
Data Management and
Databases

Chapter 2: Database Design

Leopoldo Bertossi
Universidad San Sebastián

Facultad de Ingenieŕıa y Ciencias

General and Historical Observations

We start this chapter with some relevant, general considerations
about Relational Databases (RDBs) (for lack of a better place)

• DBs can be seen as sets of finite relations

• Each relation containing tuples (atoms, raws, ...)

• Tuples are finite sequences of mutually related data items, e.g.
⟨peter , $23, cd ,CDWarehouse⟩

• DBs as stored in DBMSs, accessed and manipulated by them

• Three levels of a DB:
• Internal: Physical structure of DB; physical model; storage;

data structures; and access mechanisms

• Conceptual: Logical structure of DB; hiding storage details;
description of classes of data; interrelationships, etc.

• External: DB from point of view of final users; external
applications

2 / 64

Some critical features of RDBMSs:

• Storage: Persistent, Massive, Efficient, Reliable; and Secure

• Access: Fast, Accurate, Sophisticated (complex queries),
Simple (query languages), Concurrent

• Update: Reliable, Concurrent, Efficient, Consistent, Simple
(update languages)

• Applications: Interconnectivity with other software systems
and programming environments

3 / 64

From DBMSs we expect:

• Logical separation between data and programs

Before the inception of RDBs, the structure of data was
embedded in the data manipulation programs

Any change in the structure of data implies change of the
programs, and viceversa

• Security and Integrity

Access control (what data is available for what users)

Consistency of information

Recovery from failures

• Concurrent access to information

Different transactions can simultaneously access and modify
the DB

• Possibility of building applications on top

Writing and running programs that interact with the DB
4 / 64

Example: Banking System

• Data: Information about accounts, branches, clients,
balances, loans, interest rates, transactions, etc.

• Persistent: Data must persist beyond programs, transactions
and application programs

• Multi-User: Many people and systems access and change
data, possibly the same and simultaneously 64

Jill@ATM1: withdraws $100 from account #55

Get balance from the DB;

If balance > 100 then

balance:= balance - 100;

dispense cash;

write new balance in DB;

Ken@ATM2: withdraws $50 from account #55

Get balance from DB;

If balance > 50 then

balance:= balance - 50;

dispense cash;

write new balance in DB;

It should be possible to execute these two concurrent transac-
tions

If initial balance = 400, how does the DB evolve internally?
How if initially the balance is only 120?

• It should be possible to execute
these two concurrent transactions

If initial balance = 400, how does
the DB evolve internally?

How if initially the balance is only
120?

5 / 64

• A whole theory of DB transactions was developed, and
eventually implemented

• Main issues related to supporting (synchronizing) concurrent
transactions from multiple users (or applications)

Transactions possibly affecting the same data in secondary
memory

• Also similar to problems of concurrent access to file systems,
but control at different levels of granularity is required

• Reliable and secure: The DBMS must be reliable wrt system
failures and malicious users

• Convenient: Simple instructions to withdraw money, get
balance, transfer money, etc.

• Efficient: Efficient search for data, its processing, update, and
response to instructions

• Consistency: At “commit points” of transactions, data
integrity (consistency) must be guaranteed (and usually for
multiple users)

6 / 64

Some Historical Landmarks:

• 1961: First DBMS: Integrated Data Store of GE

• 1962: IBM and American Airlines develop SABRE

• 1966-: IBM develops Information Management System
(IMS) (hierarchical model)

• 1970: Edgar Codd (IBM) proposes the relational model of
data, and specifies how a relational DBMS could be built
accordingly

• 1975: First international conferences ACM SIGMOD and
VLDB

• 1976: Peter Chen introduces the ER model

• 70s: Development of first RDBMS: System R (IBM),
INGRES (U.C. Berkeley), System 2000 (U.Texas),
ADABAS (T. U. Darmstadt)

• 70s: Query languages are proposed and implemented:
SQUARE, SEQUEL, SQL, QBE, QUEL

• 80s: DBMSs for PCs (DBASE, Paradox, etc.).
7 / 64

• 1981: Edgar F. Codd receives the ACM Turing Award

For his fundamental and continuing contributions to the theory and

practice of database management systems. He originated the

relational approach to database management in a series of research

papers published commencing in 1970. His paper ”A Relational

Model of Data for Large Shared Data Banks” was a seminal paper,

in a continuing and carefully developed series of papers. Dr. Codd

built upon this space and in doing so has provided the impetus for

widespread research into numerous related areas, including database

languages, query subsystems, database semantics, locking and

recovery, and inferential subsystems.

• 1985: Preliminary publication of standard for SQL

Object Oriented DBMSs, Client/Server Architectures,
Distributed DBs

• 80s: Datalog (deductive extension of Relational Calculus with
recursion), Deductive DBs

8 / 64

• 90s: Active DBs

They store active rules (or triggers) that automatically react,
executing actions when certain events happen inside the DB
and under certain conditions

• 90s: Data Warehouses (DWHs)

Large repositories of physically
integrated data from different sources

Designed for data analysis, business
undertanding and decision making support

DWHs handle complex queries involving
massive data

On-Line Analytical Processing (OLAP)

Not for operational/transactional purposes (or OLTP, “on-line
transaction processing”)

Usually implemented separately from operational DBs

DWHs can be created inside (as) RDBs (ROLAP)

9 / 64

• 1998: Jim Gray receives the ACM Turing Award
For seminal contributions to database and transaction processing research

and technical leadership in system implementation.

• 1999: SQL3: New release of the Standard: Triggers,
Recursive Queries, ... (a few other releases after that)

• 2014: Michael Stonebraker receives the ACM Turing Award
For fundamental contributions to the concepts and practices underlying

modern database systems.

• Many developments and challenges in between ...

Many due to emergence of Data Science, AI, and ML, in
particular

• E.g. In-DB ML?

Push data-related ML operations inside the DB, where the
data are located

Try to take advantage of the highly optimized data handling
mechanisms of the RDBMS

10 / 64

The ER Model Revisited

• In this chapter, we have mentioned some functional issues of
DBMSs

They will be retaken in the next chapter

However, before they affect us, we need a DB ...

• We retake the subject of DB design

• As we saw before, we usually start with a conceptual model of
data

Say, an ER model

• We will show some elements of the model that we did not
introduced in the previous chapter

Mostly through examples

11 / 64

drinker wine

name type

address date quantity

vineyard percentage

vintage

drinks
Example: Elements:

• Entities: Represent classes
of objects of the world being
modelled

Also called concepts, entity sets, e.g. “drinker”

• Relationships: Associations between entities; e.g. “drinks”

• Attributes: Properties of entities or relationships

E.g. the “address” of a drinker

Or the “quantity” of wine that a drinker drinks

• Links: Used to represent connections between the previous
elements

Most of the time, disregarded, and without a name

Having names for them is useful for an “ontological
extension” of an ER model

12 / 64

Employee

Surname

john

mary

Scott

Steward

Pearson

• Intuitively, there are “data items”
underneath

• Confusingly enough, an element of
an entity (as a class) is sometimes
called “an entity”

Hence, using “entity set” instead, and
entities can be elements of an entity set

E.g. “john” could be an entity of the entity set ‘ “Employee”

• However, and contrary to the figure above, in the ER itself,
we do not see the data items

• Usually, an attribute gives a single value to an element of an
entity (or to a pair of elements of entities in relationship)

• In a more complex setting we can have a multivalued attribute

It may assign a set of values to an (element of an) entity

13 / 64

• An Employee may bee assigned to several projects

Employee

Emp# ProjectsSurname Dept.

Employeejohn

mary

Project

CNU

ISR

DBD

ISD
A multivalued attribute

Usually represented with a double ellipse

Emp# Surname Dept

Employee• In this example, attribute Empl#
is meant to take a single value
for an Employee

Even more, this attribute (value) is expected to functionally
determine all the other attributes (attribute values)

• We say “Empl# becomes a key of the entity Employee
14 / 64

• Represented in the ER model like this (underlined)

Emp# Surname Dept

Employee• This declares Emp# a key of
entity Employee

If any two elements of
Employee share the same
value for Empl#, then they must share the same values for all
the other attributes

• Something like this cannot happen

Emp# Surname
Dept.

Employeejohn mary

123 peters

scott

sales

production

• Attributes can themselves
have attributes

A composite attribute

Student Name
is composite

Student

Student

Number

Student

Name

Surname2SurnameMNameFName

15 / 64

• There may be relationships of arity higher than 2

Here, a 3-ary relationship

product

place timeSales

units sold

• Particulary interesting!

• Representation of Sales of Units
according to three dimensions: Product, Place, and Time

E.g. 1000 units of “milk” sold in “Toronto” on “August,
12th, 2024”

• An ER model like this is common for data warehouses (DWHs)

Numerical attributes are given context by certain dimensions

• A multidimensional view of data

Data to be analyzed according to the given dimensions

• On page 9 a DWH was depicted as a collection of cubes

Their edges corresponding to dimensions
16 / 64

• Going a bit ahead of ourselves: What kind of relational
schema could emerge from such an ER model?

product

place timeSales

units sold

• It would give rise to a
star schema

• A central table containing the numerical
values: the facts table

In its “periphery”, one table for each dimension

Product

Prod Line Brand

Sales

Prod Time Place Units

d1 ti 3 5 110

prod1

prod1 time3 zone5 110

ETC.

Location

Place City Country

zone5

• In “Sales” table, the key
is formed by the three
underlined attributes

• We also need referential
constraints, etc.

We will come back to
translations from ER to relational models

17 / 64

• We can have recursive relationships

Employee

address

Management

Employees manage other employees

• Who are managers and who are
managed?

Not clear ...

• This is a case when link names could come handy ...

Also called “roles” in ontological
languages

Employee

address

Management

bossOf reportsTo

• Another example

john

peter

ISD

CNU

ISR

Employee Work Project

executesexecBy

18 / 64

john

peter

ISD

CNU

ISR

Employee Work Project

executesexecBy

think of Project as an
attribute of Employee

• “john executes project ISD”, “proyect ISR is executed by
peter”, etc.

• Roles names can be useful when transforming an ER model
into a formal ontology (coming much later)

They emerge from a relationship of the ER model

19 / 64

