
COMP 3400 Computational Logic and Automated
Reasoning

Winter 2018 Assignment 4

Instructions:

1. For your solution use the template file that
was posted on the course news, and follow
the instructions in it.
In particular: (a) Include at the top of the first page: full name, student
number, and email address. (b) Assignments have to be created with Latex,
and submitted in pdf format. (c) Every problem solution MUST include the
problem statement. The source file for this assignment is provided.

Latex has to be used as such, not as you would use a text editor, such as
Notepad. In particular, formulas have to be written using Latex’s mathe-
matical features, and then compiled.

2. Assignments are individual, no groups.

3. Submit by email to the instructor, with “Assignment ”Number”, CompLog”
in the subject. Include your last name in the file name! For example,
in the subject: “Assig. 4 CompLog”. The file name: “bertossi-4.pdf”.

Only a single pdf file will be accepted as submission. No tar or zip
files (or anything like that), please. Keep your Latex source files
in case you are requested to show them.

4. Explain your solution very carefully, but still be succinct with your answers.
No unnecessary verbose arguments, please. Go to the point.

Make explicit all your assumptions.

5. Not following the instructions above or the solution template file
will make you lose points.

1. [50%] (a) Write a Prolog with predicates and variables (not propositional
Prolog) that can be used to decide for an arbitrary finite string ϕ over the
alphabet {∧, ),¬, (,∨,→,↔, p, q, r, s, t, ...} (the latter stand for propositional
variables) is a well-formed propositional formula. Use a unary predicate for
this, say Decide(·).

When run with a string as an input, Prolog’s answer “yes” or “no” have
to be interpreted as the answers to the decision problem. For example, the
program should return yes when posed a query about ((p ∧ q) ∨ ¬r), say
something like: :- Decide("(p ^ q) v -r)")? But no when asked about
¬(∨p ∧ q), say :- Decide("-(v p ^ q)")?



The quotes above mean that those formulas have to be properly repre-
sented, see the enumeration below for alternatives (among others). (So, no
quotes in your program.)

The solution must include your program with an explanation of the rules,
their meaning, and the reason for having them. Also the interaction with
Prolog via the program with two representative (non-trivial) positive exam-
ples and two negative examples. Explain the interaction.

Hint: Recall the inductive definition of propositional formula given in Chap-
ter 3. There are at least three different ways to represent formulas (choose
one and stick to it for the rest of this problem):

i. Strings (and formulas) can be represented as lists, e.g. ((p1∨¬p3)∧p4)
becomes the list [(, (, p1,∨,¬, p3, ),∧, p4, )].
You may use the list manipulation predicates presented at the end of
Chapter 8 or use the “list library”.

ii. You can represent formulas as Boolean algebra terms in prefix nota-
tions, e.g. ((p1 ∨ ¬p3) ∧ p4) becomes: ∧(∨(p1,¬(p3)), p4).

iii. You can define operators in Prolog, e.g. something like (depending on
the Prolog implementation, see the manual) this for the negation and
the conjunction, resp.:

:- op(510,fx,[~]).

:- op(520,xfy,[/\]).

(The first with one argument, the second with two.)

Run your program to decide a couple of well-formed formulas and a couple
of non-legal formulas. Clearly indicate the formulas (written in Latex, as
usual) you run the program on. As usual, explain your whole methodology,
inputs, outputs, and append the execution traces.

(b) As an extension of part (a), use Prolog to define a binary predicate that
returns the length of a formula. Also, compute the lengths of the well-formed
formulas you used in part (a). Same instructions as for part (a).

Hint: Again, you have to use the inductive definition of propositional for-
mula.

2



(c) As an extension of (a), use Prolog to define a binary predicate that returns
in an output argument the list of propositional variables in the formula, e.g.
it should be:
PV ([(, (, p1,∨,¬, p3, ),∧, p4, )], [p1, p3, p4]). Do this with the formulas used
in (a) and (b).

Hint: Again, you have to use the inductive definition of propositional for-
mula.

2. [50%] In class you saw that the natural numbers can be defined from
scratch with Prolog, by using the constructors 0 and σ(·). Actually, all you
need is an arbitrary constant, say a, and a unary operation symbol (functor),
say g(·), and you can generate an isomorphic structure to that generated with
0 and σ(·).

The same can be done with lists, they can be defined from scratch from
logic (and Prolog). So, use a constant, say nil , for the empty list, and
a binary operation cons(·, ·) (again, the chosen names are not important).
Prolog provides lists and their management as built-ins, but everything can
be done from scratch.

For the problems below you have to submit the program and the interac-
tion with Prolog.

(a) Define lists, i.e. a general predicate list(·) that is true with (finite)
lists over the alphabet A = {a, b, c, d, e, f, g, h}. For example, the list
bdeh, with first element b and last h, should be represented by the term
cons(b, cons(d , cons(e, cons(h, nil)))), and list(cons(b, cons(d , cons(e,
cons(h, nil))))) should be true. Use Prolog to verify that cons(b, cons(d ,
cons(e, cons(h, nil)))) is a list, but not cons(b, cons(d , e), cons(h, nil)))).

(b) Define a binary predicate sublist(·, ·), such that sublist(L1, L2) becomes
true when L1 is a sublist of L2. Use Prolog to verify (with the repre-
sentation in (a)) that ab is a sublist of efabde. But fd is not a sublist
of the latter.

(c) Use the representation in (a) to define the length of a list. It should
be length(efabde, 6) true. Use Prolog to verify this. (You can use
Prolog’s built-in numbers and arithmetic.)

The whole assignment has to be submitted as a single PDF file,
including the traces (runs) of your runs.
Deadline: March 29, at 23:55

3


