e Relation schema T with attributes Attr(T)

Decomposed into relation schemas as follows:

- Ty with attributes Attr(Ty)
- T, with attributes Attr(T3)
- Attr(T) = Attr(T1) U Attr(T2)

e Theorem: Assume from the FDs for T we can derive:
Attr(T1)NAttr(Ta) — Attr(T1), or
Attr(T1)NAttr(To) — Attr(Ta),

That is, Attr(T1)NAttr(Ts) is superkey for Ty or Tp

Then, the decomposition of T into T; and T is lossless
(for instances of T that satisfy its FDs)

e A useful criterion that depends on the schema and its
dependencies, not on potential instances

91/121

e The attributes in the FDs above appear all in T's schema

Then, FD derivation refers to a single schema
e Example on page 90 revisited: T(A,B,C): B—C
Attr(T1(A, B)) N Attr(T2(B, C)) = {B}
Does any of these hold?

-B—-C F B—AB? or NO!
-B—-C - B—-BC? YES!

Then, the decomposition is lossless for every instance of T
that satisfies the FD B — C

Notice: B — C is an implied FD for subschema T»(B, C)

e We can decompose a table through several decomposition
steps of two tables (obtaining implied FDs for the new tables)

e We can use the theorem with the (derived) FDs to verify that
each of the subsequent decompositions is lossless
92/121

Back to 2NF:
e Example: (cont.) We had:
emp_info(#emp, emp_name, emp_phone,dep name, dep_phone, dep_man,

#skill, skill name, skill_date, skill,level)

#emp #ski
|
|

\ \ { I
/ \

e Relation schema not in 2NF .,mp,n.-,...e\k ski,nama\\ ski_level dep_phone dep. man

emp_phone ski _date

Several attributes functionally depend only on a part of the
key, e.g. emp_name, ski _level

e The only candidate key is:
{#temp, #skill}

dep_name

~

e Bring the schema into 2NF through a decomposition
e The resulting relations schemas should be in 2NF

e We want a lossless decomposition

This is not a requirement for 2NF (which is checked on a

single relation schema)
93/121

emp_info(#emp, emp-name, emp_phone,dep_name, dep_phone, dep-man,

#skill, skill name, skill_date, skill,level)

Decomposition 1: Attributes emp_name, emp_phone,
dep_name, dep_phone, dep_man depend only partially on
the primary key

And they do not belong to any candidate key

The latter condition should be checked, considering all
possible candidate keys

In this example there is only a single candidate key

Break the partial dependency! A possible decomposition is:

empl (#emp, emp_name, emp_phone, dep-name, dep-man, dep-phone)

emp_skillil (#emp,#skill, skill name, skill date, skill_level)

Lossless? Each relation schema in 2NF?

94 /121

empl (#emp, emp_name, emp_phone, dep-name, dep-man, dep-phone)

emp_skillil (#emp,#skill, skill name, skill date, skill_level)
For emp_skilll we derive that {#emp, #skill} is a key

In emp_skilll attribute skill name partially depends on the
key {#emp, #skill} (not belonging to any candidate key)
Lossless decomposition
To schema emp_info the theorem can be applied:
Attr(empl) N Attr(emp_skilll) = {#emp}
— Attr(empl)
First relation schema in 2NF? Yes! (see page 93)

Second relation schema in 2NF? No! (see above)

Decomposition 2: To break partial dependency

empl (#emp, emp_name, emp_phone, dep-name, dep-man, dep-phone)
skill(#skill, skill name)
emp_skill (#emp,#skill, skill_date, skill_level)

95 /121

One can verify that the decomposition of emp_skilll into
emp_skill and skill is lossless

Then, the decomposition of emp_info into {empl,skill,
emp_skill} is lossless

The three resulting relation schemas are now all in 2NF

And the new resulting relational schema is in 2NF

Is 2NF good enough?

96 /121

Let us see what we have with what we obtained:

empl (#emp, emp_name, emp_phone, dep_name, dep.man, dep_phone)
skill(#skill, skill name)

emp_skill (#emp,#skill, skill date, skill_level)

Plus the derived FD for emp1:
dept_name — dept_phone,dept_man

In empl attributes dep_name, dep man, dep_phone
(among others) do not belong to any key for the relation
For empl there is a transitive FD:

#emp — dep_name — dep._man,dep_phone

The last two attributes transitively depend on #emp
Any problems with this relation schema?

An instance could have redundant information: the same
dept phone and manager repeated several times

They have to be the same for each value of dept_name
97/121

empl (#emp, emp_name, emp_phone, dep-name, dep-man, dep-phone)

Update anomalies?
What happens if a new department is created?

It would have no employees (yet)

We would need values for #emp
We do not want null values in key attributes, #emp here
Better keep info about departments separate

These issues (redundancy, update anomalies) are related to
the issues we uncovered in the previous slide (on dependencies
and keys) ...

To avoid these problems we move on to the 3NF

98 /121

3NF: First an important notion ...

Definition: Attribute B of relation schema R(A) is non-prime
iff for every candidate key A’C A for R: B¢ A’

e In other words, a non-prime attribute does not belong no any
candidate key

e Contrapositively, a prime attribute of a relation belongs to
some candidate key for the relation

e We can reformulate 2NF as follows:

R(A) is in 2NF if, for every non-prime attribute B, there is
no candidate key A’ and A” ; A’ such that A” — B

® empl(#emp, emp_name, emp_phone, dep_name, dep-man, dep-phone)

with #emp — dep.name — dep_man,dep_phone
dep_name, dep_man, dep_phone are non-prime

A transitive dependency involving a non-prime attribute ...

99 /121

e Informally, a relation schema is in 3NF if it is in 2NF and
there are no transitive functional dependencies involving
non-prime attributes

e More formally: (A) A relation schema (with explicit and
implicit FDs) is in 3NF when the following combination is
forbidden:

1. A-=B—=C (A,B,C any attributes)
2. A a candidate key

3. BAA

4. The FDs in 1. are non-trivial (trivial as in Armstrong's first rule)

5. C is a non-prime attribute

(B) Equivalently, the schema is in 3NF when, for every
(explicit or implicit) FD D — E, at least one of the
following holds:
1. The dependency is trivial, or

2. D is a superkey for the relation, or
3. Each attribute in E~. D is prime

100/ 121

e Exercise: (a) Verify the equivalence of (A) and (B) above.
(b) Verify that in both cases the schema is also in 2NF
e The example on page 99 with condition (A):
emp1 (#emp, empname, emp_phone, dep.name, dep.man, dep.phone)
Not in 3NF: {#emp} — {dep_name} — dep man
is FD of the form A — B — C and satisfies the combination

e Same example with condition (B):

empl (#emp, emp_name, emp_phone, dep_name, depman, dep_phone)

Not in 3NF: {dept_name} — {dep.man} is FD of the form
D — E, and none of 1.-3. holds

It is not trivial, dept_name is not a superkey, and
E ~ D = {depman} is non-prime

101 /121

Having already 2NF, 3NF becomes easier to verify
The relation schema .@previous example:

empl(#emp, emp name, emp_phone, dep name, depman, dep_phone)
has transitive dependency: #emp — dep name — dep man, dep_phone
Non-prime attributes dep_man and dep_phone functionally
depend upon non-prime attribute dep_name
The latter strictly depends on a key attribute
Then, the schema is not in 3NF

To break the transitive dependency, decompose via dep_name

Additional decomposition:
emp(#£emp, emp_name, emp_phone, dep name)
dept(dep_name, dep_man, dep_phone)
skill(#skill, skill name)
emp_skill(#emp, #skill, skill date, skill level)

102/ 121

Leo's Notebook
Highlight

Leo's Notebook
Sticky Note
in

emp(#emp, emp_name, emp_phone, dep_name)
dept(dep_name, dep_man, dep_phone)
skill(#skill, skill name)

emp_skill(#emp, #skill, skill date, skill level)

Each table does not contain any transitive FD involving
non-prime attributes

New relational schema is in 3NF

The problem of redundancy disappeared

We can create new departments without worrying about
employees

Is the decomposition of the first table emp1l lossless?
Yes! Apply “the theorem” to emp1:

Attr(emp) N Attr(dept) = {dep_name} — Attr(dept)

103 /121

emp(#emp, emp_name, emp_phone, dep_name)

dept(dep_name, dep_man, dep_phone)

We have key dependencies for the new relation squemas
emp : #emp — emp_name,emp_phone,dep_name
dept : dept_name — dept_phone,dept_man

They imply the FDs for the original relation empl
The FDs for empl imply the new key dependencies

This reasoning about implication of FDs can be made relative
to the original schema emp1

Where it makes sense to analyze all these dependencies
Can we always achieve this preservation of FDs?

This is a question about preservation of the data model
semantics

104 /121

There is a polynomial-time algorithm to decompose a relation
schema into a set of relation schemas that are in 3NF w.r.t.
their derived FDs

P. A. Bernstein. “Synthesizing Third Normal Form Relations from Functional
Dependencies”. ACM Trans. Database Syst., 1976, 1(4):277-298

The example shows the idea: break transitive dependencies

With the following guaranteed properties:
- The decomposition is lossless

- The FDs are preserved
First property enforced by construction

About the second property:

The set Fy of FDs for the original schema is logically equivalent to the
union F’ of the sets of derived (or “projected”) FDs for the relation

schemas in the decomposition (in the semantic or symbolic sense)

The algorithm does not check 3NF, but enforces 3NF by

construction
105 /121

e Actually, deciding if a schema in in 3NF is NP-complete!

J. H. Jou, P. C. Fischer. “The Complexity of Recognizing 3NF Relation
Schemes”. Inf. Process. Lett., 1982, 14(4):187-190

e The source of complexity of deciding 3NF is non-primality
checking

It appeals to finding all candidate keys, i.e. minimal superkeys

e In general, checking minimality under set inclusion is a source
of complexity

106 /121

Is 3NF enough?
To avoid redundancy and update anomalies?

Example: Relation schema ZipCodes(City, Street, Zip)
FDs: City, Street — Zip and Zip — City

Redundant information is likely: with the same (City, Zip)
subtuples

Is this schema in 3NF?
Non-prime attributes?
Candidate keys: {City, Street} and {Zip, Street}

All attributes belong to some candidate key

No non-prime attributes
Relation schema is trivially in 3NF

Can we improve on this?

107 /121

The Boyce-Codd Normal Form (BCNF)

e A relation schema is in BCNF w.r.t. its FDs if no attribute
transitively depends upon a candidate key

e In previous example: City, Street — Zip — City *)
The schema is not in BCNF

e More precisely, the following combination cannot happen:

(from the schema with derived FDs)
1. A-B—¢C (A, B, C any attributes)

2. A candidate key, C an attribute
3. The FDs in 1. are non-trivial
4. B4 A (in particular, B cannot be superkey)

e With (*) this does happen!
e These conditions are similar to those for 3NF
3NF only for non-prime attributes: BCNF more demanding

e Then trivially: BCNF = 3NF
By counterexample above: 3NF # BCNF

108 /121

An equivalent condition for BCNF: (check it!)

BCNF <= For attributes D ¢ X: (**)
If X — D, then X is a superkey
Another general fact that can be proved:

If a relation schema in 3NF is not in BCNF, then it has at
least two intersecting candidate keys that are composite (have
more than one attribute)

If this does not happen, then BCNF and 3NF coincide
In this case: 3NF = BCNF

Exercise: Check@ the last schema for our running example
is in BCNF (see page 103)

Natural questions:

1. How expensive is to decide BCNF?
2. s there a decomposition algorithm?
3. If yes, with what nice or bad properties?

109 /121

Leo's Notebook
Sticky Note
using 2nd item above

Deciding if a relation schema with FDs is in BCNF?

Deciding BCNF: With initial set F of explicit FDs
1. Compute deductive closure F* (derived FDs) F C Ft

This can be done in linear time (see reference on page 71)
2. Non-trivial FDs are of the foom X — D with D ¢ X
Check for them if X is superkey (using (**) on page 109)

Checking superkey could be easier that checking key

The latter includes checking minimality (something that
usually adds complexity)

Apparently easier than deciding 3NF

However, deciding if a relation schema with FDs is in BCNF is
provably difficult

Actually, coNP-hard (see paper by Beeri and Bernstein, 1979, op. cit.)

110/ 122

Decompositions to reach BCNF?
With good properties?

Example: Schema Wine(Vineyard, Region, Country)
FDs: Vineyard, Country — Region & Region — Country

(similar to preceding example)
Wine(Vineyard, Region, Country) ~
Winel (Vineyard, Region), Wine2(Region, Country)
The last two are in BCNF (trivially, no transitivity)

The decomposition is lossless, by “the theorem”

For intersection attribute Region, in Wine2: Region — Country

(A reason, together with breaking the partial dependency Region — Country,
for attempting the decomposition above)

However, The FDs are not be preserved: No way derive that
Vineyard is a key for Winel (it has trivial key { Vineyard, Region})

111/121

