
Relational Calculus

• The Relational Calculus is a declarative query language for
RDBs

It comes from the origin on RDBs in Predicate Logic

• Example: (of page 36 cont.) “ Classes of articles provided by
company D”

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

query7→ Answer Class

K

• This query (as a mapping) can be expressed as a relational
calculus query (formula):

∃y∃z(Supply(D, y , z) ∧ Articles(z , x)) (*)

• With intended semantics:

∃y∃z︸ ︷︷ ︸
there are y, z

(Supply(D︸︷︷︸
company as a constant

, y , z) ∧︸︷︷︸
and

Articles(z︸ ︷︷ ︸
an implicit join

, x︸︷︷︸
free variable

to retrieve answers

))

59 / 74

• K is an answer, because the logical formula (*) is true in the
given database instance when x takes the value K

• More specifically, there is an Item value for z , e.g. I2, and
there is a Receiver value for y , e.g. D2, such that

(Supply(D,D2, I2) ∧ Articles(I2,K))

becomes true in the database instance

• A completely declarative query!

• Also symbolic, follows a precise syntax (grammar)

It is also machine processable!

• Same query now in RA: Π
Class

σ
Company=‘D′ (Supply 1

Item
Article)

• RA and RC are provably equally expressive

A RDBMS evaluates query (*) by translating it into an
“optimized” RA query

60 / 74

SQL

• RA and RC are the basis for the common and standardized
query language for RDBs: SQL (Structured Query Language)

• The previous query as an SQL query:
SELECT Class
FROM Supply, Articles
WHERE Supply.Company = ‘D’︸ ︷︷ ︸

implicit relational selection

AND Supply.Item = Article.Item︸ ︷︷ ︸
implicit relational join

“Selecting (values for) Classes from table Articles in combination with table
Supply, when the Company attribute from table Supply takes value D and the
Item attribute takes the same values in both tables”

• An SQL query for schema Accounts(Account#,Name,Balance):

SELECT Name
FROM Accounts
WHERE Balance > 10,000

(attribute selection)

(table selection)

(condition)

Asking for values for Name attribute of Accounts table of
those customers who have a balance greater than 10,000

61 / 74

• Last query in relational calculus:

Q ′(x) : ∃u∃z(Accounts(u, x , z) ∧ z > 10, 000)

• SQL queries can be fully declarative (see previous examples)

• Also possible to bring RA operations into SQL queries

• SQL can also be used to:

• Create, modify and query metadata: the schema

• Update the relations

• Express/impose Integrity Constraints

• Define views

• ...

• More on all this coming ...

62 / 74

Integrity Constraints (revisited)

• Relational Calculus can also be used to state ICs

• E.g. functional dependencies (FDs):

“items cannot be associated with more that one class”
∀x∀y∀z︸ ︷︷ ︸

for all possible values

(Articles(x , y) ∧ Articles(x , z)︸ ︷︷ ︸
x is associated to values y and z

→ y = z︸ ︷︷ ︸
y, z must be equal

)

(saying that for every article, x , if it is associated to any two articles, y, z, then they are the same)

• A sentence: a logical formula without free variables
Can be seen as a binary query: It is true (1) or false (0) in the instance

• A declarative IC! It states how things should be

A separate computational mechanism has to keep it satisfied,
i.e. true in the database instance, even under updates

• A symbolic constraint, which is quite useful: Allow for
symbolic computations with them (examples later)

63 / 74

• Example:

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

↓ ↑
• RC can express this referential IC from Supply .Item to

Articles.Item: “every item value in the former must appear in
the latter (the official list of items)”

∀x∀y∀z(Supply(x , y , z) → ∃wArticles(z ,w))
(for every item, z (and accompanying values, x, y), if it appears in Supply.Item, then it appears
in Articles.Item accompanied by some class value, w)

• We can also impose the condition that Item is a key for
relation Articles (as we did before, even in RC)

Articles : Item→ Class

• The combination of the two ICs is a foreign key constraint on
Supply

Its attribute Supply.Item is the key in a foreign relation Articles

64 / 74

• Database maintenance is the problem of keeping the database
consistent

That is, satisfying the specified ICs when it undergoes updates

Many important issues around this problem (we will come back)

• A more general remark: Notice from the examples above that
the schema determines the RC language to use

• The same logic-based language can be used to express queries
and ICs

• Since both are symbolic, they can be syntactically and
computationally combined

This can be very useful, e.g. for query optimization (examples later)

• RC is the language of choice to express ICs (or its SQL incarnation)

(The referential IC could be expressed in RA as a containment of
projections, but is uncommon Try to do it!)

65 / 74

Views

• A view is a defined relation

In terms of the base, material relations (the tables)

• A new relation name (i.e. a new predicate) is introduced

Its extension is defined by (as the result of) a query

It is a query with a relation name

• The view extension can be computed from the definition

But it does not become a permanent (materialized, physical)
table

• The extension is virtual

Computed upon request, and for a session

Not permanently stored in the DB

Unless it is explicitly materialized (not very common)

66 / 74

Example: Supply Company Receiver Item Articles Item Class
C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4 I4 H

• Introduce a new predicate, whose extension is defined by:

CompItem︸ ︷︷ ︸
new 2-ary predicate

(x , z) : ∃y Supply(x , y , z)

• Precise definition is:

∀x∀z(CompItem(x , z) :←→︸ ︷︷ ︸
LHS defined by RHS

∃ySupply(x , y , z)︸ ︷︷ ︸
in terms of existing elements

)

• This view is a particular perspective (view) of table Supply

We do not care about the receivers as long as they exist

• That is our view of the database (or of the relation)

• A view of the database from the perspective of a particular
user or group thereof

67 / 74

• Its virtual extension can be computed
(and kept in main memory)

CompItem Company Item
C I1
D I2
C I4• This particular user does not see the

entire database: not useful, irrelevant, disallowed, ...

Or user considers the relation as particularly relevant

• A virtual relation that will last for the session with the DBMS

During the session, its contents will be kept in a temporary
table (unless it is stored as a physical relation, i.e. materialized)

• Many other uses of views:

• Privacy, security (give access to views, not to whole DB)

• Query optimization: Reuse cached contents of view to answer
new queries (whenever possible)

• Query answering using views

• Monitor internal processes, e.g. catch potential inconsistencies
w.r.t. ICs (see next section)

• Data integration

68 / 74

Example: Want this view (result) Shipment Receiver Class
D1 K
D2 K
D2 H

• How to specify the view?

• Not much difference between a view and a query

Its definition via a query in RC:

Shipment(x , y) : ∃u∃v(Supply(u, x , v) ∧ Articles(v , y)) (*)

• SQL allows to define the view including its defining query

CREATE VIEW Shipment AS
SELECT Receiver, Class
FROM Supply, Articles
WHERE Supply.Item = Articles.Item

• A query with a name!

Containing a join and a projection (compare with (*))

Existential quantifiers capture relational algebra projections

• View can be used in queries: “receivers of items in class K”

SELECT Receiver
FROM Shipment
WHERE Shipment.Class = ‘K’

69 / 74

Active Rules, Triggers

• Commercial DBMSs offer little support for database
maintenance, i.e. for keeping ICs satisfied

• Only a limited class of ICs can be defined with the schema,
and automatically maintained by the system

E.g. Key Constraints, Referential ICs, Not-NULL Constraints
(disallowing certain attributes from having missing values)

Also very limited on how to maintain them

For others there is no built-in support, e.g. arbitrary FDs

• How to keep then satisfied?

• Via application programs interacting with DBMS

• Store in the DB an active procedure that does the job

Reacting (running) automatically when there is something to
do: Active Rules! (a.k.a. Triggers)

70 / 74

• An AR can be seen as a stored procedure

Can be explicitly invoked or executed automatically by DBMS
when something happens in the DB

• They are defined with SQL (syntax and semantics depending on vendor)

• In abstract terms, ARs have three components:
Event-Condition-Action (ECA rules)

• When an Event happens (or is about to) in the DB

E.g. an intended update of a certain kind on a table

• And a Condition is (about to be) true in the DB

E.g. a violation of the IC (which can be detected through an

internal, pre-specified query)

• Then, an Action is automatically executed

E.g. a compensating DB update or a rejection/warning
message to the external world

(Or calling a more complex stored procedure could be invoked)

71 / 74

Example: Keep the referential IC satisfied under insertions
(c.f. page 64)

∀x∀y∀z(Supply(x , y , z) → ∃w Articles(z ,w))

• Assumption: IC is satisfied before the insertion

• Only relevant “insert” Event: Insertion into Supply , e.g.
of tuple ⟨a, b, c⟩

• Condition: The insertion creates an inconsistency

Has to be checked via a pre-specified query (basically the
same query all the time)

• Define a violation view that catches those inconsistencies:

V (x , y , z) : Supply(x , y , z) ∧ ¬ ∃wArticles(z ,w)︸ ︷︷ ︸
it is not the case that z appears in Articles accompanied by some item value w

Is this true for ⟨a, b, c⟩?
• If it is, i.e. ⟨a, b, c⟩ is answer to the view query, equivalently
belongs to the view

A flag: A non-empty view! (and it should be)
72 / 74

• Execute the Action: Insert ⟨c , NULL⟩ into Articles

• A compensating update

It uses information from the view (value c)

• The one above is not the only way to violate the IC, nor the
only way to restore it

Exercise: Consider the other cases and associated ECA rules

• Triggers can be shared by users and applications

• They are useful in many ways, not only IC maintenance

There are other “internal” applications

• Also “external” applications, e.g. in Business

• Capturing business rules for/from the application domain
(whose data is in the DB)

73 / 74

Exercise: (inventory management) If the stock (or inventory as
shown in a table) goes below a certain pre-specified threshold,
insert a request for resupply into the Orders table

Create a small DB with its schema to make this more concrete

Indicate the ECA components

74 / 74

