Relational Calculus

e The Relational Calculus is a declarative query language for
RDBs

It comes from the origin on RDBs in Predicate Logic

e Example: (of page 36 cont.) “ Classes of articles provided by
company D"

Supply | Company | Receiver | ftem Articles | Ttem | Class
C Dy h h K quer
o o . bl ok g Answer | Class
c Dy Iy K

e This query (as a mapping) can be expressed as a relational
calculus query (formula):

Jy3z(Supply(D, y, z) A Articles(z, x)) (*)
e With intended semantics:

Jydz (Supply(D Y, 2) \A// Articles(z, X)
there are y, z company as a constant and free variable

an implicit join

to retrieve answers

59 /74

K is an answer, because the logical formula (*) is true in the
given database instance when x takes the value K

More specifically, there is an [tem value for z, e.g. |, and
there is a Receiver value for y, e.g. D>, such that

(Supply(D, D2,) A Articles(l», K))
becomes true in the database instance

A completely declarative query!

Also symbolic, follows a precise syntax (grammar)

It is also machine processable!

Same query now in RA: Tl o, - (Supply X,,, Article)
RA and RC are provably equally expressive

A RDBMS evaluates query (*) by translating it into an
“optimized” RA query

60/74

SQL

e RA and RC are the basis for the common and standardized
query Ianguage for RDBs: SQL (Structured Query Language)

e The previous query as an SQL query:

SELECT Class
FROM Supply, Articles
WHERE Supply.Company = ‘D’ AND Supply.ltem = Article.ltem

implicit relational selection implicit relational join

“Selecting (values for) Classes from table Articles in combination with table
Supply, when the Company attribute from table Supply takes value D and the
Item attribute takes the same values in both tables’

e An SQL query for schema Accounts(Account#, Name, Balance):

(attribute selection) SELECT Name
(table selection) FROM Accounts
(condition) WHERE Balance > 10,000

Asking for values for Name attribute of Accounts table of
those customers who have a balance greater than 10,000

61/74

Last query in relational calculus:

Q'(x) : FuIz(Accounts(u, x,z) A z > 10,000)
SQL queries can be fully declarative (see previous examples)
Also possible to bring RA operations into SQL queries

SQL can also be used to:

e Create, modify and query metadata: the schema

Update the relations
e Express/impose Integrity Constraints
e Define views

More on all this coming ...

62/74

Integrity Constraints (revisited)

e Relational Calculus can also be used to state ICs

e E.g. functional dependencies (FDs):

“items cannot be associated with more that one class”
VxVyVz (Articles(x, y) A Articles(x,z) — y =1z)
—— —

for all possible values x is associated to values y and z ¥,z must be equal

(saying that for every article, x, if it is associated to any two articles, y, z, then they are the same)

A sentence: a logical formula without free variables

Can be seen as a binary query: It is true (1) or false (0) in the instance

A declarative IC! It states how things should be

A separate computational mechanism has to keep it satisfied,
i.e. true in the database instance, even under updates

A symbolic constraint, which is quite useful: Allow for
symbolic computations with them (examples later)

63/74

e Example:

Supply | Company | Receiver | ltem Articles | Item | Class
C Dy h h K
D D, I b K

|

e RC can express this referential IC from Supply.ltem to
Articles.ltem: “every item value in the former must appear in
the latter (the official list of items)”

VxVyVz(Supply(x,y,z) — IwArticles(z, w))
(for every item, z (and accompanying values, x, y), if it appears in Supply.ltem, then it appears

in Articles.Item accompanied by some class value, w)

e We can also impose the condition that /tem is a key for
relation Articles (as we did before, even in RC)

Articles: Item — Class

e The combination of the two ICs is a foreign key constraint on
Supply
Its attribute Supply.ltem is the key in a foreign relation Articles

64 /74

Database maintenance is the problem of keeping the database
consistent

That is, satisfying the specified 1Cs when it undergoes updates

Many important issues around this problem (we will come back)

A more general remark: Notice from the examples above that
the schema determines the RC language to use

The same logic-based language can be used to express queries
and ICs

Since both are symbolic, they can be syntactically and
computationally combined

This can be very useful, e.g. for query optimization (examples later)

RC is the language of choice to express [Cs (or its SQL incarnation)

(The referential IC could be expressed in RA as a containment of
projections, but is uncommon Try to do it!)

65 /74

Views

e A view is a defined relation

In terms of the base, material relations (the tables)

e A new relation name (i.e. a new predicate) is introduced
Its extension is defined by (as the result of) a query
It is a query with a relation name

e The view extension can be computed from the definition

But it does not become a permanent (materialized, physical)
table

e The extension is virtual
Computed upon request, and for a session
Not permanently stored in the DB

Unless it is explicitly materialized (not very common)

66/74

Introduce a new predicate, whose extension is defined by:

Compltem (x, z):
—_——

new 2-ary predicate

Precise definition is:
VxVz(Compltem(x, z)

Jy Supply(x,y, z)

K
—

LHS defined by RHS

EXa m ple: Supply Company Receiver Item Articles Item Class

- C Dy h h K
D D, h b K
C D3 Iy Iy H

JySupply(x,y, z))

in terms of existing elements

This view is a particular perspective (view) of table Supply

We do not care about the receivers as long as they exist

That is our view of the database (or of the relation)

A view of the database from the perspective of a particular

user or group thereof

67/74

Its virtual extension can be computed
(and kept in main memory)

This particular user does not see the

Compltem

Company

Item

C
D
C

h

Iy

entire database: not useful, irrelevant, disallowed, ...

Or user considers the relation as particularly relevant
A virtual relation that will last for the session with the DBMS

During the session, its contents will be kept in a temporary

table (unless it is stored as a physical relation, i.e. materialized)

Many other uses of views:

e Privacy, security (give access to views, not to whole DB)

e Query optimization: Reuse cached contents of view to answer

new queries (whenever possible)

e Query answering using views

w.r.t. ICs
Data integration

Monitor internal processes, e.g. catch potential inconsistencies

(see next section)

68/74

Example: Want this view (result) Shipment | Receiver | Class
. . D, K
e How to specify the view? D, K
_ _ D> H
e Not much difference between a view and a query
Its definition via a query in RC:
Shipment(x,y) : 3u3v(Supply(u, x, v) A Articles(v, y)) *)
e SQL allows to define the view including its defining query
CREATE VIEW Shipment AS
SELECT Receiver, Class
FROM Supply, Articles
WHERE Supply.ltem = Articles.ltem

e A query with a name!

Containing a join and a project

ion (compare with (*))

Existential quantifiers capture relational algebra projections

View can be used in queries:

SELECT Receiver
FROM Shipment
WHERE Shipment.Class = ‘K’

“receivers of items in class K”

69/74

Active Rules, Triggers

e Commercial DBMSs offer little support for database
maintenance, i.e. for keeping |Cs satisfied

e Only a limited class of ICs can be defined with the schema,
and automatically maintained by the system

E.g. Key Constraints, Referential ICs, Not-NULL Constraints

(disallowing certain attributes from having missing values)
Also very limited on how to maintain them

For others there is no built-in support, e.g. arbitrary FDs

e How to keep then satisfied?

e Via application programs interacting with DBMS
e Store in the DB an active procedure that does the job

Reacting (running) automatically when there is something to
do: Active Rules! (a.k.a. Triggers)

70/ 74

e An AR can be seen as a stored procedure

Can be explicitly invoked or executed automatically by DBMS
when something happens in the DB

[They are defined with SQL (syntax and semantics depending on vendor)

e In abstract terms, ARs have three components:
Event-Condition-Action (ECA rules)
e When an Event happens (or is about to) in the DB

E.g. an intended update of a certain kind on a table

e And a Condition is (about to be) true in the DB

E.g. a violation of the IC (which can be detected through an
internal, pre-specified query)

e Then, an Action is automatically executed

E.g. a compensating DB update or a rejection/warning
message to the external world

(Or calling a more complex stored procedure could be invoked)

71/74

Example: Keep the referential IC satisfied under insertions
(c.f. page 64)
VxVyVz(Supply(x,y,z) — 3w Articles(z, w))

e Assumption: |C is satisfied before the insertion

e Only relevant “insert” Event: Insertion into Supply, e.g.
of tuple (a, b, c)
e Condition: The insertion creates an inconsistency

Has to be checked via a pre-specified query (basically the
same query all the time)

e Define a violation view that catches those inconsistencies:

V(x,y,z): Supply(x,y,z) A — IwArticles(z,w)

it is not the case that z appears in Articles accompanied by some item value w

Is this true for (a, b, c)?
e Ifitis, i.e. (a,b,c) is answer to the view query, equivalently
belongs to the view
A flag: A non-empty view! (and it should be)

72/74

Execute the Action: Insert (c,nuLL) into Articles
A compensating update

It uses information from the view (value c)

The one above is not the only way to violate the IC, nor the
only way to restore it

Exercise: Consider the other cases and associated ECA rules
Triggers can be shared by users and applications

They are useful in many ways, not only IC maintenance

There are other “internal” applications
Also “external” applications, e.g. in Business

Capturing business rules for/from the application domain
(whose data is in the DB)

73/74

Exercise: (inventory management) If the stock (or inventory as
shown in a table) goes below a certain pre-specified threshold,
insert a request for resupply into the Orders table

Create a small DB with its schema to make this more concrete
Indicate the ECA components

74 /74

