• Relation schema \overline{T} with attributes $Attr(T)$

Decomposed into relation schemas as follows:

- T_1 with attributes $Attr(T_1)$
- T_2 with attributes $Attr(T_2)$
- Attr (T) = Attr (T_1) \cup Attr (T_2)
- Theorem: Assume from the FDs for T we can derive: $Attr(T_1) \cap After(T_2) \rightarrow After(T_1)$, or Attr(T₁)∩Attr(T₂) \rightarrow Attr(T₂),
	- That is, $Attr(T_1) \cap Attr(T_2)$ is superkey for T_1 or T_2

Then, the decomposition of \overline{T} into \overline{T}_1 and \overline{T}_2 is lossless (for instances of \overline{T} that satisfy its FDs)

• A useful criterion that depends on the schema and its dependencies, not on potential instances

- The attributes in the FDs above appear all in T 's schema Then, FD derivation refers to a single schema
- Example on page 90 revisited: $\mathcal{T}(A, B, C): B \to C$ Attr(T₁(A, B)) ∩ Attr(T₂(B, C)) = {B}

Does any of these hold?

- $B \rightarrow C + B \rightarrow AB$? or NO! $- B \rightarrow C + B \rightarrow BC$? YES!
- Then, the decomposition is lossless for every instance of T that satisfies the FD $B \to C$

Notice: $B \to C$ is an implied FD for subschema $T_2(B, C)$

- We can decompose a table through several decomposition steps of two tables (obtaining implied FDs for the new tables)
- We can use the theorem with the (derived) FDs to verify that each of the subsequent decompositions is lossless

Back to 2NF:

• Example: (cont.) We had:

emp info(#emp, emp name, emp phone, dep name, dep phone, dep man, #skill, skill name, skill date, skill level)

#emp #ski

dep_name

• The only candidate key is:

 ${#emp, #skill}$

- ski name ski level **emp_phone ski _date** Several attributes functionally depend only on a part of the dep_man • Relation schema not in 2NF key, e.g. emp_name, ski_level
- Bring the schema into 2NF through a decomposition
- The resulting relations schemas should be in 2NF
- We want a lossless decomposition

This is not a requirement for 2NF (which is checked on a single relation schema)

emp_info(#emp, emp_name, emp_phone, dep_name, dep_phone, dep_man, #skill, skill name, skill date, skill level)

- Decomposition 1: Attributes emp_name, emp_phone, dep name, dep phone, dep man depend only partially on the primary key And they do not belong to any candidate key
- The latter condition should be checked, considering all possible candidate keys In this example there is only a single candidate key
- Break the partial dependency! A possible decomposition is: emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone) emp_skill1(#emp,#skill, skill_name, skill_date, skill_level)
- Lossless? Each relation schema in 2NF?

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone) emp_skill1(#emp,#skill, skill_name, skill_date, skill_level)

- For emp_skill1 we derive that $\{\text{\#emp}, \text{ #skill}\}$ is a key
- \bullet In emp skill1 attribute skill name partially depends on the key $\{ \text{#emp}, \text{#skill} \}$ (not belonging to any candidate key)
- Lossless decomposition To schema emp info the theorem can be applied: $Attr(emp1) \cap attr(emp-skill1) = \{\#emp\}$ \longrightarrow Attr(emp1)
Yes! (see page 93)
- First relation schema in 2NF?
• Second relation schema in 2NF? No! (see above)
- \bullet Second relation schema in $2NF$?
- Decomposition 2: To break partial dependency

emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone) skill (#skill, skill_name) emp skill(#emp,#skill, skill date, skill level)

- One can verify that the decomposition of emp_skill1 into emp skill and skill is lossless
- Then, the decomposition of emp_info into $\{emp1, skill$. emp_skill } is lossless
- The three resulting relation schemas are now all in 2NF And the new resulting relational schema is in 2NF
- Is 2NF good enough?

• Let us see what we have with what we obtained:

emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone) $skill$ $\overline{(**il]}$, skill name)

emp_skill(#emp, #skill, skill_date, skill_level)

• Plus the derived FD for emp1:

 $depth_name \rightarrow dept_phone, dept_man$ In emp1 attributes dep name, dep man, dep phone (among others) do not belong to any key for the relation

• For emp1 there is a transitive FD:

 $#emp \rightarrow dep_name \rightarrow dep_man, dep_phone$ The last two attributes transitively depend on #emp

- Any problems with this relation schema?
- An instance could have redundant information: the same dept phone and manager repeated several times They have to be the same for each value of dept name

emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone)

- Update anomalies?
- What happens if a new department is created?
- It would have no employees (yet) We would need values for #emp
- We do not want null values in key attributes, #emp here
- Better keep info about departments separate
- These issues (redundancy, update anomalies) are related to the issues we uncovered in the previous slide (on dependencies and keys) ...
- To avoid these problems we move on to the 3NF

Definition: Attribute B of relation schema $R(A)$ is non-prime iff for every candidate key $A' \subseteq A$ for $R: B \notin A'$

- In other words, a non-prime attribute does not belong no any candidate key
- Contrapositively, a prime attribute of a relation belongs to some candidate key for the relation
- We can reformulate 2NF as follows:

 $R(A)$ is in 2NF if, for every non-prime attribute B, there is no candidate key A' and $A'' \subsetneq A'$, such that $A'' \to B$

• emp1(#emp, emp name, emp phone, dep name, dep man, dep phone) with $#emp \rightarrow dep_name \rightarrow dep_name$, dep_phone dep name, dep man, dep phone are non-prime A transitive dependency involving a non-prime attribute ...

- Informally, a relation schema is in 3NF if it is in 2NF and there are no transitive functional dependencies involving non-prime attributes
- More formally: (A) A relation schema (with explicit and implicit FDs) is in 3NF when the following combination is forbidden:
	- 1. $\mathsf{A} \to \mathsf{B} \to \mathsf{C}$ (A, B, C any attributes)

- 2. A a candidate key
- 3. $B \nrightarrow A$
- 4. The FDs in 1. are non-trivial (trivial as in Armstrong's first rule)
- 5. C is a non-prime attribute
- (B) Equivalently, the schema is in $3NF$ when, for every (explicit or implicit) FD $\mathbf{D} \rightarrow \mathbf{E}$, at least one of the following holds:
	- 1. The dependency is trivial, or
	- 2. D is a superkey for the relation, or
	- 3. Each attribute in $E \setminus D$ is prime
- Exercise: (a) Verify the equivalence of (A) and (B) above. (b) Verify that in both cases the schema is also in 2NF
- The example on page 99 with condition (A):

emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone) Not in 3NF: $\{\text{#emp}\}\rightarrow \{\text{dep_name}\}\rightarrow \text{dep_name}$ is FD of the form $\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C}$ and satisfies the combination

• Same example with condition (B): emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone) Not in 3NF: $\{$ dept_name $\}$ \rightarrow $\{$ dep_man $\}$ is FD of the form $\mathbf{D} \rightarrow \mathbf{E}$, and none of 1.-3. holds It is not trivial, dept name is not a superkey, and $E \setminus D = \{ \text{dep_man} \}$ is non-prime

- Having already 2NF, 3NF becomes easier to verify
- The relation schema $\mathsf{n}(\equiv)$ previous example:

emp1(#emp, emp_name, emp_phone, dep_name, dep_man, dep_phone) has transitive dependency: $#emp \rightarrow dep_name \rightarrow dep_name, dep_phone$

- Non-prime attributes dep man and dep phone functionally depend upon non-prime attribute dep_name The latter strictly depends on a key attribute Then, the schema is not in 3NF
- To break the transitive dependency, decompose via dep_name
- Additional decomposition:

 emp ($#emp$, emp _name, emp _phone, dep _name) dept(dep name, dep man, dep phone) skill(#skill, skill name) emp_skill(#emp, #skill, skill_date, skill_level) emp(#emp, emp_name, emp_phone, dep_name) dept(dep name, dep man, dep phone) skill(#skill, skill name) emp_skill(#emp, #skill, skill_date, skill_level)

- Each table does not contain any transitive FD involving non-prime attributes
- New relational schema is in 3NF
- The problem of redundancy disappeared We can create new departments without worrying about employees
- Is the decomposition of the first table emp1 lossless?

Yes! Yes! Apply "the theorem" to emp1: $Attr(emp) \cap Attr(dept) = \{dep_name\} \rightarrow Attr(dept)$

emp(#emp, emp name, emp phone, dep name) dept(dep name, dep man, dep phone)

- We have key dependencies for the new relation squemas $emp: #emp \rightarrow emp_name, emp_phone, dep_name$ $dept: dept_name \rightarrow dept_phone, dept_man$
- They imply the FDs for the original relation emp1
- The FDs for emp1 imply the new key dependencies
- This reasoning about implication of FDs can be made relative to the original schema emp1 Where it makes sense to analyze all these dependencies
-
- Can we always achieve this preservation of FDs?
- This is a question about preservation of the data model semantics

• There is a polynomial-time algorithm to decompose a relation schema into a set of relation schemas that are in 3NF w.r.t. their derived FDs

P. A. Bernstein. "Synthesizing Third Normal Form Relations from Functional Dependencies". ACM Trans. Database Syst., 1976, 1(4):277-298

- The example shows the idea: break transitive dependencies
- With the following guaranteed properties:
	- The decomposition is lossless
	- The FDs are preserved
- First property enforced by construction
- About the second property:

The set \mathcal{F}_0 of FDs for the original schema is logically equivalent to the union \mathcal{F}' of the sets of derived (or "projected") FDs for the relation schemas in the decomposition (in the semantic or symbolic sense)

• The algorithm does not check 3NF, but enforces 3NF by construction

• Actually, deciding if a schema in in 3NF is NP-complete!

J. H. Jou, P. C. Fischer. "The Complexity of Recognizing 3NF Relation Schemes". Inf. Process. Lett., 1982, 14(4):187-190

• The source of complexity of deciding 3NF is non-primality checking

It appeals to finding all candidate keys, i.e. minimal superkeys

• In general, checking minimality under set inclusion is a source of complexity

- Is 3NF enough?
- To avoid redundancy and update anomalies? Example: Relation schema ZipCodes(City, Street, Zip) FDs: *City*, *Street* \rightarrow *Zip* and *Zip* \rightarrow *City*
- Redundant information is likely: with the same $(City, Zip)$ subtuples
- Is this schema in 3NF?

Non-prime attributes?

Candidate keys: $\{City, Street\}$ and $\{Zip, Street\}$

- All attributes belong to some candidate key No non-prime attributes
- Relation schema is trivially in 3NF
- Can we improve on this?

The Boyce-Codd Normal Form (BCNF)

- A relation schema is in BCNF w.r.t. its FDs if no attribute transitively depends upon a candidate key
- In previous example: $City, Street \rightarrow Zip \rightarrow City$ (*) The schema is not in BCNF
- More precisely, the following combination cannot happen:
	- (from the schema with derived FDs) 1. $\mathsf{A} \to \mathsf{B} \to \mathsf{C}$ (A, B, C any attributes)
	- 2. A candidate key, C an attribute
	- 3. The FDs in 1. are non-trivial
	- 4. $\mathbf{B} \not\rightarrow \mathbf{A}$ (in particular, **B** cannot be superkey)
- With $(*)$ this does happen!
- These conditions are similar to those for 3NF 3NF only for non-prime attributes: BCNF more demanding
- Then trivially: $BCNF \Rightarrow 3NF$ By counterexample above: $3NF \nrightarrow BCNF$

• An equivalent condition for BCNF: (check it!)

BCNF \iff For attributes $D \notin X$: If $X \rightarrow D$, then X is a superkey

• Another general fact that can be proved:

If a relation schema in 3NF is not in BCNF, then it has at least two intersecting candidate keys that are composite (have more than one attribute)

- If this does not happen, then BCNF and 3NF coincide In this case: $3NF \Rightarrow BCNF$
- $\frac{\text{Exercise:}}{\text{Exercise:}}$ Check the last schema for our running example is in BCNF $(see page 103)$
- Natural questions:
	- 1. How expensive is to decide BCNF?
	- 2. Is there a decomposition algorithm?
	- 3. If yes, with what nice or bad properties?
- Deciding if a relation schema with FDs is in BCNF?
- Deciding BCNF: With initial set $\mathcal F$ of explicit FDs
	- 1. Compute deductive closure \mathcal{F}^+ (derived FDs) $\qquad \mathcal{F} \subseteq \mathcal{F}^+$ This can be done in linear time (see reference on page 71)
	- 2. Non-trivial FDs are of the form $X \rightarrow D$ with $D \notin X$ Check for them if \bf{X} is superkey (using (**) on page 109)
- Checking superkey could be easier that checking key The latter includes checking minimality (something that usually adds complexity)
- Apparently easier than deciding 3NF
- However, deciding if a relation schema with FDs is in BCNF is provably difficult

Actually, coNP-hard (see paper by Beeri and Bernstein, 1979, op. cit.)

• Decompositions to reach BCNF?

With good properties?

• Example: Schema *Wine* (*Vineyard*, *Region*, *Country*) FDs: Vineyard, Country \rightarrow Region & Region \rightarrow Country (similar to preceding example)

Wine(Vineyard, Region, Country) \rightsquigarrow Wine1(Vineyard, Region), Wine2(Region, Country)

- The last two are in BCNF (trivially, no transitivity)
- The decomposition is lossless, by "the theorem" For intersection attribute Region, in Wine2: Region \rightarrow Country (A reason, together with breaking the partial dependency $Region \rightarrow Country$, for attempting the decomposition above)
- However, The FDs are not be preserved: No way derive that Vineyard is a key for Wine1 (it has trivial key $\{V_{\text{ineyard}}, \text{Region}\}\$)