
Armstrong’s Deductive System for FDs:

From We can conclude Rule #
AX → X 1
A → A 2

A → B AC → BC 3
A → B and B → C A → C 4
A → BC A → B and A → C 5
A → B AC → B 6
A → B and A → C A → BC 7
A → B and C → D AC → BD 8

Two Axioms plus Deduction Rules

• A,X,B, ... are (sets of) attributes (for the same relation schema)

• The first two can be seen as logically valid formulas

The other six, as logical deduction rules

• The axioms and rules in red (1,3,4) are good enough for our
purposes

The other axioms and rules are logically redundant, i.e. they
can be derived from the three main ones

But it is useful to keep and use them
65 / 99

• Officially, Armstrong’s rules for deriving FDs are the following:

A1 :
AX→ X

A2 :
A→ B

AC→ BC
A3 :

A→ B, B→ C

A→ C

• They are read and used as follows:

If at some point of a derivation of a FD we have (an
instantiation of) the upper part, then we can jump to the
(corresponding instantiation of the) bottom part

• In particular, A1 can be applied without any “hypothesis”

• These are the inclusion, augmentation, transitivity rules, resp.

• To derive implicit FDs, use the deductive system as follows:

1. Start from a given set of FDs F
Usually those explicitly stated with a relation schema

2. Apply iteratively (and mechanically, symbolically) the rules
above, with the original and already derived FDs

Deriving new FDs ψ until no new FD is obtained

66 / 99

• If the FD ψ can be derived from a set F of FDs using
Armstrong’s system, we use the notation: F ⊢A ψ

• Example: Derive Rule 5 using the three official rules

Hypothesis: A → BC (∗)
To deduce: A → B and A → C

Using Rule A1 , introduce without any hypothesis

BC → B (∗∗)
Using rule A3 combining (∗) and (∗∗), obtain: A → B

The other part is similar

• Here we did the formal derivation:

1. A → BC (hypothesis, the only element of F in this case)

2. BC → B (by rule A1)
3. A → B (by rule A3 ; the ψ above)

Something a computer algorithm could do, symbolically ...

67 / 99

• Exercise: Obtain all the other redundant rules using the three
official rules (and previously derived ones)

• Example: Relation schema

EmpInfo(Id,Name, Phone, Dept, SkillId, SkillName, SkillDate, SkillLvl)

Assume following FDs hold:

Id → Name, Id → Phone, Id → Dept (∗)
Using the Union Rule (# 7), obtain:

Id → Name Phone Dept (∗∗)
We can use derived rules, because they can be justified by
(derived from) the three official rules

Then:
{Id → Name, Id → Phone, Id → Dept} ⊢A Id → Name Phone Dept

Notice: from (∗∗) one can derive each of the FDs in (∗)
using the decomposition rule (# 5)

68 / 99

• How good is the process of deriving FDs using Armstrong’s
deductive system (ADS)?

More precisely?

• Can every FD ψ that is implied by a set of FDs F be deduced
using ADS?

Is it strong enough?

• Conversely, is every FD ψ obtained from F via ADS correct?

In the sense that it is implied by F?

• Yes to both! This is Armstrong’s Theorem (that can be
mathematically proved)

With ADS one can derive all and only the FDs that are
implied by the original set F
In other terms: F |= ψ ⇐⇒ F ⊢A ψ︸ ︷︷ ︸

semantic notion

︸ ︷︷ ︸
syntactic, symbolic notion

69 / 99

• F |= ψ ⇐⇒ F ⊢A ψ︸ ︷︷ ︸
semantic notion

︸ ︷︷ ︸
syntactic notion

• The LHS is semantic level (metalevel) in that it appeals to all
possible instances of a relation schema

This is about implications we -humans- establish via
mathematical proofs

• The RHS is symbolic (object level) in that it is about
symbolic manipulation of symbolic expressions

This is about derivations that humans and computer programs
(for symbolic processes) can do

• “⇐=” is easy to prove (showing we always produce correct FDs, as on
page 61)

“=⇒” is more complicated

• We can delegate to a computer (program) the derivation of
implicit FDs

70 / 99

Other Computational Problems around FDs:

• Several and important, not all solvable directly via ADS

1. Compute all the FDs that are entailed by a given set of FDs?

The deductive closure F+ of a set F of FDs

F+ can be computed in polynomial time in the size of F
(Beeri and Bernstein, ACM TODS, 1979, 4(1): 30-59)

A fixed relation schema has a fixed and finite set of attributes; and

potential FDs are built considering combinations of attributes (for the

LHS and RHS of the implication), and there are finitely many possible

combinations Of course, not a guarantee of efficiency

2. The decision problem: F
?

|= ψ

For a fixed set F of FDs (and schema), it is about deciding
membership of the problem {φ | φ is an FD, and F |= φ}
It is solvable in polynomial time

Compute F+ and check if ψ ∈ F+

71 / 99

3. Computing a minimal cover for a set of FDs

That is, a minimal set of FDs that imply the given set F
More precisely, a set G of FDs such that:

- G+ = F+, and

- For no G′ ⫋ G: G′+ = F+

This can be done efficiently

Useful for normalization and checking violations more
efficiently

72 / 99

Normalization: Normal Forms

• Diagrams of Dependencies for attributes and their FDs

For a relation
schema

R(A,B,C ,D,E , . . .)

A B C

DE

A B D

E A B

E C

B D

E D

A B C

DE

A B D

E A B

E C

B D

E D

• Notions associated to keys (based on FDs):

- Superkey: Set of attributes that functionally determine all the
other attributes (in the relation)

- Candidate Key: (simply, a key)

Minimal Superkey: No proper subset is also a superkey

- Primary Key: One of the candidate keys chosen as primary

- Foreign Key: Set of attributes of a relation R that is a
primary key for a relation S

73 / 99

Update Anomalies: (w.r.t. changes of attribute values)

• As already mentioned, considerations around them become
relevant for normalization

• They commonly appear in the presence (or caused) by data
redundancy

• Intuitively, they happen on a relation if changing an attribute
value forces to update several tuples in the table

• Example: Employee ID Name PhoneExt Skill Level
111 john 1778 paint good
111 john 1778 carpenter medium
111 john 1778 carpenter medium
145 peter 1750 carpenter good

If we change the phone
extension in 1st row, it
has to be changed in the other two (if we want ID → PhoneExt)

• This may lead to inconsistencies, administrative overhead, ...

• Better eliminate attribute PhoneExt from the table?

Creating a separate one with IDs and phone extensions

74 / 99

Deletion Anomalies:

• A relation is subject to them when deleting a tuple to reflect
the disappearance of an entity (element of an entity set) or
relationship may cause losing information about some other
entity of a different entity set or a relationship

• It is useful to think a tuple (a row) in a table as describing an individual
entity; or several if they are in relationship

Here we are using “entity” for “element of an ER entity”

• Example:

Drinks(Wine#, Vineyard, Quality, Year, Drinker#, DrinkerName, Address)

If we eliminate all the information about drinkers, we lose
information about wines, e.g. about vineyards

(unless we fill the table with null values)

• Better keep info about wines and drinkers in separate tables

Create a 3rd table with codes Wine#,Drinker# to represent
the relationship

Plus FKCs
75 / 99

Insertion Anomalies:

• Similar to deletions anomalies, but for insertions

• Not possible (or undesirable) to independently insert values
for a single entity

• We cannot represent information about some entity without
including information about some other entity or relationship
that does not exist

• Drinks(Wine#, Vineyard, Quality, Year, Drinker#, DrinkerName, Address)

If we want to insert info about wines only, what about the
drinkers?

This will cause the insertion of many null values

76 / 99

Back to Normalization:

• Normalization is a sequence of decompositions of “wide”
relation schema (possibly, a universal relation schema) into
new relation schemas

The resulting relational schema does not present the above
mentioned anomalies

• Normalization conditions are checked on a relation schema

With its associated dependencies

• A relation schema is normalized, i.e. decomposed into other
relation schemas

With newly generated dependencies

• The new relational schema satisfies the normalization
conditions (to be defined next)

• Normalization conditions are not checked or imposed on
instances

77 / 99

Example: (to be used throughout the rest of the chapter)

• Start with a wide relation schema with attributes:

53

We will use this running example of a DB schema with employees
and the following attributes:

#emp, emp_name, emp_phone

dep_name, dep_phone, dep_man

#skill, skill_name, skill_date, skill_level.

emp items refer to data about employees (implicit in the idea of
entity), and are uniquely identified by #emp

dep items refer to departments, and dep name uniquely identify
departments

skill items refer to abilities of employees

The date refers to the last time the ability was tested

• Assumptions:

- emp attributes refer to data about (entity) employees

They are uniquely identified by #emp

- dep attributes refer to (entity) departments

dep name uniquely identify departments

- skill items refer to abilities of employees

- Date refers to the last time an employee’s ability was tested

78 / 99

53

We will use this running example of a DB schema with employees
and the following attributes:

#emp, emp_name, emp_phone

dep_name, dep_phone, dep_man

#skill, skill_name, skill_date, skill_level.

emp items refer to data about employees (implicit in the idea of
entity), and are uniquely identified by #emp

dep items refer to departments, and dep name uniquely identify
departments

skill items refer to abilities of employees

The date refers to the last time the ability was tested

• The following FDs are assumed to hold:

#emp → emp name, emp phone, dep name

dep name → dep phone, dep man

#skill → skill name

#emp, #skill → skill date, skill level

• From these we can see (and deduce):

{#emp, #skill} is a key for the relation schema
(verify this claim!)

79 / 99

First Normal Form (1NF)

• A basic normalization condition to start with

Usually implicitly required

As opposed to those that follow, it is not based on FDs

• A relation is in 1NF if all its attributes are single-valued

That is, attributes take atomic values, not set-values

• A condition imposed on the schema, as all the normalization
conditions

It restricts the data domains for the attributes, and instances
of the relation schema

• A relation with attributes that are not single-valued can be
replaced by one that does have the required property

80 / 99

Example:

#emp dept. degrees

e234 Hydraulics {Engineer, Master, PhD}
e341 Systems {Engineer, MBA}
· · · · · · · · ·

;

#emp dept. degree

e234 Hydraulics Engineer
e234 Hydraulics Master
e234 Hydraulics PhD
e341 Systems Engineer
e341 Systems MBA
· · · · · · · · ·

• Not necessarily “good”, but 1NF

• In general, RDBMSs do not allow the creation (population) of
relations that are not in 1NF

• They are difficult to update (update elements of sets?)

Or check for FD satisfaction, among other issues

81 / 99

A universal relation in 1NF for the running example:

emp info

#emp emp name · · · #skill skill name skill date skill level

09112 Jara · · · 44 librarian Mar/95 12
09112 Jara · · · 26 mecanog Jun/97 10
09112 Jara · · · 89 word-proc Ene/98 12
12231 Soto · · · 26 mecanog Abr/97 5
12231 Soto · · · 39 archivist Jul/97 7
13597 Brown · · · 26 mecanog Sep/97 6
14131 Barros · · · 26 mecanog May/97 9
14131 Barros · · · 89 word-proc Sep/97 10
· ·

• FDs: #emp → emp name, emp phone, dep name

dep name → dep phone, dep man

#skill → skill name

#emp, #skill → skill date, skill level

A candidate key is {#emp, #skill}
• All FDs are satisfied by relation (instance) emp info above

• Table presents several anomalies

Revealing a bad design

• 1NF is not enough
82 / 99

emp info
#emp emp name · · · #skill skill name skill date skill level

09112 Jara · · · 44 librarian Mar/95 12
09112 Jara · · · 26 mecanog Jun/97 10
09112 Jara · · · 89 word-proc Ene/98 12
12231 Soto · · · 26 mecanog Abr/97 5
12231 Soto · · · 39 archivist Jul/97 7
13597 Brown · · · 26 mecanog Sep/97 6
14131 Barros · · · 26 mecanog May/97 9
14131 Barros · · · 89 word-proc Sep/97 10
· ·

#emp → emp name, emp phone, dep name

dep name → dep phone, dep man

#skill → skill name

#emp, #skill → skill date, skill level

Candidate key: {#emp, #skill}

• Every time a #skill value appears, the same skill name

has to appear

• Every time we want to add a skill to an employee, we have to
repeat all the employee’s info, e.g. emp name

• Notice that both skill name and emp name functionally
depend on a part of the key

And they do not belong to any candidate key
83 / 99

Second Normal Form (2NF)

• A relation schema is in 2NF if it is in 1NF, and

Every attribute not belonging to a candidate key does not
depend only on a proper subpart of a candidate key

• More formally:

For every candidate key A and attribute A not belonging to
any candidate key (in particular, A /∈ A), there is no A’ ⫋ A,
such that A’ → A

• Equivalently: A → A, and A /∈ A, and A does not belong to
any candidate key =⇒ A is not proper subset of any key

• Relation (schema) emp info on page 83 is not in 2NF

E.g. skill name depends only upon #skill, etc.

• A relational schema is in 2NF if each of its relation schemas is
in 2NF (w.r.t. their FDs)

84 / 99

Example: Relation schema R(A, B, C), with
dependencies as shown A B

C

A is #student

B is course section

C is instructor name

• It is not in 2NF:

#student, course section → instructor name

course section → instructor name

• Neither A ̸→ B nor B ̸→ A: {A, B} is a candidate key

• C depends only partially upon the key {A,B}
On a proper subset of the key (on {B})

• C does not belong to any candidate key:

If it is added to the only (candidate) key, {A,B}, the result is
non-minimal (C can be discarded)

• What consequences?

85 / 99

• There are some problems if we have those attributes in a
single relation course(A,B,C)

• We cannot add info about a course and its instructor without
having students

• For each student in the same section, the same instructor
name has to be repeated

• The normalization process is based on the decomposition of
relation schemas into relation schemas with a smaller number
of attributes

To eliminate anomalies like those above

• Not every decomposition performed to achieve 2NF has
desirable properties

• What are good properties of a decomposition?

• We need to investigate properties decompositions in their own
right

86 / 99

Decompositions:

T (A,B,C)

A B C
a1 100 c1
a2 200 c2
a3 300 c3
a4 200 c2

;

T1(A,B)

A B
a1 100
a2 200
a3 300
a4 200

and

T2(B,C)

B C
100 c1
200 c2
300 c3

• Some natural requirements are satisfied here

• Set of attributes of T is the union of the sets of attributes of
T1 and T2 (allowing shared attributes)

• For every DB instance D, the instances T1(D),T2(D) are
obtained from T (D) by projection on the corresponding
attributes

(So, T1,T2 can be seen as projection views defined on T)

• Are these the only good properties we expect from a
decomposition?

87 / 99

• Through the decomposition process, we also expect to
preserve information

Both positive and negative: no data added, no data lost

• Can we always put back together the original information by
joining the decomposed data?

• This should depend only on the participating relation schemas
and dependencies

For all possible instances!

• What conditions on the participating schema and subschemas
and the dependencies thereof to ensure no information loss?

T (A, B, C)

A B C
a1 100 c1
a2 200 c2
a3 300 c3
a4 200 c4

;

T1(A, B)

A B
a1 100
a2 200
a3 300
a4 200

and

T2(B, C)

B C
100 c1
200 c2
300 c3
200 c4

T (D) ⫋

T1(D) 1B T2(D)
(negative information

about T (D) lost)

88 / 99

• Decomposition of a relation schema T into relation schemas
T1, . . . ,Tk With Attr(T) =

⋃
i Attr(Ti)

• For T (D) an instance for T : Ti (D) := ΠAttr(Ti)T (D)

Ti (D) becomes an instance for Ti

• The decomposition is lossless if for every instance T (D) of T :

T (D) = T1(D) 1 T2(D) 1 . . . 1 Tk(D) (*)

• Implicit requirement: the smaller schemas share attributes for
the join; otherwise, use the cartesian product

• The decomposition on page 88 is not lossless

One instance is good enough as a counterexample

• How can we check that a decomposition is lossless?

• Appealing to all possible instances?

• Not very practical or possible ...
89 / 99

• Anything better? More operational? Based on what?

• Assume we have instead: T (A,B,C)

A B C
a1 100 c1
a2 200 c2
a3 300 c3

With the FD B → C on the schema

Satisfied by this instance
(but not by the one on page 88)

T (A, B, C)

A B C
a1 100 c1
a2 200 c2
a3 300 c3
a4 200 c2

;

T1(A, B)

A B
a1 100
a2 200
a3 300
a4 200

and

T2(B, C)

B C
100 c1
200 c2
300 c3

Now: T (D) = T1(D) 1B T2(D)

• Problematic combination was related to the lack of this FD

• Let us try to uncover conditions based on the presence of
(satisfied) FDs that guarantee a lossless decomposition

90 / 99

