
• Relation schema T with attributes Attr(T)

Decomposed into relation schemas as follows:

- T1 with attributes Attr(T1)

- T2 with attributes Attr(T2)

- Attr(T) = Attr(T1) ∪ Attr(T2)

• Theorem: Assume from the FDs for T we can derive:

Attr(T1)∩Attr(T2) → Attr(T1), or

Attr(T1)∩Attr(T2) → Attr(T2),

That is, Attr(T1)∩Attr(T2) is superkey for T1 or T2

Then, the decomposition of T into T1 and T2 is lossless
(for instances of T that satisfy its FDs)

• A useful criterion that depends on the schema and its
dependencies, not on potential instances

91 / 121

• The attributes in the FDs above appear all in T ’s schema

Then, FD derivation refers to a single schema

• Example on page 90 revisited: T (A,B,C) : B → C

Attr(T1(A,B)) ∩ Attr(T2(B,C)) = {B}
Does any of these hold?

- B → C ⊢ B → AB ? or NO!

- B → C ⊢ B → BC ? YES!

Then, the decomposition is lossless for every instance of T
that satisfies the FD B → C

Notice: B → C is an implied FD for subschema T2(B,C)

• We can decompose a table through several decomposition
steps of two tables (obtaining implied FDs for the new tables)

• We can use the theorem with the (derived) FDs to verify that
each of the subsequent decompositions is lossless

92 / 121

Back to 2NF:

• Example: (cont.) We had:

emp info(#emp, emp name, emp phone, dep name, dep phone, dep man,

#skill, skill name, skill date, skill level)

#emp #ski

emp_name ski _name ski _level

emp_phone ski _date

dep_name

dep_phone dep_man

• The only candidate key is:

{#emp, #skill}
• Relation schema not in 2NF

Several attributes functionally depend only on a part of the
key, e.g. emp name, ski level

• Bring the schema into 2NF through a decomposition

• The resulting relations schemas should be in 2NF

• We want a lossless decomposition

This is not a requirement for 2NF (which is checked on a
single relation schema)

93 / 121

emp info(#emp, emp name, emp phone, dep name, dep phone, dep man,

#skill, skill name, skill date, skill level)

• Decomposition 1: Attributes emp name, emp phone,
dep name, dep phone, dep man depend only partially on
the primary key

And they do not belong to any candidate key

• The latter condition should be checked, considering all
possible candidate keys

In this example there is only a single candidate key

• Break the partial dependency! A possible decomposition is:

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

emp skill1(#emp,#skill, skill name, skill date, skill level)

• Lossless? Each relation schema in 2NF?

94 / 121

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

emp skill1(#emp,#skill, skill name, skill date, skill level)

• For emp skill1 we derive that {#emp, #skill} is a key

• In emp skill1 attribute skill name partially depends on the
key {#emp, #skill} (not belonging to any candidate key)

• Lossless decomposition

To schema emp info the theorem can be applied:

Attr(emp1) ∩ Attr(emp skill1) = {#emp}
−→ Attr(emp1)

• First relation schema in 2NF? Yes! (see page 93)

• Second relation schema in 2NF? No! (see above)

• Decomposition 2: To break partial dependency

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

skill(#skill, skill name)

emp skill(#emp,#skill, skill date, skill level)

95 / 121

• One can verify that the decomposition of emp skill1 into
emp skill and skill is lossless

• Then, the decomposition of emp info into {emp1, skill,
emp skill} is lossless

• The three resulting relation schemas are now all in 2NF

And the new resulting relational schema is in 2NF

• Is 2NF good enough?

96 / 121

• Let us see what we have with what we obtained:

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

skill(#skill, skill name)

emp skill(#emp,#skill, skill date, skill level)

• Plus the derived FD for emp1:

dept name → dept phone, dept man

In emp1 attributes dep name, dep man, dep phone

(among others) do not belong to any key for the relation

• For emp1 there is a transitive FD:

#emp → dep name → dep man, dep phone

The last two attributes transitively depend on #emp

• Any problems with this relation schema?

• An instance could have redundant information: the same
dept phone and manager repeated several times

They have to be the same for each value of dept name

97 / 121

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

• Update anomalies?

• What happens if a new department is created?

• It would have no employees (yet)

We would need values for #emp

• We do not want null values in key attributes, #emp here

• Better keep info about departments separate

• These issues (redundancy, update anomalies) are related to
the issues we uncovered in the previous slide (on dependencies
and keys) ...

• To avoid these problems we move on to the 3NF

98 / 121

3NF: First an important notion ...

Definition: Attribute B of relation schema R(A) is non-prime
iff for every candidate key A’ ⫅ A for R: B /∈ A’

• In other words, a non-prime attribute does not belong no any
candidate key

• Contrapositively, a prime attribute of a relation belongs to
some candidate key for the relation

• We can reformulate 2NF as follows:

R(A) is in 2NF if, for every non-prime attribute B, there is
no candidate key A’ and A” ⫋ A’, such that A” → B

• emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

with #emp → dep name → dep man, dep phone

dep name, dep man, dep phone are non-prime

A transitive dependency involving a non-prime attribute ...

99 / 121

• Informally, a relation schema is in 3NF if it is in 2NF and
there are no transitive functional dependencies involving
non-prime attributes

• More formally: (A) A relation schema (with explicit and
implicit FDs) is in 3NF when the following combination is
forbidden:

1. A → B → C (A,B, C any attributes)

2. A a candidate key
3. B ̸→ A
4. The FDs in 1. are non-trivial (trivial as in Armstrong’s first rule)

5. C is a non-prime attribute

(B) Equivalently, the schema is in 3NF when, for every
(explicit or implicit) FD D → E, at least one of the

following holds:

1. The dependency is trivial, or
2. D is a superkey for the relation, or
3. Each attribute in E∖D is prime

100 / 121

• Exercise: (a) Verify the equivalence of (A) and (B) above.
(b) Verify that in both cases the schema is also in 2NF

• The example on page 99 with condition (A):

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

Not in 3NF: {#emp} → {dep name} → dep man

is FD of the form A → B → C and satisfies the combination

• Same example with condition (B):

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

Not in 3NF: {dept name} → {dep man} is FD of the form
D → E, and none of 1.-3. holds

It is not trivial, dept name is not a superkey, and
E∖D = {dep man} is non-prime

101 / 121

• Having already 2NF, 3NF becomes easier to verify

• The relation schema n the previous example:

emp1(#emp, emp name, emp phone, dep name, dep man, dep phone)

has transitive dependency: #emp → dep name → dep man, dep phone

• Non-prime attributes dep man and dep phone functionally
depend upon non-prime attribute dep name

The latter strictly depends on a key attribute

Then, the schema is not in 3NF

• To break the transitive dependency, decompose via dep name

• Additional decomposition:

emp(#emp, emp name, emp phone, dep name)

dept(dep name, dep man, dep phone)

skill(#skill, skill name)

emp skill(#emp,#skill, skill date, skill level)

102 / 121

Leo's Notebook
Highlight

Leo's Notebook
Sticky Note
in

emp(#emp, emp name, emp phone, dep name)

dept(dep name, dep man, dep phone)

skill(#skill, skill name)

emp skill(#emp,#skill, skill date, skill level)

• Each table does not contain any transitive FD involving
non-prime attributes

• New relational schema is in 3NF

• The problem of redundancy disappeared

We can create new departments without worrying about
employees

• Is the decomposition of the first table emp1 lossless?

Yes! Apply “the theorem” to emp1:

Attr(emp) ∩ Attr(dept) = {dep name} → Attr(dept)

103 / 121

emp(#emp, emp name, emp phone, dep name)

dept(dep name, dep man, dep phone)

• We have key dependencies for the new relation squemas

emp : #emp → emp name, emp phone, dep name

dept : dept name → dept phone, dept man

• They imply the FDs for the original relation emp1

• The FDs for emp1 imply the new key dependencies

• This reasoning about implication of FDs can be made relative
to the original schema emp1

Where it makes sense to analyze all these dependencies

• Can we always achieve this preservation of FDs?

• This is a question about preservation of the data model
semantics

104 / 121

• There is a polynomial-time algorithm to decompose a relation
schema into a set of relation schemas that are in 3NF w.r.t.
their derived FDs
P. A. Bernstein. “Synthesizing Third Normal Form Relations from Functional
Dependencies”. ACM Trans. Database Syst., 1976, 1(4):277-298

• The example shows the idea: break transitive dependencies

• With the following guaranteed properties:

- The decomposition is lossless

- The FDs are preserved

• First property enforced by construction

• About the second property:

The set F0 of FDs for the original schema is logically equivalent to the

union F ′ of the sets of derived (or “projected”) FDs for the relation

schemas in the decomposition (in the semantic or symbolic sense)

• The algorithm does not check 3NF, but enforces 3NF by
construction

105 / 121

• Actually, deciding if a schema in in 3NF is NP-complete!

J. H. Jou, P. C. Fischer. “The Complexity of Recognizing 3NF Relation
Schemes”. Inf. Process. Lett., 1982, 14(4):187-190

• The source of complexity of deciding 3NF is non-primality
checking

It appeals to finding all candidate keys, i.e. minimal superkeys

• In general, checking minimality under set inclusion is a source
of complexity

106 / 121

• Is 3NF enough?

• To avoid redundancy and update anomalies?

Example: Relation schema ZipCodes(City ,Street,Zip)

FDs: City ,Street → Zip and Zip → City

• Redundant information is likely: with the same (City ,Zip)
subtuples

• Is this schema in 3NF?

Non-prime attributes?

Candidate keys: {City , Street} and {Zip,Street}
• All attributes belong to some candidate key

No non-prime attributes

• Relation schema is trivially in 3NF

• Can we improve on this?

107 / 121

The Boyce-Codd Normal Form (BCNF)

• A relation schema is in BCNF w.r.t. its FDs if no attribute
transitively depends upon a candidate key

• In previous example: City , Street → Zip → City (*)

The schema is not in BCNF

• More precisely, the following combination cannot happen:
(from the schema with derived FDs)

1. A → B → C (A, B, C any attributes)

2. A candidate key, C an attribute
3. The FDs in 1. are non-trivial
4. B ̸→ A (in particular, B cannot be superkey)

• With (*) this does happen!

• These conditions are similar to those for 3NF

3NF only for non-prime attributes: BCNF more demanding

• Then trivially: BCNF ⇒ 3NF

By counterexample above: 3NF ̸⇒ BCNF
108 / 121

• An equivalent condition for BCNF: (check it!)

BCNF ⇐⇒ For attributes D /∈ X: (**)
If X → D, then X is a superkey

• Another general fact that can be proved:

If a relation schema in 3NF is not in BCNF, then it has at
least two intersecting candidate keys that are composite (have
more than one attribute)

• If this does not happen, then BCNF and 3NF coincide

In this case: 3NF ⇒ BCNF

• Exercise: Check that the last schema for our running example
is in BCNF (see page 103)

• Natural questions:

1. How expensive is to decide BCNF?
2. Is there a decomposition algorithm?
3. If yes, with what nice or bad properties?

109 / 121

Leo's Notebook
Sticky Note
using 2nd item above

• Deciding if a relation schema with FDs is in BCNF?

• Deciding BCNF: With initial set F of explicit FDs

1. Compute deductive closure F+ (derived FDs) F ⊆ F+

This can be done in linear time (see reference on page 71)

2. Non-trivial FDs are of the form X → D with D /∈ X

Check for them if X is superkey (using (**) on page 109)

• Checking superkey could be easier that checking key

The latter includes checking minimality (something that
usually adds complexity)

• Apparently easier than deciding 3NF

• However, deciding if a relation schema with FDs is in BCNF is
provably difficult

Actually, coNP-hard (see paper by Beeri and Bernstein, 1979, op. cit.)

110 / 122

• Decompositions to reach BCNF?

With good properties?

• Example: Schema Wine(Vineyard ,Region,Country)

FDs: Vineyard ,Country → Region & Region → Country
(similar to preceding example)

Wine(Vineyard ,Region,Country) ;

Wine1(Vineyard ,Region), Wine2(Region,Country)

• The last two are in BCNF (trivially, no transitivity)

• The decomposition is lossless, by “the theorem”

For intersection attribute Region, in Wine2: Region → Country

(A reason, together with breaking the partial dependency Region → Country ,

for attempting the decomposition above)

• However, The FDs are not be preserved: No way derive that
Vineyard is a key for Wine1 (it has trivial key {Vineyard ,Region})

111 / 121

