

R

R

A(R)

B(R)

a

here because Exists y in B

A × B

U
|

• A is one of the attributes
of R

Projection could be on
several attributes of R

A unary operation: takes one relation as input (the previous
ones are binary)

• An operation specific for relations (as opposed to general sets)

• It deletes (ignores, filters out) entire “columns” from a relation

Projects R over one (or several) “coordinates” (attributes)

It generates a new relation, with a subset of the attributes
(columns)

53 / 74

• Example: Schema R(A,B,C)

Extension: R = {(e, a, f), (u, c , e)}
ΠA,C (R) = {(e, f), (u, e)}

• Its logical counterpart is the existential quantification

In the figure above:

Π
A
R(A,B,C) = {a ∈ A | there exist b ∈ B and c ∈ C ,

such that (a, b, c) ∈ R}
• Selection: σ<condition>(R)

Unary operation, special for relations

Selects tuples from relation R that satisfy the condition

The condition can be expressed in a (limited) logical language

It generates a new relation, with the same attributes, but
possibly fewer tuples (rows)

54 / 74

• Example: σ
balance>550

(Deposit)

Deposit

branch acc# clientn balance
Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Selects only those tuples
of Deposit that show a
balance greater than 550

branch acc# clientn balance
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

• Join: R1 ▷◁ R2

A binary operator, essential in RA

Here, in its simplest form: “natural join”

It allows to compose two relations

Through the values in common taken by a (set of)
distinguished attribute(s) in the two relations

Attributes with same data type or domain

55 / 74

A
B

C

R S

a
b

c

a b b c

a

b c

a ca b c

• There are extensions of the
natural join (later ...)

• Essential for combining tables
without explicitly producing the
expensive product (join is still expensive)

• Example: “Give me the addresses with balances of the clients who
have a balance higher than 600”

Deposit

branch acc# clientn balance
Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Client
clientn cladd neighcl
Jim 101 Queensbury Barrhaven

Sandy 40 Stone Nepean
Hernandez 15 Laurier Downtown

Alvin 17 Clyde Altavista
John 89 Case Centrepoint

• RA query: Πcladd, balance(σbalance > 600
(Deposit ▷◁

clientn
Client)

= 40 Stone 700
17 Clyde 1300• RA query also works:

Πcladd, balance(σbalance > 600
(Deposit) ▷◁

clientn
Client))

Which one is “better”?
56 / 74

• This join condition is also possible: (assuming attributes with same
data type)

Deposit ▷◁
clientnD = clientnC

Client

Deposit

branch acc# clientnD balance
Carleton 101 Jim 500
Downtown 215 Sandy 700
Barrhaven 304 Alvin 1300

Client
clientnC cladd neighcl

Jim 101 Queensbury Barrhaven
Sandy 40 Stone Nepean

Hernandez 15 Laurier Downtown
Alvin 17 Clyde Altavista
John 89 Case Centrepoint

• Join is also based on set-theoretic operation: composition of
two relations

• It could be replaced trough the use of the previous RA
operations

R(A,B), S(C ,D), with B,C of same data type

R(A,B) ▷◁
C=D

S(C ,D) can be defined by ΠABD(σB=C
(R × S))

57 / 74

• There is no Complement operation in RA (as in set theory)

R

Dom1

Dom2
???

???

R ?c• What is the “meaning” of the
complement of a relation?

• “Tuples that are not in Deposit”?

This query is not admissible nor makes
sense in RDBs

• It could be infinite since underlying domains may be infinite

The difference (∖) is only a relative complement

58 / 74

