
Brief Review of Relational Data
Management and Databases

(and a bit more)

Leopoldo Bertossi

School of Computer Science

Data Models, ER, Relational Model

To understand/manipulate/transform/update/extract/process
... data, we need to create the right models of data

What is a model?

An abstraction, a simplified description or representation of an
external reality, phenomenon
A physical phenomenon? A company? etc.

The model explicitly captures some salient, relevant aspects of
the external reality; others are left implicit

We may be interested in extracting from the model both
explicit and implicit information

There is nothing like a universal modeling language

If we want to represent mathematical relationships between
numerical variables, we may use mathematical equations
(they come in different flavors)

2 / 45

Data Models, ER, Relational Model

If we want to model data, we may (and usually) create
mathematical models of data

In data management those models are directly based on set
theory and symbolic logic

Different ways of modeling data depending on the application
and the (mathematical) elements we use to represent data

A model of data has to capture the characteristics of data:

kinds of data items
associations/relationships between data items
associations between classes of data items
dependencies between data items
natural organization of data items (if any), etc. etc.

3 / 45

Data Models, ER, Relational Model

Example:

“Peter spends $23 on a CD at CDWarehouse”

“Mary spends $30 on a book at Chapters”

Here “Peter” is a data item, the same applies to “$23”,
“$30”, “book”, “Chapters”, ...

Not only that: “Peter” is of the kind, say “Customer”, “CD”
of the kind “Article”, ...

We have categories (or concepts, classes, entities) of data
items

The concept “Customer” is related to the concept “Article”

The data item “Peter” is related to data item “CD”, but not
to “book”, etc.

How can we capture all this?

4 / 45

Data Models, ER, Relational Model

An Entity/Relationship (ER) Model:

A graphical “language” that
uses diagrams to model data

Entities: represented by
boxes; they correspond
to classes of data items
of a same kind

Teaching Professor

Student
Course

Enrolling

Tof

(1,1)

Tby

(1,inf)

Eof

(3,6)

Ein

(10,50)

Degree
DegreeLevel

Relationships: by diamonds;
they relate (data items from) different entities

Attributes: by ovals hanging from entities; representing
properties (of elements) of an entity

May also hang from relationships

Cardinality constraints: label links between relationships and
entities

5 / 45

Data Models, ER, Relational Model

Teaching Professor

Student
Course

Enrolling

Tof

(1,1)

Tby

(1,inf)

Eof

(3,6)

Ein

(10,50)

Degree
DegreeLevel

Entities: Course, Professor, Student

Relationships: Teaching, Enrolling

Course represents courses, where students from ...

Students are enrolled, and are taught by professors from ...

Professors

Attributes: Degree, Level

We could also have an attribute Term hanging from the
Enrolling relationship

... an attribute of the relationship between students and
courses

6 / 45

Data Models, ER, Relational Model

Course, Professor, Student are also called “concepts” and the
model above is also called a “conceptual model of data”

An ER model is close to the outside (data) reality that is
being modeled, close to how a user or modeler sees the world

An ER model does not fully represent how data are
represented, organized, structured, handled, ...

ER is a high-level model that does not show much about the
details of data

An ER model, being a model, is expected to stay close to the
outside reality that is being modeled

That external reality gives a meaning (semantics) to the model

7 / 45

Data Models, ER, Relational Model

Teaching Professor

Student
Course

Enrolling

Tof

(1,1)

Tby

(1,inf)

Eof

(3,6)

Ein

(10,50)

Degree
DegreeLevel

Cardinality constraints are used to capture more meaning

For a better representation with the ER model of the external
reality

They are a kind of semantic constraints

In the example, they capture:

The (external) limit on the number of students that may
register in a course (between 10 and 50)
The limit on the number of courses that each student can take
(between 3 and 6)
That each course is taught by exactly one professor, who has
to teach at least one course

8 / 45

Data Models, ER, Relational Model

Cardinality constrains can be understood as restrictions on the
mappings between entities through the entity

Item Class
Articles

(0,1)

O.K.

In particular, label (0,1) imposes that “at most one entity in
Class is associated to each entity in Item”
A very common constraint ...
(1,1) indicates “exactly one ...”
(1,N) indicates “at least one ...” (with N standing for a
generic, arbitrary number)

ER models can be extended by means of notation for
indicating sub- or super-entities (i.e. subclasses, subconcepts,
etc.), e.g. GradCourse can be defined as a subentity of Course

With inheritance of relationships and attributes ...

9 / 45

Data Models, ER, Relational Model

Relational Model of Data: (back to initial example, p. 4)

Notice that this data set is (seems to be) quite “structured”
What about this tabular representation?

Sales Customer Price Article Store ParHood Parent Child
peter $23 cd cdWarehouse peter mary
mary $30 book chapters john stu

Indeed a simplified representation
It captures the relationships between data items through a
same row in the table
And the fact that data items are of different kinds

Is this a mathematical model?

It can be the tabular presentation of a mathematical model

Based on set-theory and predicate logic, consisting of:

10 / 45

Data Models, ER, Relational Model

(A) The Schema:

An underlying data domain (data items/values as elements)

U = {peter ,mary , $23, $30, cd , book, cdWarehouse, chapters,
john, ...} (possibly infinite)

A binary (relational) predicate, ParHood, used to denote
properties of two individuals at a time

Its argument have names called “attributes”, denoted
ParHood(Parent,Child)

Attribute predicates have (sub)domains, e.g. for ParHood :

Dom(Parent) = Dom(Child) = {peter ,mary , sue, stu, joe, . . .}
⊆ U

Sales(Customer ,Price,Article,Store), a 4-ary relational
predicate (representing the structure of the table above)

A name for a property that applies to 4 individuals at a time

11 / 45

Relational Databases

Up to here, no data!

(B) The Relational Instance: D for (compatible with) the schema

D is a structure with domain U

With finite extensions for the predicates in the schema

More precisely, a finite n-ary relation PD for each n-ary
predicate P(A1, . . . ,An) in the schema

That is, PD ⊆ Dom(A1)× · · · × Dom(An)

In the example, the extension of predicate ParHood is exactly
the relation given by the table

The extension of predicate Sales is given by the table above,
i.e. a finite set of 4-tuples:

SalesD ⊆
Dom(Customer)×Dom(Price)×Dom(Article)×Dom(Store)

Both relations are usual, classical, set-theoretic relations as
seen in a discrete math course!

12 / 45

Relational Databases

The relational model can be provided in set-theoretic and
logical terms

Notice the separation between the relational schema and the
relational database itself

The schema does not have data, but it is metadata, i.e. data
about the data

In this case, how the data is organized and structured
The schema specifies the domain, relation names (database
predicates), attributes (and other things ...)
The schema can be seen in some sense as the conceptual
model of data
The extensions for the predicates in the schema provide,
together, an instance for the schema
The database (instance) is said to be compliant with the
schema if it has the structure specified by the schema
Page 4 shows a database instance for the schema defined in
page 11

13 / 45

Relational Databases

The relational database provides a clear and nice “logical view
of data”

The user should be confronted with that logical view
Without having to care much about how the material, physical
data is really stored in the computer
Or by what means data structures and access methods are used

Relational databases are computationally represented and
processed through relational database management systems

Data are organized and represented in terms of relations
Relations of fixed format (schema)
Appropriate for representing highly “structured data”
Data are processed via set-theoretic operations on relations
Through the set-theoretic algebra of relations, aka. relational
algebra
Languages of predicate logic, say relational calculus, are used
to express relational predicates, schemas, constraints, queries,
etc.

14 / 45

Relational Databases

Query: “Want the customers who have bough a CD”

Relational algebra: Π
Customer

σ
Article = ‘CD’

(Sales)

Algebraic, imperative

Relational calculus: ∃y∃z Sales(x , y , ‘cd’, z)

Logical, declarative

Variable x is not quantified (it’s free), and its possible values
are the answers

Variables y , z are existentially quantified, they matter as long
as there are values for them, but we do not care about the
values themselves ...

Positions of variables stay in correspondence with the relation
schema

(More examples coming ...)

15 / 45

Relational Databases

Example:

Supply Company Receiver Item Articles Item Class
C D1 I1 I1 K
D D2 I2 I2 K

A schema with an underlying domain, two relational
predicates, of arities 3 and 2, resp.; and four attributes

The extensions for the relational predicates are the relations
shown in the tables

Is this model capturing our outside reality?

The “meaning” of the data as found in the application
domain?

If we understand that every item in relation Supply always
belongs to a class in relation Articles, then our model is
correctly reflecting this

16 / 45

Relational Constraints

We cannot emphasize enough: A database is a model of an
external reality

Database with relations

Outside world

(model)

correspondence

As a model it can be good or bad according to how it
represents and captures the external reality

ICs help capture the meaning, the semantics, of data

ICs (are intended to) keep the semantic correspondence
between the world and the model of the world (the database)

17 / 45

Relational Constraints

In the example, if we perform the update “insert tuple
(C ,D3, I4) into Supply”, we obtain

Supply Company Receiver Item Articles Item Class
C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

This may not be admissible as a model of the real world
Not every supplied item is an official item ...
How can we prevent this from happening?

The data model, i.e. the given relational schema, is not
prohibiting this behavior

We need more ...

18 / 45

Relational Constraints

We have add integrity constraints (ICs) (aka. consistency or
semantic constraints)

Conditions that instances of the schema should satisfy

In this case we need an IC that is a referential IC:

“items in table Supply refer to items in table Articles”

Or better:

“every item appearing in table Supply appears in table
Articles (assigned to some class)”

There are languages for expressing ICs as a part of the
relational schema

In the example, if this IC is a part of the schema and has to
be satisfied, the update should not be accepted

Usually (some kinds of) ICs become part of the schema

19 / 45

Relational Constraints

Same example, but now with the extensions

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

I2 H

If in the outside world every item belongs to at most one
class, this is not a correct model

If we want “every item belongs to at most one class” to hold,
it has to be stated as an IC, with the schema

A form of cardinality constraint, namely a functional
dependency:

classes are a function of the items, or, equivalently
items functionally determine the classes

Notation: Articles : Item→ Class (not logical implication)

20 / 45

Relational Models

The data model usually created before the DB is created

Usually design of a database starts with a conceptual model in
ER form

More intuitive, closer to the outside reality, and in more
general terms

Considering the participating elements in it to which data is
associated

It is less of a model of the DB to come, but of the external
reality

A conceptual abstraction that allows to understand, visualize,
describe, ..., how data are organized

It describes the conceptual structure of the data stored in the
DB: the concepts (classes, entities) and their relationships

This part does not involve the specific, raw data

21 / 45

Relational Models

Later, in the DB design phase, the conceptual model is
transformed into a logical model, usually a relational model

Some techniques are used to produce a set of relational
predicates from the ER model

A description of the relations (tables), etc., that will be
created in the DBMS

The relational schema emerges from the data model, before
creating the DB

A relational model can also be seen as a conceptual model

But concepts and and relationships are rather implicit

The schema is (represents) data of a different kind: data
about data, i.e. metadata

Metadata (schema, etc.) are stored in the DB and can be
accessed (queried)

22 / 45

Relational Models

The initial set of obtained relational predicates is “improved
by additional transformations”

A new, right collections of tables and their logical connections
A normalization process via ICs
Avoiding, e.g. redundancy of data or updates anomalies
Obtaining a second set of tables

Next, the resulting relational model is implemented in a
RDBMS

By creating the schema

Finally, the database is populated (with data)

Obtaining an instance

Instances change frequently

Schemas not so much

When they do, we have the problem of “schema evolution”

23 / 45

Relational Models

design

implementationRDB

RDBMS

relational

model

(logical)

ER model

(conceptual)

24 / 45

Queries

The relational model of data provides a declarative query
language

It allows us to tell the DB what data we want, without having
to specify how to get it

A simple query language is based on predicate logic

A logic-based query language for relational databases is called
the relational calculus

From the example DB in page 18, we want to obtain the
classes of articles that are provided by company D

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

query7→ Answer Class

K

A query is a mapping that sends instances to single-table
instances, with a possibly different schema

25 / 45

Queries

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K
C D3 I4

query7→ Answer Class

K

Is there a language to specify (write) the query?

Something that can be processed by the DBMS?

Different languages ...

General issue: Given a specific query, can it be captured by
(expressed in) a given query language?

The query above can be expressed as a formula of predicate
logic

In DBs, it takes the form of a relational calculus query:

∃y∃z(Supply(D, y , z) ∧ Articles(z , x))

26 / 45

Queries

∃y∃z(Supply(D, y , z) ∧ Articles(z , x)) (*)

This is a query Q(x), with single free variable, x (variables y , z
are bound due to the existential quantifiers)
The values for x that make the condition (expressed by the
query) true on the given instance are the answers to the query
The other variables are existentially quantified

Their specific values do not matter as long as they exist (and
satisfy the condition of the query)
The double occurrence of z captures the fact that we combine
the two tables through values in common for items
The answers are the values that can take the variable x when
the the formula is true in the database

K is an answer, because (*) is true in the instance: there is
an item value for z , e.g. I2, and there is a receiver value for y ,
e.g. D2, such that

Supply(D,D2, I2) ∧ Articles(I2,K)
becomes true in the instance

27 / 45

Queries

A completely declarative query!

Also symbolic, follows a precise syntax (grammar), and
machine processable!

The relational model also offers imperative, algebraic,
set-theoretic query language: the relational algebra (RA)

The same query now in RA:
Π

Class
σ
Company=‘D′ (Supply 1

Item
Article)

RA and relational calculus are provably equally expressive

Both of them are the basis for the common language offered
by RDBMSs: SQL (Structured Query Language)

As an SQL query:
SELECT Class
FROM Supply, Article
WHERE Supply.Company = ‘D’ AND Supply.Item = Article.Item

28 / 45

Queries∗

Another SQL query: SELECT Name
FROM Accounts
WHERE Balance > 10,000

asking for the values of attribute Name in relation Accounts
of those customers who have a balance greater than 10,000

In relational calculus (predicate logic):

Q ′(x) : ∃u∃z(Accounts(u, x , z) ∧ z > 10, 000)

SQL can also be used to create, modify and access metadata,
e.g. to retrieve elements of the schema

29 / 45

Queries

A RDBMS is able to take a declarative query (in SQL) and
develop an internal query evaluation plan:

Which tables to access?, When?, How?, Order?,
Combining partial results? Which ones? How? ...
Query evaluation can be optimized:

By making use of statistics, indices, etc.

Syntactic query optimization: syntactically rearrange the
query making it easier to compute

E.g. if possible, better apply a selection before a join, because
the join -an expensive operation- is reduced

Semantic query optimization: Take advantage of explicit ICs to
optimize query answering

If we want the addresses of a given client, and the former
functionally depend upon the latter, return the first address
found (no need to search for more)
If an IC says managers make at least 100K, a query asking for
managers making less than 80K can get empty answer w/o
checking the table

30 / 45

Integrity Constraints (revisited)

The logic-based language (say, relational calculus) can also be
used to state ICs

E.g. functional dependencies (FDs):

“items cannot be associated with more that one class”

∀x∀y∀z(Articles(x , y) ∧ Articles(x , z) → y = z)

This is a sentence, i.e. a formula without free variables

A declarative IC! Again, symbolic!

Evaluated as a query in a consistent instance, the answer
should be: Yes!

31 / 45

Integrity Constraints (revisited)

Example: As before

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

↓ ↑

We can express the referential IC from Supply to Articles:

“every item value in the former must appear in the latter
(the official list of items)”

∀x∀y∀z(Supply(x , y , z)→ ∃wArticles(z ,w))

We can also impose the condition that Item is a key for
relation Articles
I.e. all attributes of Articles functionally depend upon Item
(Articles : Item→ Class)
The combination of the two is a foreign key constraint on
Supply : Its attribute Item is the key in a foreign relation

32 / 45

Integrity Constraints (revisited)

Database maintenance is the problem of keeping an instance
consistent

I.e. satisfying the specified ICs when it undergoes updates

Many issues around this problem ...

Example: As above, with foreign key constraint on Supply

Supply Company Receiver Item Articles Item Class

C D1 I1 I1 K
D D2 I2 I2 K

↓ ↑

If (C ,D3, I4) inserted into Supply , FKC not satisfied anymore

DB may enforce satisfaction, e.g. by automatically inserting
(I4,NULL) into Articles

This NULL (a null value) represents an uncertain data value

A full, precise logic of the combination of certain and uncertain
values has not been implemented in commercial DBMSs, yet (this
applies to the SQL Standard too)

33 / 45

Views

A view is a relation defined in terms of the base, material
relations

We introduce a new relation name (i.e. a new predicate), and
its extension is defined by a query

A query with a name ...

The extension can be computed from the definition, but it
does not make it into a permanent table

The extension is commonly virtual, and computed upon
request and for a session

For the database on page 18, we may introduce a new predicate,
whose extension is defined by:

CompItem(x , z) : ∃y Supply(x , y , z)

(More precisely, the definition is: ∀x∀z(CompItem(x , z) ↔ ∃ySupply(x , y , z)))

34 / 45

Views

This view is a particular perspective (view) of table Supply

We do not care about the recipients, as long as they exist

That is our view of the database (of the relation)

A view of the database from the perspective of a particular
user or group thereof

We can use this relation name in queries

E.g. for those providers of item I4:
Q ′′(x) : CompItem(x , I4)

Data in a DB can be seen in different ways by different users,
by different specialized (sub)databases

For example, starting from the DB on slide 18, a particular
user may only see “receivers together with the classes of
articles they receive”

35 / 45

Views

Shipment Receiver Class

D1 K
D2 K
D2 H

This particular user does not see the entire database, because
it is not useful, relevant, allowed, ...

Or the user considers the new relationship as particularly
relevant

Usually virtual relation

It will last for a session with the DBMS where it was defined

Unless it is stored as a physical relation, i.e. materialized

During the session, its contents will be kept in a temporary
table

The view has to be maintained

I.e. kept up-to-date wrt. relevant changes on underlying base
relations

36 / 45

Views

How to specify the view?

There is not much difference between a view and a query

We can define it by means of a query in predicate logic
(relational calculus)

Shipment(x , y) : ∃u∃v(Supply(u, x , v) ∧ Articles(v , y))

(free variables x , y receive the answers as values)

SQL allows to pose such a query and introduce a name for the view (i.e.
the answer set) into the DB

CREATE VIEW Shipment AS
SELECT Receiver, Class
FROM Supply, Articles
WHERE Supply.Item = Articles.Item

A query with a name! Containing a join and a projection
Notice that existential quantifiers capture relational algebra projections

37 / 45

Views∗

A relation R with attributes A and B with the following
extension in instance D:

A

B

R

R

A(R)

B(R)

a

here because Exists y in B

A × B

U
|

R A B
a b
c b
a d

A view that is the projection of R on A: PA(x) : ∃yR(x , y)
A view that is the projection of R on B: PB(y) : ∃xR(x , y)
Their extensions on D: PA(D) = {(a), (c)}

PB(D) = {(b), (d)}
Their definitions in SQL, resp.:

CREATE VIEW P-A AS

SELECT A

FROM R

CREATE VIEW P-B AS

SELECT B

FROM R

Projection is on attribute in SELECT; the others, the omitted
ones, are filtered out

38 / 45

Views

View Maintenance: How to update the view when the
underlying database is updated

To keep material DB and view synchronized? (according to
its definition)

Complete re-computation: throw away the old “contents” of
the view and compute it again from scratch using its definition
(as a query) Expensive if view is large ...

Incremental update: compute only the relevant changes, the
“deltas” (there are some techniques)

For example, if we insert (I4,S) into Articles, it is good
enough to “add” (D3,S) to the extension of Shipment

Before considering updating the view, detect if the updates on
the base relations are relevant to the view

39 / 45

Views∗

Wrt. relevance of an update on base tables for a view:

If yes, then an incremental update of the view can be
attempted

Otherwise, the update of the base relation is performed, but
ignored for the view

For example, for the view on page 34, the insertion of
(C ,D4, I4) in relation Supply in page 18 is (potentially)
relevant, but with no effect

The insertion of (D,D3, I1) is relevant and does have an impact

Relevance is determined mainly by the kind of view definition
and the kind of update

Less by the actual update and the actual state of the database

E.g. updates on values for attribute Receiver are irrelevant for
the CompItem view

By the kind of view definition (uses a projection), and the kind
of update (change of value in a filtered attribute)

40 / 45

Views

Relevance of updates on base tables can be determined
through a syntactic analysis of the view definition
The same applies to relevance of updates for IC maintenance

The syntactic form of the IC can be used

For example, the syntactic form of an FD (cf. page 31) tells
us the deletions are irrelevant (why?)

Database maintenance and view maintenance are closely
related problems; and share techniques

Another related interesting problem: Update the DB
through the view

Update the view and ramify changes to underlying DB
Not always possible or a deterministic process
Database updates through views is a complex, important, and
not completely solved problem
Even more complex if there are ICs on the base relations
And far from being implemented in commercial DBMSs

41 / 45

Views∗

For an example, if we insert (C , I6) into the view CompItem,
the change has to be propagated to the base tables

We may insert the tuple (C ,NULL, I6) into Supply

How to propagate to the DB the insertion into Shipment of
the tuple (E , L)?

Missing information again? Maybe NULL values?

A join via NULL values?

What if some of the attributes with missing information is
(part of) a key? (nulls in them not allowed by RDBMSs)

(Key: minimal set K of attributes of a relation R such that all the other

attributes, say Y , of R functionally depend upon, i.e. R : K → Y)

We cannot insert null values everywhere ...

42 / 45

Active Rules

Commercial DBMSs offer little support for database
maintenance, i.e. for keeping ICs satisfied

Only a limited class of ICs can be defined with the schema,
and automatically maintained satisfied by the system

E.g. key constraints, not-NULL constraints, referential ICs, ...

But not arbitrary FDs, etc.

Also very limited in terms of how to maintain those that can
be declared/maintained
What to do then?

Keep our pet ICs satisfied via application programs that
interact with the DB

Store in the DB (stored) procedures that do the job

Stored procedures can be quite general, not only for IC
maintenance

They can be explicitly invoked or executed automatically when
something happens in the DB

Active rules, aka. triggers, are of the latter kind
43 / 45

Active Rules

In abstract terms, active rules have three consecutive
components: Event-Condition-Action (ECA) rules

When an Event happens (e.g. an update of a certain kind on
the DB), and
A Condition is true at the current DB state (e.g. an IC is
violated, which can be detected through a query), then
An Action (e.g. a DB update or a message to the external
world) is automatically executed

For example, to keep the referential IC in page 19 satisfied:
∀x∀y∀z(Supply(x , y , z)→ ∃wArticles(z ,w))

(assuming that IC was satisfied before the update)

(Relevant) Event: insertion of 〈a, b, c〉 into Supply
Condition: V (x , y , z) : Supply(x , y , z) ∧ ¬∃wArticles(z ,w)
true for 〈a, b, c〉?
(violation view for the IC becomes non-empty, but it should be)

Action: (If yes,) insert 〈c ,NULL〉 into Articles

Exercise: Not the only way to violate the IC. Design an ECA rule for the

other case.
44 / 45

Active Rules

In this example, relevant events are:

An insertion into Supply , and
A deletion from Articles

Being those relevant updates part of the Event, the Condition asks if a

violation is produced (it catches violations); and, if yes, the Action could

be “reject the update” or a compensating update (to satisfy the IC)

The relevant updates (events), conditions, and actions for a
given IC can be computationally derived from the syntactic
form of the IC

Triggers can be shared; and they are useful for, among other
things, IC maintenance, view maintenance, etc.

Active rules can be used also for business applications

Capturing business rules for the application domain

Example: If the stock (or inventory as shown in a table) goes
below a certain pre-specified threshold, insert a request for
resupply into the Orders table

45 / 45

	Section one goes here!

