
Cardinality Constraints

E FR

R

• The model can impose conditions on
the number of connections via
relationship R between entities E and F

• Common Case:

22

One-to-One Relationship:

E R F

• •

•

�����
�����

�����
�����

�����
�� •

• •

• •

min-card(E,R) = 0
max-card(E,R) = 1
min-card(F,R) = 0
max-card(F,R) = 1

• We sometimes say this is a “one-to-one relationship”
(meaning “at most one” in each direction)

E FR

R

(0.1) (0,1)

20 / 73

• 1-to-N, N-to-1, etc. Relationships:
23

N-to-1 Relationships: When something like this happens

E R F

• •

•

��������������������������� •

• •

• •

N-to-1 Relationship
(actually, 1-to-N from E):

min-card(E,R) = 0
max-card(E,R) = N (> 1)
min-card(F,R) = 0
max-card(F,R) = 1

This is O.K.: the cardinality constraints declare admissible bounds for any instance

of the model, but those extreme values may not be taken

23

N-to-1 Relationships: When something like this happens

E R F

• •

•

��������������������������� •

• •

• •

N-to-1 Relationship
(actually, 1-to-N from E):

min-card(E,R) = 0
max-card(E,R) = N (> 1)
min-card(F,R) = 0
max-card(F,R) = 1

This is O.K.: the cardinality constraints declare admissible bounds for any instance

of the model, but those extreme values may not be taken

N stands for “unbounded”

E FR

R

(0.N) (0,1)

• Each pair on a link beside an entity indicates a lower and an
upper bound on the number of connections to the other entity

21 / 73

• N-to-N Relationships:

24

N-to-N Relationships: When something like this happens

E R F

•

�����
�����

�����
�����

�����
�� •

•

��������������������������� •

• •

• •

•

��������������������������� •

N-to-N Relationships:

min-card(E,R) = 0
max-card(E,R) = N
min-card(F,R) = 0
max-card(F,R) = N

E FR

R

(0.N) (0,N)

22 / 73

Some Examples:

Instructor
CourseSectionTeaching

(0,N) (1,1)

taughtBy teachOf

An instructor can teach zero or many course sections, but a
course section is taught exactly by one instructor

Employeeaddress Manager

reporstTo

bossOf

(0,N)

(0,1)

ProjectEmployee

percentage

Work
(1,N) (0,N)

An employee can manage
nobody or an arbitrary
number of employees

An employee reports to at
most one employee (see also next page)

An employee is assigned to
at least one project

A project can be assigned to several
employees or to nobody

23 / 73

john

peter

peter

mary

sue

Employee Manager

BossOfReportsTo

Employee

mat

joe

(0,N) (0,1)

Employee

Emp#

Street#

Projects

AreaCode

Address

(1,1) (1,N)

(1,1)

(1,1)

StreetName

(1,1)

(1,1)

• We can also impose cardinality
constraints on attributes

Including subattributes

Attribute Projects can be
multivalued

24 / 73

Keys:

Employee

Emp#

Street#

Projects

AreaCode

Address

(1,1) (1,N)

(1,1)

(1,1)

StreetName

(1,1)

(1,1)

• Underlined attribute Emp#
indicates that it is a key for
(the attributes of) Employee

• A restriction on the values
the attributes for the entity
can take

• There cannot be two employees
that have the same (value for) employee number, but have
different values for the other attributes

• We think of the key as a unique identifier for employees

• Naturally and commonly, its link accompanied by the
constraint (1,1)

• Here we have a composite attribute
25 / 73

• A whole set of attributes can be the key for an entity

Wine

Vineyard Grape

Year

Quality

%Alcohol

• When describing wine, the percentage
of alcohol and the quality are determined
by the attributes Vineyard, Grape
and Year

Wine

Vineyard Grape

Year

Quality

%Alcohol

• The key of entity Wine is the set of
attributes {Vineyard, Grape, Year}

• Same kind of restriction: No two wines with the same values
for these three attributes but different values for the other two

• {Vineyard, Year} not a key: it does not determine all the
attributes

• Minimality condition: If we declare this set as a key, we
understand that no proper subset is also a key

{Vineyard, Grape, Year, Quality} is not a key, because it
properly contains a key

26 / 73

• An entity can have more than one key (if any)

• Boyle’s Law for simple gases

P × V = c × T
Thermodynamic

System

Volume Temperature Pressure

• {Temperature, Volume}, {Temperature, Pressure}, ...,
{Volume, Pressure} are all possible keys

They are candidate keys

Any of them can be chosen as a primary key

27 / 73

Sub-Entities:

Advanced
Course

Professor

Grad
Student

Course
Student

TaughtBy

(1,N)

EnrOf

(3,6)

EnrIn

(10,50)

Teaching

Enrolling

TeacherOf

(1,1)

GradProgram

Is-a
Is-a

Level
(SenUG/G)

St#

Code

• Sub-entities (subclasses)
can be specified using
“IS-A”-links connecting
entities

• Attributes (properties)
are inherited by sub-
entities

Sub-entities may have specialized attributes

• Participation in relationships are inherited by sub-entities, e.g.
between “Advanced Course” and “Grad Student”

• An “IS-A” label (for a link) has a fixed, built-in semantics

In contrast to the other, application-dependent labels we have
used so far

Its semantics is a set-theoretic inclusion of classes

28 / 73

Some Remarks:

• ER is a useful but simple modelling language

• It has limited expressive power to specify (create) a model

• In particular, there are limited features to express semantic
constraints

• The semantic constraints (so as the whole model) depends on
how we (the modelers) understand the outside reality

And the data associated to it (or emerging from it)

• We as modelers decide what are the relevant entities and
relationships

An entity can participate in more than one relationship (see
previous example)

• We have shown data with ER models, but only to illustrate
the introduced notions

There are not data (data items) in an ER model
29 / 73

• An ER model could be seen and exploited as metadata for a
relational model emerging from the former

• With an ER model of data we capture static aspects of data

What about dynamic aspects? (evolution, updates)

• What about the use of data?

Activities based on data?

Agents acting on/with data?

• There are more expressive -and still graphical- languages that
can be seen as extensions of ER

For example, UML (Unified Modelling Language)

• Also rich, symbolic languages, such as ontological languages

• Our next goal for now is to use an ER model to produce a
relational model, a relational schema (still no data, but later)

One that can be “improved” after that ...
30 / 73

design

implementationRDB

RDBMS

relational
model
(logical)

ER model
(conceptual)

Normalization:
possibly several steps
of table decomposition

31 / 73

From ER to the Relational Model

• There are several standard guidelines to transform an ER
model into a relational model

We will present them mostly by examples

• Semantic constraints on both sides will be critical for the
transformation

• We start by transforming entities, relationships later on ...

3

Student

Student
Number

Student
Name

Surname2SurnameMNameFName

Employee

Emp#

Street#

Projects

AreaCode

Address

(1,1) (1,N)

(1,1)

(1,1)

StreetName

(1,1)

(1,1)

Employee

Emp#

Street#

Projects

AreaCode

Address

(1,1) (1,N)

(1,1)

(1,1)

StreetName

(1,1)

(1,1)

32 / 73

Transformation Rule 1:

1. Each entity is mapped to a relational predicate

Although without data at this stage, we will call it a “relation”

2. The entity name becomes the relation name

3. The single-valued attributes of the entity become arguments
(columns) of the relation

4. If an ER attribute is composite, its single-valued
sub-attributes become relational attributes (columns)

5. A unique identifier (key) in the ER model becomes a key for
the relation

6. The resulting relational key may contain several attributes,
becoming a composite key for the relation

33 / 73

3

Student

Student
Number

Student
Name

Surname2SurnameMNameFName

Employee

Emp#

Street#

Projects

AreaCode

Address

(1,1) (1,N)

(1,1)

(1,1)

StreetName

(1,1)

(1,1)

Employee

Emp#

Street#

Projects

AreaCode

Address

(1,1) (1,N)

(1,1)

(1,1)

StreetName

(1,1)

(1,1)

In these examples, we obtain:

Student

Student Number FName MName Surname Surname2

Employee

Emp# Street# StreetName AreaCode

• What about the multi-valued attributes?

Projects in the example?

34 / 73

Transformation Rule 2:

1. For an entity E with identifier P and a multi-valued attribute
A, we create a separate relation for A with attributes P and A

• In the second example above, we obtain two tables:

Employee

Emp# Street# StreetName AreaCode

Assigned

Emp# Projects

• Notice that Emp# is not a key for relation Assigned

Not expected to be one: There may be several projects
assigned to an employee

35 / 73

• With extensions this may look like this:

Employee

Emp# Street# StreetName AreaCode

453489 322 El Aromo 687773

Assigned

Emp# Projects

453489 p586
453489 p321
345566 p333
345566 p666

?→ 345566 should appear in table Employee

• It is natural to introduce a referential constraint from
Assigned.Emp# to Employee.Emp#

Possibly from Assigned.Proyects to relation for Projects

• Since the referred attribute Employee.Emp# is a key in
Employee, we say that Assigned.Emp# is a foreign key
constraint in Assigned

36 / 73

• What about relationships?

Instructor
CourseSectionTeaching

Employee
emp#

Manage

bossOf

reportsTo

address

• A relation for each relationship?

Maybe ...

• First example:
Teaching Instructor CourseSection

john comp1805
john comp3005
ken comp4900
· · · · · ·

37 / 73

• Second example?

We may not need to introduce a new relation

• Expand already existing relation for entity Employee

With an extra attribute

• If we had schema Employee(Emp#, Address), now:

Employee Emp# Address ReportsTo

453489 · · · NULL
433252 · · · 453489
345566 · · · 453489

• What about Employee(Emp#, Address,BossOf)?

Emp# not a key anymore

Also: redundancy of data

The same occurrence of an employee number and its
description, but for with different subordinates

38 / 73

• Cardinality constraints of the ER model play an important role

10

Cardinality constraints of the ER model play an important role
here

ProjectEmployee

percentage

Work
(1,N) (0,N)

Transformation Rule 3:

1. If a binary relationship R between entities E,F is N-to-N,
then R is mapped to a table T

2. Relational table T contains the primary keys of the tables
associated to the participating entities

3. Furthermore, T will have columns for the single-valued at-
tributes hanging from R (if any)

Transformation Rule 3:

1. If a binary relationship R between entities E ,F is N-to-N (as
above), then R is mapped to a relation T

2. Relation T contains the keys of the relations associated to the
participating entities

3. T will have columns for the single-valued attributes hanging
from R (if any)

39 / 73

Example:

10

Cardinality constraints of the ER model play an important role
here

ProjectEmployee

percentage

Work
(1,N) (0,N)

Transformation Rule 3:

1. If a binary relationship R between entities E,F is N-to-N,
then R is mapped to a table T

2. Relational table T contains the primary keys of the tables
associated to the participating entities

3. Furthermore, T will have columns for the single-valued at-
tributes hanging from R (if any)

Employee Emp# Name ReportsTo

453489 john NULL
433252 rose 453489
345566 peter 453489

Projects Proj# ProjName Date

p234 MinSal 3-12-1999
p983 CNU 8-1-2000
p328 DBR 6-4-99

Work Emp# Proj# Percentage

453489 p983 50
453489 p328 25
453489 p432 25
433252 p234 100
345566 p115 33

(similar to Example
in Chap 1, p. 43)

Assuming ER attribute Percentage is single-valued (otherwise,

there is no non-trivial key for Work)• With referential constraints:

- From Work.Emp# to Employee.Emp#, and

- From Work.Proj# to Projects.Proj#

40 / 73

13

FE R
(?,N) (?,1)

Transformation Rule 4:
(basically the second option on page 9)

1. If a binary relationship R between entities E,F is N-to-1,
then R is not mapped to a table in the relational model

2. But there will be tables for the participating entities E,F
(as before)

3. If max-card(F,R) = 1 (i.e. the “many” side), the table
associated to F will include columns for the primary key of
the table associated to E

4. The single-valued attributes of R are also included in F ’s
table

Transformation Rule 4:

1. If binary relationship R between E ,F is N-to-1, R is not
mapped to a relation

2. We assume, as so far, there are already relations for entities
E ,F

3. If max-card(F ,R) = 1 (F is the “many” side), F ’s relation
will be expanded with columns for the key of E ’s relation

4. Single-valued attributes of R are also included in F ’s relation

41 / 73

Instructor
CourseSectionTeaching

(0,N) (1,1)

taughtBy teachOf

Instructor Inst# Name Ext.

i23 john 2345
i34 peter 3452
i89 claire 9087

↑
CourseSection Sec# Inst# Course Time Room

s234 i23 CS102 TTh3 JG2
s543 i34 CS213 MW1 SJ4
s398 i23 CS214 MW2 SJ4

• With a single table, info about each instructor would be
repeated many times

• Notice the foreign key constraint

• If F has optional participation, that is card-min(F ,R) = 0,
NULL values may appear

For Inst# in CourseSection

To avoid this, one could create a relation for R

42 / 73

16

FE R
(?,1) (?,1)

Now we have a 1-to-1 relationship R between entities E,F

Transformation Rule 5:

1. Assume E or F have optional participation in R

a) According to Rule 1, there are tables TE, TF for E,F ,
resp.

b) R is represented by adding columns to TE (to TF) with
the primary key of TF (of TE); possible both options

c) Single-valued attributes of R are also added

• Now we have a 1-to-1 relationship R between entities E ,F

Transformation Rule 5:

(a) Assume E or F have optional participation in R

1. According to Rule 1, there are relations TE ,TF for E ,F , resp.

2. R is represented by adding columns to TE (or TF) with the key
of TF (or TE)

Both options are possible

3. Single-valued attributes of R are also added as columns

43 / 73

Instructor
CourseSectionTeaching

(0,1) (1,1)

A B
C

• We already have:

Instructor IName A · · ·
john · · · · · ·
peter · · · · · ·
sue · · · · · ·

Section SName C · · ·
cs001 · · · · · ·
ar003 · · · · · ·
in080 · · · · · ·

• Expand one of them:
SectionPlus SName C · · · IName B

cs001 · · · · · · john · · ·
ar003 · · · · · · sue · · ·
in080 · · · · · · peter · · ·

• With foreign key from SectionPlus.INAme to Instructor.IName

There may be names in Instructor that do not appear in SectionPlus,
but not the other way around

• Since B is single-valued (and the (1,1) condition), we could
keep SName as a key for SectionPlus

• What about InstrPlus IName A · · · SName B ?

• As above, but NULL may appear ...
44 / 73

(b) Assume both E and F have obligatory participation in R

That is: card-min(E ,R) = card-min(F ,R) = 1

1. Both entities can be combined into one single table

To avoid foreign key constraints

2. The single-valued attributes of R are also added to this table

Multi-valued attributes of relationships are handled as with
Rule 2

45 / 73

Some Final Remarks on the Transformation:

• We will not cover in detail the transformation of relationships
of arity greater than 2

• The idea:
• There may be relationships of arity higher than 2

Here, a 3-ary relationship

product

place timeSales

units sold

• Particulary interesting!

• Representation of Sales of Units
according to three dimensions: Product, Place, and Time

E.g. 1000 units of “milk” sold in “Toronto” on “August,
12th, 2024”

• An ER model like this is common for data warehouses (DWHs)

Numerical attributes are given context by certain dimensions

• A multidimensional view of data

Data to be analyzed according to the given dimensions

• In Chapter 1 a DWH was depicted as a collection of cubes

Their edges corresponding to dimensions

16 / 30

Product

Prod Line Brand

Sales

Prod Time Place Units

d1 ti 3 5 110

prod1

prod1 time3 zone5 110

ETC.

Location

Place City Country

zone5

1. Create one relation for the relationship

Columns are the keys of participating entities

2. With one foreign key per entity

Not always all needed, depending on cardinality constraints

3. The set of keys from item 1. is the key for the new relation

Same comment as in previous item (see example on page 44)

4. Single-valued attributes for the relationship are added to new
relation

46 / 73

• Not all the authors (or practitioners) exactly agree on the
procedure for passing from an ER model to a relational model

• We have given some heuristic transformation rules
(guidelines) without being exhaustive

We did not give a full algorithm

• Most important is to be aware and gain intuitions about the
issues involved

Among them: redundancy of data and missing data (the
latter giving rise to occurrences of NULL)

• The relational ICs generated during the transformation rules
become part of the generated relational schema

Among them: keys, referential constraints, and foreign key
constraints

• The relational schema resulting from the transformation with
origin in ER will probably be further transformed

47 / 73

• This is the “Normalization Process”

For which, the following becomes critical:

1. The existing (generated) ICs

2. Newly identified functional dependencies (FDs)

(not necessarily keys, that are a particular kind of FDs)

3. The issues of data redundancy and missing data

4. The related issues of update anomalies

• Basically two ways to reach such a good relational model

1. Start from an ER model, and apply the transformation rules

2. Start right away with a relational schema

One with wide relations (many attributes), maybe a universal
relation
Next, apply normalization techniques to reach a new and
better relational schema

48 / 73

• In practice, the two techniques are combined

1. The initial ER model is transformed into a RM

2. The resulting RM is improved applying normalization
techniques

• We covered the basics of ER, but the ER modelling language
is much richer (c.f. any textbook)

49 / 73

