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ABSTRACT
The present book’s subject is multidimensional data models and data modeling concepts as they are
applied in real data warehouses. The book aims to present the most important concepts within this
subject in a precise and understandable manner.

The book’s coverage of fundamental concepts includes data cubes and their elements, such
as dimensions, facts, and measures and their representation in a relational setting; it includes
architecture-related concepts; and it includes the querying of multidimensional databases.The book
also covers advanced multidimensional concepts that are considered to be particularly important.
This coverage includes advanced dimension-related concepts such as slowly changing dimensions,
degenerate and junk dimensions, outriggers, parent-child hierarchies, and unbalanced, non-covering,
and non-strict hierarchies.

The book offers a principled overview of key implementation techniques that are particularly
important to multidimensional databases, including materialized views, bitmap indices, join indices,
and star join processing.The book ends with a chapter that presents the literature on which the book
is based and offers further readings for those readers who wish to engage in more in-depth study of
specific aspects of the book’s subject.

KEYWORDS
multidimensional database, multidimensional model, data warehouse, data cube, di-
mension, dimension hierarchy, multidimensional fact and measure, star schema, rela-
tional OLAP, SQL, MDX, complex dimension, materialized view, bitmap index, join
index
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Preface
The objective of the book is to offer university students, researchers, and practitioners a

comprehensive, integrated, and understandable coverage of multidimensional data models and data
modeling concepts.

While many parts of the book can be read with a general computer science background, e.g., as
obtained through a couple of years of computer science studies, the book should be entirely readable
by students who have passed the kind of introductory course on database management systems that
is found in most undergraduate computer science curricula.

The book’s target audience includes the following:

• M.Sc. students who wish to better understand the subject of data warehousing and would like
to obtain a good foundation for studies of data mining. To facilitate the use of the book in
university curricula, each chapter includes exercises.

• Ph.D. students and researchers who wish to quickly obtain an overview of the key concepts in
multidimensional data modeling, e.g., as background for their own research.

• Data management practitioners who seek a concise, readable, and product-independent cov-
erage of the subject area. We hope that the book will serve as an introduction to the concepts
and benefits of multidimensional databases, which are well-known in the database community
by now, to a much broader community.

In writing the book, we aimed to optimize for the number of concepts per page while being
reasonably precise, concrete, and understandable. In comparison to research papers that often cover
modeling aspects as a means towards another end or go into depth with a narrow or as-of-yet exotic
modeling subject, we offer a broader coverage than any individual paper and a less fragmented
coverage than what may be obtained from studying a collection of papers. We also avoid the typical
reliance on formalization found in many research papers, to maintain focus on concepts rather than
notation.

The book also differs from other available books. Database textbooks either do not cover
multidimensional data modeling or, at best, include a brief coverage of the subject—this book offers
a much more extensive coverage. Books on data warehousing that target practitioners come in at
least two flavors. Some books are specific to particular database management systems or tools. In
contrast, the present book is designed to be product independent and to offer a foundation for
understanding a broad range of available systems. Other practitioner-oriented books also adopt a
product-independent approach. However, all the practitioner-oriented books tend to have many
pages and lots of screen shots or other figures, resulting in fewer concepts per page.
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The book is organized as follows: Chapter 2 introduces fundamental concepts. Chapter 3
presents more advanced concepts. Chapter 4 covers the implementation of multidimensional
database technology. Chapter 5 gives pointers to papers and books about the multidimensional
data models.

The introduction and Chapters 2 and 3 cover modeling aspects. Chapter 4 is separate in
that it covers implementation aspects.The dependency diagram in Figure 1 presents “recommended
dependencies” at the section level for those readers who wish to read selected parts of the books.
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Figure 1: Reader’s directions—section-level dependencies
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C H A P T E R 1

Introduction
This first chapter sets the stage for the remainder of the book. It starts by giving a brief characteri-
zation of multidimensional data management and data modeling, then covers briefly the history of
multidimensional data management and defines key terms to be used throughout the book. Then it
explains why related technologies, specifically, spreadsheets and relations, fall short in meeting the
modeling needs of multidimensional data management. Finally, it contrasts multidimensional data
management with traditional relational data management.

1.1 MULTIDIMENSIONAL DATA MANAGEMENT

The relational data model, which was introduced by Codd in 1970 and earned him the Turing Award
a decade later, constitutes a significant part of the foundation of today’s multi-billion-dollar database
industry. During the 1990s, a new type of data model, the multidimensional data model, emerged that
has since made inroads on the relational model when the objective is to analyze data, rather than to
perform on-line transactions. The multidimensional data model underpins the multi-billion-dollar
business intelligence industry, and it plays a role in this industry that is similar to the role that the
relational model plays in the database industry.

Multidimensional data models are designed expressly to support data analyses. A number of
such models have been proposed by researchers from academia and industry. In academia, formal
mathematical models have been proposed,while the industrial proposals have typically been specified
more or less implicitly by the concrete software tools that implement them.

Briefly, multidimensional models categorize data as being either facts with associated numer-
ical measures or as being dimensions that characterize the facts and are mostly textual. For example,
a book retailer sells books at certain times in certain amounts and at certain prices. A typical fact is a
purchase. Typical measures are the amount and price of the purchase. Typical dimensions represent
the location of the purchase, the purchased book, including its genre and author, and the time of the
purchase. Queries then aggregate measure values over ranges of dimension values to produce results
such as the total sales per month and author.

Multidimensional data models have three important application areas within data analysis.
First, multidimensional models are used in data warehousing. Briefly, a data warehouse is a large
repository of integrated data obtained from several sources in an enterprise for the specific purpose
of data analysis. Typically, multidimensional modeling is applied to such data, as this yields good
support for data analyses.
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Second, multidimensional models lie at the core of On-Line Analytical Processing (OLAP)
systems. Such systems provide fast answers to queries that aggregate large amounts of so-called detail
data to find overall trends, and they present the results in a multidimensional fashion. Consequently,
a multidimensional data organization has proven to be particularly well suited for OLAP. The
company behind the so-called “BI Verdict” provides an acid test for OLAP by defining OLAP as
“Fast Analysis of Shared Multidimensional Information” (FASMI) [70]. In this definition, “Fast”
refers to the expectation of response times that are within a few seconds—such response times
enable interactive, or on-line, data analysis; “Analysis” refers to the need for easy-to-use support
for business logic and statistical analyses; “Shared” suggests a need for security mechanisms and
concurrency control for multiple users; “Multidimensional” refers to the expectation that a data
model with hierarchical dimensions is used; and “Information” suggests that the system must be able
to manage all the required data as well as derived information.

Third, data mining, where the aim is to (semi-)automatically discover hitherto unknown
knowledge in large databases, is increasingly being applied to multidimensional data. Indeed, it
turns out that a multidimensional organization of data is also particularly well suited for the queries
posed by data mining tools.

In summary, the multidimensional data model is very powerful for data analysis. It is widely
used in industry, and (at least basic) knowledge of it is needed if one wants to analyze and understand
large amounts of data.

1.2 MULTIDIMENSIONAL HISTORY

Multidimensional databases do not have their origin in database technology, but they stem from
multidimensional matrix algebra, which has been used for (manual) data analyses since the late 19th
century.

During the late 1960s, two companies, IRI and Comshare, independently began the devel-
opment of systems that later turned into multidimensional database systems. The IRI Express tool
became very popular in the marketing analysis area in the late 1970s and early 1980s; it later turned
into a market-leading OLAP tool and was acquired by Oracle. Concurrently, the Comshare system
developed into System W, which was used heavily for financial planning, analysis, and reporting
during the 1980s.

In 1991,Arbor was formed with the specific purpose of creating “a multiuser,multidimensional
database server,” which resulted in the Essbase system. Arbor, now Hyperion, later licensed a basic
version of Essbase to IBM for integration into DB2. It was Arbor and Codd that in 1993 coined
the term OLAP [13].

Another significant development in the early 1990s was the advent of large data ware-
houses [48], which were typically based on relational star or snowflake schemas (see Section 2.5),
an approach to implementing multidimensional databases using relational database technology.

In 1998, Microsoft first shipped its MS OLAP Server, which was the first multidimensional
system aimed at the mass market. This led to the current situation where multidimensional systems
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are increasingly becoming commodity products that are shipped at no extra cost together with leading
relational database systems.

A more in-depth coverage of the history of multidimensional databases is available in the
literature [88].

1.3 RELATED TERMINOLOGY

It is useful to be familiar with a few special terms when studying the literature on multidimensional
databases.

OLAP: OLAP abbreviates On-Line Analytical Processing. As opposed to the well-known OLTP
(On-Line Transaction Processing), focus is on data analyses rather than transactions. Furthermore,
the analyses occur “On-Line,” i.e., fast,“interactive” query response is implied.OLAP systems always
employ a multidimensional view of data.

OLAP systems come in three broad categories: systems based on relational database manage-
ment technology, called ROLAP systems, systems utilizing non-relational, multidimensional array-
type technologies, called MOLAP systems, and hybrid systems that combine these technologies,
called HOLAP systems.

Data Warehouse: A data warehouse is a repository of integrated enterprise data. A data warehouse
is used specifically for decision support, i.e., there is (typically, or ideally) only one data warehouse
in an enterprise. A data warehouse typically contains data collected from a large number of sources
within, and sometimes also outside, the enterprise.

Data Mart: A data mart is a subset of a data warehouse.

ETL: ETL (Extract-Transform-Load) is the three-step process that feeds a data warehouse. First,
an extraction process is applied to data from operational source systems, e.g., ERP systems. Second, a
transformation process is applied in order to change the data format from the source system formats
into the data warehouse format. This includes combining data from several different sources and
performing cleansing to correct errors such as missing or wrong data. Third, a loading process is
applied to import the data into the data warehouse. ETL is at times also referred to as ETT
(Extract-Transform-Transport).

Business Intelligence: Business Intelligence (BI) is the process of making “intelligent” business
decisions based on the analysis of available data. From a technology point of view, BI covers the
combined areas of data warehousing, reporting, OLAP, data mining, some data visualization, what-if
analysis, and special-purpose analytical applications.
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1.4 SHORTCOMINGS OF SPREADSHEETS AND
RELATIONS

To understand the strengths of multidimensional databases, it is instructive to consider the alterna-
tives. Assume we want to analyze data about sales of books, for which we capture the number of
books sold, the book sold, and the city in which it was sold. A simple example with two dimensions
is shown in Figure 1.1. When considering how to analyze such data, spreadsheets immediately come
to mind as a possibility—Figure 1.1 is just a (two-dimensional) spreadsheet.

City

Arlington Boston Miami Springfield

B
oo

k

Arlington Road Atlas 2072 2 1 5
Gone With the Wind 3984 43765 21923 48959
Italian Cooking 530 9834 4980 7825
Tropical Food 43 1267 15784 248
Winnie the Pooh 863 2345 89 1693

Figure 1.1: Spreadsheet with sales data

Our first analysis requirement is that we do not just want to see sales by book and city combined
but also the two kinds of subtotals, sales by book and sales by city, as well as the grand total of
sales. This means that formulas for producing the (sub)totals must be added to the spreadsheet,
each requiring some consideration. It is possible, if rather cumbersome, to add new data to the
spreadsheet, e.g., if new products are sold. Thus, for two dimensions, we can perhaps somehow
manage with spreadsheets.

However, if we go to three dimensions, e.g., to include time, we have to consider carefully
what to do. The obvious solution is to use separate worksheets to handle the extra dimension, with
one worksheet for each dimension value. This will work only when the third dimension has few
dimension values, and this will only work to some extent. Analyses involving several values of the
third dimension are cumbersome, and with many thousands of, say, time dimension values, the
solution becomes infeasible. The situation becomes even worse if we need to support four or more
dimensions, which in any case will require a very complex set-up.

Another problem arises if we want to group, e.g., the books, into higher-level categories like
“Cooking” and “Fiction.” Then we must duplicate the grouping information across all worksheets,
which results in a system that uses considerable extra space and is very cumbersome to maintain.The
essence of the problem is that spreadsheets tie the data storage too tightly to the data presentation—
the structure of the data and the desired views of the data are not separated. However, spreadsheets
are good for viewing and querying multidimensional data, e.g., using pivot tables.

A pivot table is a 2-dimensional table of data with associated subtotals and totals. For example,
if we add subtotals by City and Book and a City/Book grand total to Figure 1.1, we have an example
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of a pivot table as shown in Figure 1.2.To support viewing of more complex data, several dimensions
may be nested on the x or y axes, and data may be displayed on multiple pages, e.g., one for each
book. Pivot tables generally also offer support for interactively selecting subsets of the data and
changing the displayed level of detail.

City

Arlington Boston Miami Springfield Total

B
oo

k

Arlington Road Atlas 2072 2 1 5 2080
Gone With the Wind 3984 43765 21923 48959 118631
Italian Cooking 530 9834 4980 7825 23169
Tropical Food 43 1267 15784 248 17342
Winnie the Pooh 863 2345 89 1693 4990
Total 7492 57213 42777 58730 166212

Figure 1.2: Pivot table with sales data

With spreadsheets falling short in meeting our requirements for the management of multidi-
mensional data, we may then consider using an SQL-based, relational system for data management,
as the relational model offers considerable flexibility in the modeling and querying of data. The
problem here is that many desirable computations, including cumulative aggregates (sales in year to
date), totals and subtotals, and rankings (top 10 selling books), are hard or impossible to formulate
in standard SQL.

The main underlying issue is that interrow computations are difficult to express in SQL—only
intercolumn computations are easy to specify. Additionally, transpositions of rows and columns are
not easily possible, but rather require the manual specification and combination of multiple views.
Although extensions of SQL, such as the data cube operator [28] and query windows [21], advanced
by standards bodies, will remedy some of the problems (see Section 2.8.6 for details), the concept of
hierarchical dimensions remains to be handled satisfactorily.

To summarize, neither spreadsheets nor relational databases fully support the requirements
posed by advanced data analyses, although it should be noted that these technologies may be adequate
under more restricted circumstances. For example, if we have only few dimensions, do not need
hierarchical dimensions, and the data volume is small, spreadsheets may provide adequate support.
However, the only robust solution to the above problems is to provide data models and database
technology that offer inherent support for the full range of multidimensional concepts.

1.5 OLAP VERSUS OLTP

On-Line Analytical Processing (OLAP) is very different from traditional On-Line Transaction
Processing (OLTP). When doing OLTP, the focus is on single transactions. Consider, for example,
a simple OLTP system used by a book retailer to keep track of the books in stock. When a copy of a
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certain book B is sold, the system decreases the number showing how many copies of B are in stock.
Similarly, the number is increased when more copies are delivered from the publisher. The system
only keeps track of the most current data, i.e., what is currently in stock. Detailed information about
individual sales is either not stored at all or it is not stored in a format amenable to analysis. The
retailer may know who the customer is (for example, if the customer pre-ordered the book), but
this information is not kept for the purpose of further analysis. The system stores its information
in a relational database that is normalized to avoid update anomalies. The OLTP system is thus
optimized for retrieving and/or updating a small amount of tuples (e.g., “decrease number in stock
of book B by 1”).

In contrast, an OLAP system for the book retailer keeps track of each individual sale. This
also includes specific information about the sale such as the city where the sale took place, the date
of the sale, the salesperson who sold the book, and information about the book. A multidimensional
database is used for the storage of such data. This makes it easy to find, e.g., the most sold cookbook
and the average number of children’s books sold before a holiday.The OLAP system generally never
deletes nor updates its data; only additions of new data take place periodically. The OLAP system is
thus optimized for retrieving (and summarizing) very large amounts of data (e.g., “find the average
monthly number of sold children’s books during the previous three years”).
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C H A P T E R 2

Fundamental Concepts
In this chapter, we cover the fundamental concepts of multidimensional databases. We first cover
cubes, dimensions, facts, and measures. Then we show how these can be represented in relational
databases. After that, we present data warehouses and data marts. We finally cover data analysis and
querying using multidimensional databases.

Throughout the book, we illustrate concepts by considering sales in a fictitious book retailer
which has shops in different cities. We keep the examples relatively small, but at the end of this and
the following chapter, we summarize important concepts by means of more complete and realistic
examples.

2.1 CUBES

A cube is a truly multidimensional data structure for capturing and analyzing data. A cube generalizes
the tabular spreadsheet such that there can be any number of dimensions (and not only two as in
spreadsheets). In addition, hierarchies in dimensions and formulas are first-class, built-in concepts,
meaning that these are supported without duplicating their definitions. Although the term “cube”
suggests that there are three dimensions, a cube can have any number of dimensions. For that reason,
the term hypercube is sometimes used instead of cube. A collection of related cubes is commonly
referred to as a multidimensional database or a multidimensional data warehouse.

Figure 2.1 illustrates a three-dimensional cube showing sales of books. We assume that Ta-
ble 1.1 contains aggregated sales data for year 2008. The cube then adds a time dimension and
contains sales counts for two cities, two books, and two years. (A real-world cube would contain
counts for many more books, cities, etc., but to maintain readability, we keep the numbers low in
this example.)

A cube consists of uniquely identifiable cells at each of the dimensions’ intersections. A non-
empty cell is called a fact. The example in Figure 2.1 has a fact for each combination of time, book,
and city where at least one sale was made. A fact has a number of measures associated with it. These
are numerical values that “live” within the cells. In the shown example, we have only one measure,
the sales count. A cell may also be empty, meaning that there is no information to record for the
given dimension values. An empty cell in the cube in Figure 2.1 thus means that the given book
was not sold in the given city in the given year. Depending on the specific application, a highly
varying percentage of the cells in a cube is non-empty, meaning that cubes range from being sparse
to being dense. Cubes tend to become increasingly sparse with increasing dimensionality and with
increasingly finer granularities of the dimension values.
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9834

530 43

1267

480 37

Arlington

Boston

2008
2009

1302

Italian 
Cooking

Tropical 
Food

Figure 2.1: Sales data cube

It turns out that most real-world cubes have 4–12 dimensions [48; 88]. Although there is no
theoretical limit to the number of dimensions, some tools may experience performance problems
when the number of dimensions is greater than 10–15. Generally, only 2 or 3 of the dimensions
may be viewed at the same time. However, for low-cardinality dimensions, up to 4 dimensions can
be shown by nesting one dimension within another on the axes. Thus, the dimensionality of a cube
is reduced at query time by projecting it down to 2 or 3 dimensions and aggregating of the measure
values across the projected-out dimensions. For example, if we want to view sales by City and Time,
we aggregate over the entire dimension that characterizes the sales by Book for each combination
of City and Time. For the cube in Figure 2.1, we find that the total sales for Arlington in 2008 is
573 by adding up the two numbers 530 and 47.

An important goal of multidimensional modeling is to “provide as much context as possible
for the facts” [48]. The concept of dimension is the central means of providing this context. One
consequence of this is a different view on data redundancy than in relational databases. In mul-
tidimensional databases, controlled redundancy is generally considered appropriate, as long as it
considerably increases the information value of the data. One reason to allow redundancy is that
multidimensional databases are often derived from other data sources, e.g., data from a transactional
relational system, rather than being “born” as multidimensional data, meaning that updates are rare
and can be handled more easily [48]. However, there is usually no redundancy in the facts, only in
the dimensions.

Having introduced the cube, we cover its principal elements—dimensions, facts, and
measures—in more detail.
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2.2 DIMENSIONS
The notion of a dimension is an essential and distinguishing concept for multidimensional databases.
Dimensions are used for two purposes: the selection of data and the grouping of data at a desired level
of detail.

A dimension is organized into a containment-like hierarchy composed of a number of levels,
each of which represents a level of detail that is of interest to analyses to be performed.The instances
of the dimension are typically called dimension values or dimension members. Each such value belongs
to a particular level.

Figure 2.2 shows the schema and instances of a sample Location dimension for the data in
Table 1.1.

T

State

City

Virginia

Arlington

Florida

Miami

Massachusetts

Boston Springfield

T

Figure 2.2: Schema and instance for the Location dimension

The Location dimension has three levels, the City level being the lowest. City level values are
grouped into State level values, i.e., states. For example, Miami is in Florida. The � (“top”) level
represents all of the dimension, i.e., every dimension value is part of the � value.

When using a cube, relevant parts of the data are selected by means of the dimensions. Recall
that each cell in a cube is identified by a combination of dimension values. For example, finding the
number of sold copies of “Winnie the Pooh” in Boston is just a matter of constraining the Location
dimension to “Boston” and the Book dimension to “Winnie the Pooh.” It is also possible to group
data by means of a dimension. For example, the book retailer could group the data according to the
State level in the Location dimension such that the sales counts from a state’s individual cities are
aggregated into one number for each state. These and other query operations are described in detail
in Section 2.8.

In some multidimensional models, a level may have a number of level properties associated
with it that are used to hold simple, non-hierarchical information. For example, population size of
city can be a level property in the lowest level of the Location dimension.

A dimension hierarchy is defined in the metadata of a cube, or the metadata of the multidi-
mensional database, if dimensions can be shared.This means that the problem of duplicate hierarchy
definitions as discussed in Section 1.4 is avoided.

Unlike the linear spaces used in matrix algebra, there is typically no ordering or distance metric
on the dimension values in multidimensional models. Rather, the only ordering is the containment of
lower-level values in higher-level values.However, for some dimensions, e.g., theTime dimension, an
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ordering of the dimension values is available and can be used for calculating cumulative information
such as “total sales in year to date.”

In some cases, it is advantageous for a dimension to have multiple hierarchies defined on it. For
example, a Time dimension may have hierarchies for both Fiscal Year and Calendar Year. Multiple
hierarchies share one or more common lowest level(s), e.g., Day and Month, and then group these
into multiple levels higher up, e.g., Fiscal Quarter and Calendar Quarter to allow for easy reference
to several ways of grouping. This is illustrated in Figure 3.13. Most multidimensional models allow
multiple hierarchies. We will cover multiple hierarchies in Section 3.3.5.

Most models require their dimension hierarchies to form balanced trees. This means that a
dimension hierarchy must have uniform height everywhere. For example, this means that if some
shops are contained in departments, all shops must be contained in departments, even small ones.
Additionally, direct links between dimension values can only go between immediate parent-child
levels—they cannot jump two or more levels. For the schema in Figure 2.2, this means that all cities
have to belong to states. This is problematic when representing Washington, D.C., which belongs
to no state. Finally, each non-top value has precisely one parent. Thus, a product must belong to
exactly one product group. In Section 3.3, we discuss the relaxation of these restrictions.

2.3 FACTS

Facts are the objects that represent the subjects of the desired analyses, i.e., the interesting “things,”
or events or processes, that are to be analyzed to better understand their behavior. In our book
retailer example, we wish to analyze sales. In most multidimensional data models, the facts are
implicitly defined by their combination of dimension values. If a non-empty cell exists for a particular
combination, a fact exists; otherwise, no fact exists for that combination.

Next, most multidimensional models require that each fact be mapped to precisely one di-
mension value at the lowest level in each dimension. A fact then has a certain granularity, which
is determined by the levels from which its dimension values are drawn. For example, the fact gran-
ularity in our example cube is “Year by Book by City.” Granularities consisting of higher-level or
lower-level dimension levels than a given granularity, e.g., “Year by Book Genre by City” or “Day by
Book by City” in our example, are said to be coarser or finer than the given granularity, respectively.

It is commonplace to distinguish between two kinds of facts: event facts and snapshot facts.
Event facts (at least at the finest granularity) typically model events in the real world. This means
that there is exactly one fact for each unique event in the overall real-world process that is captured.
With a fine granularity, there would thus be one fact for each particular sale of a certain book. With a
coarser granularity there would be one fact for each day when one or more sales of the book occured.
Examples of event facts include sales, clicks on web pages, and flow of goods in and out of (real)
warehouses.

Facts usually have associated numerical properties that are called measures. These are the
properties that the user wants to analyze, e.g., item count and dollar amount. They are described in
the next section.
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If event facts do not have any measures, they are often called factless facts. However, this is
an unfortunate term, and we prefer to rather call them what they really are: measureless facts. These
facts are used to record that some event took place, but here the event does not have a numerical
property that describes it further. This could, for example, happen if a company wants to record that
it contacts a certain customer at a given time as part of a given marketing campaign.

A snapshot fact, also called a state fact, models the state of a given process at a given point in
time. Typical examples of snapshot facts include the inventory levels in stores and warehouses, and
the number of users using a web site. For snapshot facts, the same object (e.g., a specific can of beans
on a shelf ) with which the captured real-world process (e.g., inventory management) is concerned
may occur in facts at different time points.

It is important to understand when event and snapshot facts come into existence. Event facts
are made to represent events, e.g., sales, that have happened in the real world. In principle, these
events can happen unpredictably at any time. Snapshot facts, on the other hand, are typically made
to represent the states at predefined times, e.g., the inventory on the first day in each month.

Often, the above different types of facts coexist in a given data warehouse, as they support
complementary classes of analyses. Indeed, the same base data, e.g., the movement of goods in a (real)
warehouse, may often find its way into three cubes of different types: warehouse flow, warehouse
inventory, and warehouse flow in year-to-date.

2.4 MEASURES

A measure has two components: a numerical property of a fact, e.g., the sales price or profit, and a
formula (most often a simple aggregation function such as SUM) that can be used to combine several
measure values into one. In a multidimensional database, measures generally represent the properties
of the chosen facts that the users want to study, e.g., with the purpose of optimizing them.

The designer of a multidimensional database thus defines what a numerical measure represents.
For a snapshot fact representing sales on a given day, the measure would typically represent the
amount of items sold during that day. But the designer could also define the measure to be cumulative
(i.e., only growing), meaning that the measure represents the total sales on that day and all days before
it.

Measures take on different values for different combinations of dimension values. Indeed, a
measure can in mathematical terms be considered a partial function from the Cartesian product of
the dimensions in the cube to a set of numbers like N or R.The property and formula are chosen such
that the value of a measure is meaningful for all combinations of aggregation levels (including the
“top” level �).The formula is defined in the metadata and is thus not replicated as in the spreadsheet
example.

Although most multidimensional data models have measures, some do not. In these, dimen-
sion values are also used for computations, thus obviating the need for measures, but at the expense
of some user-friendliness [68].
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It is important to distinguish among three classes of measures, namely additive, semi-additive,
and non-additive measures, as these behave quite differently in computations.

Additive measure values can be combined meaningfully along any dimension. For example, it
makes sense to add the total sales over Book, Location, and Time, as this causes no overlap among
the real-world phenomena that caused the individual values. Additive measures occur for any kind
of fact.

Semi-additive measure values cannot be combined along one or more of the dimensions, most
often the Time dimension. Semi-additive measures often occur when the fact is of type snapshot.
For example, it does not make sense to sum inventory levels across time, as the same inventory item,
e.g., a specific book, may be counted several times, but it is meaningful to sum inventory levels across
books and stores.

Non-additive measure values cannot be combined along any dimension, usually because of the
chosen formula. For example, this occurs when averages for lower-level values cannot be combined
into averages for higher-level values. Non-additive measures can occur for any kind of fact.

2.5 RELATIONAL REPRESENTATIONS
After having introduced the fundamental concepts in the previous sections, we are now ready to
consider how to represent these in a relational database. Note that other representations of multi-
dimensional concepts than the relational also exist. Chapter 4 offers further detail. The relational
representations are considered here because they are widely used and are easy to grasp. There are
two principal ways of representing dimensions in a relational database; we describe the two in turn.

2.5.1 STAR SCHEMAS
A star schema has one dimension table for each dimension. This table has a key column and one
column for each level of the dimension (except �). A column for a level holds textual descriptions
of the dimension values at that level. Finally, the dimension table contains one column for each level
property in the dimension.

Further, a star schema has a fact table that holds a row for each multidimensional fact. The
fact table has one column for each measure. In a row, this column contains the measure value for
the fact the row represents. A fact table also has one column for each dimension. In a row, these
columns contain foreign key values that reference primary key values of dimension tables.

An example star schema instance for the Sales cube is shown in Figure 2.3 (primary keys
are underlined). The name “star schema” refers to the observation that if the tables are drawn such
that the fact table is at the center and the dimension tables around it, the resulting figure looks
(somewhat) like a star. To help visualize this star metaphor, a line is drawn between the fact table
and each dimension table in Figure 2.3.

A row in the fact table of the star schema shown in Figure 2.3 holds the sales count for one
particular combination of “Book,” “City,” and “Day.” The fact table also has a foreign key column for
each of the three dimensions, Book, Location, and Time. The dimension tables have corresponding
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BookID Book Genre
7493 Tropical Food Cooking
9436 Winnie the Pooh Children’s books

Book (dimension table)

BookID CityID DayID Sale
9436 854 2475 20
7493 854 2475 5
7493 876 3456 2
9436 876 3456 11
9436 876 2475 18

Sales (fact table)

CityID City State
876 Arlington Virginia
854 Boston Massachusetts

Location (dimension table)

DayID Day Month Year
2475 March 1, 2009 March 2009 2009
3456 March 13, 2009 March 2009 2009

Time (dimension table)

Figure 2.3: Star schema for Sales cube

key columns, e.g., “CityID,” and one column for each of their levels, e.g., “City,” and “State” for the
table representing the Location dimension. No column is needed for the � level, as that column
would always hold the same value. The key column in a dimension table is typically a “dumb”
integer key without any semantics, i.e., a surrogate key.This has several advantages over the option of
using information-bearing keys from the source systems, including better storage use, prevention of
problems associated with key re-use, better support for dimension updates [48], and more efficient
query processing.

It can be seen that there is redundancy in higher-level data. For example, “March 2009” will
be present for each day during that month, meaning that the Month column takes the value “March
2009” in 31 rows (assuming that at least one book is sold during each day of that month such
that all its days must be represented). However, as dimensions typically take up only 1–5% of the
total storage required for a star schema, redundancy is not a problem space-wise; it does not cause
update-performance problems. In addition, the updates of dimensions are handled centrally, so it is
also possible to ensure consistency. Thus, it is often a good idea to use such redundant dimension
tables because these support simpler formulation of (and better-performing) queries than do their
normalized counterparts.
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2.5.2 SNOWFLAKE SCHEMAS
A snowflake schema has a fact table, as does a star schema. Snowflake schemas, however, contain
several dimension tables for each dimension, namely one table for each (non-�) level. This means
that redundancy is avoided, which may be advantageous in some situations, and it renders the
hierarchies in dimensions explicit. The dimension tables contain a key, a column holding textual
descriptions of the level values, and possibly columns for level properties. Tables for lower levels also
contain a foreign key to the containing level. If the tables are drawn with the fact table in the middle
and related dimension tables next to each other, the figure looks similar to a snowflake. Thus the
name “snowflake schema.”

Figure 2.4 shows an instance of a snowflake schema that holds the same data as the star
schema in Figure 2.3. For example, the Day table in Figure 2.4 contains an integer key, a date, and
a foreign key to the Month table. Note that with this schema, month values will not be replicated.
It is, however, harder to query the schema since several joins must be applied. The many joins also
make it more time-consuming for the database management system (DBMS) to compute the result
of the query.

The choice of whether to use a star schema or a snowflake schema depends highly on the
desired properties of the system being developed. Indeed, it is possible to apply snowflaking only
partially to a star schema, either fully to only selected dimensions or partially within a dimension.
The term starflake schema has been applied to the resulting kind of schema. For brevity, we omit a
full discussion of this aspect.

2.6 DATA WAREHOUSES AND DATA MARTS
We previously called a collection of related cubes a data warehouse. However, there is more than
that to say about data warehouses. Bill Inmon, one of the pioneers of data warehousing, defines a
data warehouse as a subject oriented, integrated, time variant, non-volatile collection of data in support
of management’s decision making process [35]. In the following, we consider the implications of the
different elements of this definition, this way presenting important perspectives on the concept of a
data warehouse.

Starting from the back, it can be seen that the purpose of a data warehouse is to support
decision making. This is very different from the purpose of an organization’s operational systems
that support the daily business processes (handling of orders, deliveries, bills, etc.) but not strategic
analysis and decision making. This different focus impacts both what data to store in the data
warehouse and how to store it.

In Inmon’s definition, a data warehouse is subject oriented. In other words, a data warehouse is
designed around the important subjects that concern the business, to allow easy analysis of them. For
a book retailer, this includes “sales.” A book retailer’s data warehouse is thus designed around sales;
and to make analysis of them easy, the sales are described by means of entities such as “books” and
“shops.” In contrast, operational databases are modeled to support daily operations and are heavily
influenced by how the daily processes are carried out (i.e., the workflows) in the business and how
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YearID Year
88 2009

Year (Time dimension)

MonthID Month YearID
45 March 2009 88

Month (Time dimension)

DayID Day MonthID
2475 March 1, 2009 45
3456 March 13, 2009 45

Day (Time dimension)

BookID CityID DayID Sale
9436 854 2475 20
7493 854 2475 5
7493 876 3456 2
9436 876 3456 11
9436 876 2475 18

Sales (fact table)

BookID Book GenreID
7493 Tropical Food 23
9436 Winnie the Pooh 12

Book (Book dimension)

CityID City StateID
876 Arlington 783
854 Boston 147

City (Location dimension)

GenreID Genre
23 Cooking
12 Children’s books

Genre (Book dimension)

StateID State
147 Massachusetts
783 Virginia

State (Location dimension)

Figure 2.4: Snowflake schema for Sales cube

the operational applications that use them work.The book retailer could, for example, have different
operational applications for ordering of books from publishers, distribution to shops, marketing
campaigns, and accounting. Analysis of the profit from sales during a campaign then requires the
analyst to get data from several different systems that organize their data in different ways and are
likely to provide inconsistent data.
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Inmon also states that a data warehouse is integrated. The data found in a data warehouse will
often originate from several different operational systems, e.g., different publishers’ book catalogs,
a stock keeping system, and the cash registers in shops. Each of these systems may use different
formats. For example, one could use the code “P” for paperback, while another system may use
“paperback,” and a third system may use the numerical code “3.” In the data warehouse, a unique
code or description is used such that the user does not get confused by different codes that mean
the same, or by similar codes with different meanings. We also note that it is considered very bad
practice to use cryptic codes in a data warehouse [48]. Instead, understandable, non-abbreviated,
textual descriptions should be used (i.e., use “paperback” instead of the confusing “P” or “3”). The
different systems might also use different units: for example, some publisher’s book catalog may
hold the dimensions of books in centimeters while another uses inches. In the data warehouse, only
one unit is used. It is the job of the so-called Extract–Transform–Load (ETL) process to extract
data from different source systems, clean the data, and transform the data into an integrated format
before loading the data into the data warehouse. It is a major part of any data warehouse project to
create a working ETL process. We say more about the ETL process in Chapter 4.

A data warehouse is also time variant.This means that the data warehouse shows the evolution
over time and not just the most recent data, as the operational systems tend to do. In other words, it
is possible to see what the modeled world looked like at a certain point in time. For the book retailer,
it is then possible to see both how many copies of “Winnie the Pooh” have been sold in total up to
now and how many copies were sold by the same time last year. The data warehouse also captures
changes in the modeled world, e.g., when one of the book retailer’s shops is expanded. It is then
possible for the analyst to see the size of the shop at different points in time and investigate how
the expansion has affected the sales. We say more about this type of change in the next chapter. We
note that virtually any data warehouse has a time dimension.

Finally, Inmon states that a data warehouse is non volatile, meaning that neither deletions nor
updates are applied to data already in the data warehouse; the only changes are due to the loading
of new data. In contrast, the operational systems are designed to support (concurrent) updates and
therefore must use advanced transaction handling and normalized designs to enable efficient updates
and avoid update anomalies. In a data warehouse, normalization is not needed (recall the star schema
from Section 2.5.1). Further, the operational systems typically only include fairly recent data and do
not support analysis of historical data.

A data mart is generally considered to be a subset of a data warehouse. While a data warehouse
is shared throughout an entire organization and can hold data about different subjects, a data mart
holds data about a single subject, e.g., sales. Often, a data mart is thus specialized towards the needs
of a (sub-)department. So an organization’s data warehouse can have cubes and dimensions for both
shop sales, Internet sales, stock keeping, and staffing, while a data mart can be built to only hold
data about sales, which is the only process the sales department is interested in. Likewise, another
data mart can be built to only hold data about staffing, which is what interests the human resource
department. Note, however, that the departments should not have their own, private data marts. If
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two or more departments need to use the sales data, they should both use the same sales data mart.
The data warehouse is loaded with data from different operational source systems, while a data mart
is loaded with (already cleaned and integrated) data from the data warehouse or even just provides
a logical view of data in the data warehouse.

Unfortunately, there is some disagreement in the literature about what the relationship be-
tween data warehouses and data marts should be. Some individuals advocate the point of view that
a data warehouse consists of a collection of data marts. This view represents a bottom-up approach
in which a data warehouse is built by first building the smaller data marts and then merging these
to obtain the data warehouse. This is basically the opposite of the definition given above, where the
data marts are derived from the data warehouse in a top-down manner. Inmon advocates strongly
the top-down approach [36]. Among other problems with the bottom-up approach, he points out
its lack of the important integration.

An important problem with the top-down approach is the difficulty of the development
process—it can be very challenging to build a data warehouse in a top-down manner for a large
organization. As a result, the process may be lengthy, with the return on the investment coming late.

In what we may view as an attempt at obtaining the best of both worlds, Kimball, a pioneer
of dimensional data warehousing, introduces the concept of so-called conformed dimensions and
facts. Here, the organization standardizes the facts and dimensions that are to be shared in the
organization. This enables a process with both top-down and bottom-up elements, and it renders
it possible to combine several marts or cubes in a coherent fashion. The next section covers the
modeling process in more detail.

2.7 MULTIDIMENSIONAL MODELING PROCESSES
A key difference of multidimensional modeling from “ordinary” data modeling is that the multidi-
mensional modeler should neither try to include all the available data nor all the existing relationships
in the data in the model. Only those aspects that are essential “drivers” of the business should be
included.

Another difference is that redundancy is acceptable in a few, well-chosen places (mostly
dimensions) if it makes the model more intuitive to the user. For example, we have seen that a
month name is repeated in a time dimension for each day of the month. Information about a
customer may also be present in both a person-oriented Customer dimension and a group-oriented
Demographics dimension.

Kimball [48; 50] organizes the multidimensional modeling process into four subprocesses.

1. Choose the business process(es) to model.

2. Choose the granularity of the business process.

3. Design the dimensions.

4. Choose the measures.
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Step 1 relates to the observation that not all business processes are equally important for the
business. For example, for a book retailer, there are business processes for sales of books to customers
and purchases of books from publishers, but the sales process is probably the one with the largest
potential for increasing the profits, for which reason this business process should thus be prioritized.

Step 2 implies that it is important to use the data granularity that best matches the analysis
needs. For example, “individual sales of books” may be captured, or perhaps (the aggregated) “total
sales per book per store per day” may be detailed enough, while enabling performance and storage
gains. The grain thus decides what a fact means.

Step 3 then goes on to refine the schema of each part of the grain into a complete dimension
with levels and attributes.For the example above, a Store, a Book, and aTime dimension are specified.

Finally, the numerical measures to capture for each combination of dimension values, for
example dollar sales, unit sales, dollar cost and profit, are chosen in Step 4.

When performing multidimensional modeling “in the large,” with many cubes and several
user groups, it is very important to ensure compatibility between cubes such that analysis results are
comparable. This is ensured by using so-called conformed dimensions and measures [48; 50]. Two
dimensions are conformed if they are identical or if one is a subset, with respect to dimension values
as well as attributes, of the other. Two measures are conformed if they are equivalently defined.

When conformed dimensions and facts are used, it is possible to meaningfully combine data
from different cubes. Instead of re-defining the same concept such as “customer” each time it is used,
it is far better to have a single definition that is used in all cubes that have a Customer dimension.
Likewise, a measure such as “dollar sales” should be defined in the same way (e.g., include sales tax
and not be rounded off ) such that it, e.g., is possible to compare the planned dollar sales from the
Budget cube with the actual dollar sales from the Sales cube.

The creation of conformed dimensions and measures sounds easier than it is, since it often
involves interactions, and possibly mediation and negotiations,with different parts of an organization
to define, for example, common Product or Customer dimensions that are acceptable to everyone.
Large organizations may have 20+ source systems that are used by different departments that all
define the concept “customer” in their own way. To obtain a single definition thus requires strong
sponsorship and commitment from the management.

2.8 ANALYSIS AND QUERYING
The objective of a multidimensional database is to support data analyses of large amounts of data.
Here, we describe the most important operations available to the analyst.

2.8.1 ROLL-UP, DRILL-DOWN, AND DRILL-OUT
Consider the cube shown in Figure 2.5. This cube has the three dimensions Book, Location and
Time. Recall that a cube has a cell for each combination of dimension values. Figure 2.5 shows the
cells at the intersections of dimension values from the lowest levels in the hierarchies. Note that
for practical reasons, we only show very few values in each dimension. A real-world cube would
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Figure 2.5: A cube

contain many more dimension values. The analyst would, however, rarely or never consider all the
data at the lowest levels in the hierarchies. An analyst may want a less detailed view, for example
showing the sales per genre instead of the sales per each individual book. To do this, the analyst
can roll-up to the Genre level in the Book dimension. By doing that, the analyst considers the cells
at the intersections of dimension values from each of the lowest levels of Location and Time and
dimension values from Book’s Genre level. This is shown in Figure 2.6. The cells in this figure holds
the number of sales per genre. Each such number is the sum of sales per book in the genre. Recall
that a measure consists of a numerical property and a formula—in this case SUM—that is capable
of combining, or aggregating, multiple measure values into one. The number of cookbooks sold in
Arlington is given by 2 + 1 = 3 as two copies of “Italian Cooking” and one copy of “Tropical Food”
were sold there. To roll-up thus means to go from some level in a hierarchy to a higher level in the
same hierarchy in the cube considered. In other words, less detail is seen after a roll-up.

It is also possible to roll-up to the Book dimension’s � level.The � level, by definition,has only
one value. The analyst then considers the cells at the intersections of dimension values from Time
and Location and the single dimension value from Book’s � level. This corresponds to the analyst
considering the two-dimensional cube (or table) showing the sales per combination of Location and
Time values such that the Book dimension is projected out. This is shown in Figure 2.7.

The analyst can also roll-up along any of the other dimensions. If a roll-up is done to the �
level for each dimension, the result is a single cell holding the total number of all books sold.

The opposite operation of the roll-up is called a drill-down. When doing a drill-down, more
details are shown. It is, for example, possible to drill-down from Book’s Genre level to its lowest
level. This corresponds to going from Figure 2.6 to Figure 2.5. An analyst typically starts out by
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Figure 2.6: The cube from Figure 2.5 rolled-up to Book’s Genre level

considering higher-level data and then performs drill-downs to understand the details better. For
example, the analyst may consider sales by genre by year and discover that in 2005, many more
children’s books were sold than in 2004. By doing a drill-down along the Time dimension, the
analyst can then discover that the sales were particularly high during July 2005, and by doing a
drill-down along the Book dimension, the analyst can see that the increased sales were due to many
copies of the, at that time, new book “Harry Potter and the Half-Blood Prince” being sold.

Drilling down offers more detail by “expanding” one or more dimensions from an a non-�
level to a lower level. It is also possible to obtain more detail by including an additional dimension
(at a non-� level)—we refer to that as a drill-out . After a drill-out, the measure values are “spread
out” among more cells. Assume, for example, that the analyst is considering the number of books
sold in each genre such that only the Book dimension is used in the analysis, as shown in Figure 2.8.
The analyst can then drill-out using the Time dimension to see the sales by genre by year. This is
shown in Figure 2.9.

2.8.2 SLICING AND DICING
Think of a cube as an onion. When an onion is being prepared for cooking, it may be sliced and
even diced into small pieces. In context of a cube, the process referred to as slicing and dicing has a
similar effect. When analyzing a cube, the analyst may wish to only consider a subset of the cube.
To do this, the analyst can select a specific value for a dimension (e.g., Year 2009 from the Time
dimension). This way, a slice of the cube is obtained as illustrated in Figure 2.10. It is possible to
slice the resulting slice further such that the analyst considers a dice. A dice can also be obtained by
giving more complex conditions to select a subset of the data (e.g., consider the years 2008 and 2009
and books written by Jane Austen). We call the process of creating these subsets slicing and dicing.
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2.8.3 DRILL-ACROSS
So far, we have only considered operations on a single cube. Now assume that our book retailer
starts an Internet shop to supplement the physical shops. The book retailer does not want to use the
existing Sales cube to capture sales from both physical shops and the Internet shop as the Location
dimension describes the locations of physical shops in the U.S. The Internet shop may, however,
ship to identifiable customers in different parts of the World. The book retailer instead extends the
multidimensional database with an Internet Sales cube. Internet Sales and the old Sales cube share
the conformed dimensions Book and Time. In addition, Internet Sales uses a Customer dimension.
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Figure 2.8: Sales by Genre
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When an analyst considers the sales of books, there are now two cubes to use. However, the
analyst wants to see sales figures for the two books that sell the best in total, i.e., considering both
shop and Internet sales. To find the best selling books, it is not enough to use the Sales cube to find
the books that sell the best in shops and then use the Internet Sales cube to find the books that sell
the best on the Internet. To see this, assume that in the physical shops, “Book A” was sold 10,000
times, “Book B” 9,000 times, and “Book C” 8,000 times. From the Internet shop, “Book D” was sold
5,000 times, “Book E” 5,000 times, and “Book C” 4,000 times. If the analyst just found the, say, two
best selling books from the cube, the analyst would wrongly conclude that “Book A” sells the best.
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Figure 2.11: A drill-across

To make it possible to see that “Book C” in fact sells the best, the data in the two cubes must be
combined.

Data in two cubes can be combined by means of a drill-across operation that combines data in
two cubes by means of one or more shared dimensions. In relational terms, a drill-across corresponds
to a full outer join. Figure 2.11 illustrates the drill-across of the cubes Shop Sales and Internet Sales
(for readability, the measure values are not shown).

The resulting cube has as dimensions those dimensions that are shared between the original
cubes. Non-shared dimensions can be thought of as rolled up to their top levels in the original cubes
before the cubes are combined. The resulting cube inherits all the measures of both the original
cubes. These measures are applied to the data in the original cubes. In our example, the analyst
should thus consider a derived measure, namely the sum of the two cubes’ sales measures, to find the
best selling books.

When doing a drill-across, the shared dimensions must be conformed, but they need not be
identical (remember that two dimensions are conformed if they are identical or if one is a subset
of the other). Thus, the cubes may have different granularity. The dimensions in the resulting cube
will then have the levels that the original cubes share. For example, the Budget cube can be by genre
by year while the Sales cube has finer granularities for the Book and Time dimensions. The data in
the Sales cube can then be rolled-up to the Year and Genre levels before the cubes are combined
in a drill-across. The measures, showing planned sales and actual sales, respectively, can then be
compared meaningfully.



24 2. FUNDAMENTAL CONCEPTS

2.8.4 PIVOT TABLES
In Section 1.4, we said that a pivot table is a 2-dimensional table of data with associated subtotals
and totals. As an example, consider the pivot table in Figure 2.12 that shows book genres on the y

axis and states on the x axis. Note how subtotals and a grand total are also shown.

Florida Massachusetts Virginia Total
Children’s books 2042 8096 4031 14169
Cooking 20764 19174 573 40511
Fiction 50145 68944 12493 131582
Total 72951 96214 17097 186262

Figure 2.12: A pivot table

When using a pivot table, it is typically possible to select the data shown on an axis. For
example, the user can pick the genres Cooking and Fiction and the states Florida, Massachusetts,
and Virginia and then only sees the relevant subset (rows in this case) of the data and the subtotals
and totals of the subset.

A pivot table may also allow the user to use hierarchies to drill-down or roll-up. For example,
the analyst can “expand” the Cooking row in the pivot table in Figure 2.12 to see the data for the
individual books in this genre. This is shown in Figure 2.13.

Florida Massachusetts Virginia Total
Children’s books 2042 8096 4031 14169
Cooking 20764 19174 573 40511

Italian Cooking 4980 17659 530 23169
Tropical Food 15784 1515 43 17342

Fiction 50145 68944 12493 131582
Total 72951 96214 17097 186262

Figure 2.13: The pivot table with the Cooking genre expanded

A pivot table can also nest several dimensions on one axis. For example, the analyst can add
Year from the Time dimension to the x axis to the pivot table of Figure 2.12. This is shown in
Figure 2.14.

Finally, a pivot table can be pivoted (as its name suggests!). When pivoting, the dimensions
are “rotated.” For example, the x and y axes can be swapped, or the Year can be moved from the x

axis (as in in Figure 2.14) to the y axis such that there is a row for each genre/year combination.
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Florida Massachusetts Virginia Total

2008 2009 2008 2009 2008 2009
Children’s books 1013 1029 3784 4312 1452 2579 14169
Cooking 8734 12030 9102 10072 240 333 40511
Fiction 23458 26687 35497 33447 6872 5621 131582
Total 33205 39746 48383 47831 8564 8533 186262

Figure 2.14: A pivot table with two dimensions on the x axis

2.8.5 RANKING
When analyzing data, it is often helpful to be able to rank it. For example, the book retailer wants
to rank the books according to how they sell such that the best selling book is assigned number 1,
the second-best selling book is assigned number 2, and so on. It can be relevant to do a complete
ranking of all books, but the analyst may also want to find the “top set,” e.g., the top-5 best selling
books (this is a so-called top-k query). The ranking can be based on the number of copies sold, the
(aggregated) profit from the books, or on something else. It can also be relevant to do a ranking
within another ranking, for example, to find the 5 best selling books within each of the 3 best selling
genres.

The MDX query language [82], covered in the next section, offers a number of functions for
ranking and sorting multidimensional data.

2.8.6 MULTIDIMENSIONAL QUERYING IN MDX AND SQL
When it comes to the embedding the functionality considered here into a query language, two
directions exist: extensions to SQL and dedicated multidimensional languages.

OLAP SQL extensions were pioneered by Gray et al.’s proposal of the CUBE operator [28].
This operator generalizes GROUP BY, crosstabs, and subtotals using the special “ALL” value that
denotes that an aggregation has been performed over all values for one or more attributes, thus
generating a subtotal or a grand total. “ALL” is thus similar to the �-level in a dimension with a
single attribute.

Consider Figure 2.15, which contains a subset of our book retailer’s sales data in a standard
relational format. The SQL CUBE query below computes the total sales by city and book, with
subtotals for both city and book, and a grand total of all sales. The query uses the syntax defined in
the SQL:1999 standard.

SELECT City, Book, SUM(Sales) AS Sales
FROM SalesTable
GROUP BY CUBE (City, Book)
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City Book Sales
Boston Gone With the Wind 43765
Miami Gone With the Wind 21923
Boston Winnie the Pooh 2345
Miami Winnie the Pooh 89

Figure 2.15: Sales Table

The query result is shown in Figure 2.16. Note the ALLs that represent the subtotals and the grand
total. In most RDBMSs, the ALL value is implemented as a NULL value (possibly with a special
function that makes it possible to distinguish it from “real” NULL values).

City Book Sales
Boston Gone With the Wind 43765
Miami Gone With the Wind 21923
Boston Winnie the Pooh 2345
Miami Winnie the Pooh 89
Boston ALL 46110
Miami ALL 22012
ALL Gone With the Wind 65688
ALL Winnie the Pooh 2434
ALL ALL 68122

Figure 2.16: Query Result

Another OLAP SQL extension is window functions from the SQL:2003 standard. When an
aggregate function such as SUM is used in a conventional GROUP BY query, a single result value is
produced for a group of rows. With a window function, each row in each implied partition remains,
and the aggregate is computed over a set (a “window”) of other rows that are related to each row.
Consider again the table in Figure 2.15. If we want to compare the amount of copies of each book
sold in each city with the total number of sold books in that city, we can use SUM as a window
function, as shown in the SQL query here:

SELECT City, Book, Sales, SUM(Sales) as Total
OVER (PARTITION BY City)
FROM SalesTable

The result of this query is given in Figure 2.17. We partition by City, but the result contains a row for
each book sold in each city. The SUM is calculated over all book sales in a city and then associated
with each row for a book sale in the city. Thus, all rows for the same city have the same Total value.
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City Book Sales Total
Boston Gone With the Wind 43765 46110
Boston Winnie the Pooh 2345 46110
Miami Gone With the Wind 21923 22012
Miami Winnie the Pooh 89 22012

Figure 2.17: Query result

It is also possible to use RANK that ranks the rows inside each window as a window function.
For example, we can rank the books according to sales for each city with the following query.

SELECT City, Book, Sales, SUM(Sales) as Total, RANK()
OVER (PARTITION BY City ORDER BY Sales DESC)
FROM SalesTable

By now, the SQL standard has adopted the data cube operators [21; 40] along with a range of
OLAP functionality such as ranking, percentiles, and windowing, as well as various mathematical
and statistical functions. The major RDBMS engines also implement the data cube operators, along
with some of the additional functionality mentioned above. However, the syntax may vary slightly
from engine to engine. The iceberg cube [6] is a further development of the data cube operator that
only returns rows where the measure values exceed some threshold (corresponding to interesting “tip
of the iceberg” values).

Among the dedicated multidimensional query languages, the by far most prominent and
widely used language is MultiDimensional eXpressions (MDX) [82; 89], which originally was pro-
posed by Microsoft, but is now also used in other OLAP products. Unlike the SQL extensions,
MDX statements directly produce pivot tables as results, making the integration with OLAP client
tools easy.

In MDX, the dimension values are called members, and there is a special Measures dimension
whose values range over the names of the cube measures. This way, any measure value can be
referenced using a combination of members (dimension values), including the measure dimension.
Dimensions have one or more hierarchies, each with a number of levels. The top level in each
dimension is called “(All)” and contains just one one value, like the � value described earlier. MDX
uses dot notation to refer to members, as in [Time].[Calendar].[Month].[May 2009]. An
MDX query uses a FROM clause for specifying the input cube. A SELECT clause enables the
specification of so-called axes, the most important axes being the query axes. These specify the
hierarchies from which to retrieve the data for multiple members. A query can have up to 128 query
axes although queries typically have only a few. There are five “standard” axes, called COLUMS,
ROWS, PAGES, SECTIONS, and CHAPTERS, that correspond to well-known report concepts.
Additionally, a query may specify a slicer axis in the WHERE clause that specifies the hierarchies
from which to retrieve the data for a single member.
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As an example, consider a cube, SalesCube, with two dimensions, City and Book, and one
measure, Sales, built on the data in Figure 2.15. Each dimension has just one hierarchy. The City
hierarchy contains a (bottom) City level containing the city names and an (All) level containing the
single value “All Cities.” The Book hierarchy contains a (bottom) Book level containing the book
names and an (All) level containing the single value “All Cities.” The MDX query below shows the
sales per city and book, including subtotals per city and book, and a grand total, i.e., it is the MDX
version of the previous SQL CUBE query example on page 25.

SELECT
{ [City].Members, [City].[All Cities] } ON COLUMNS,
{ [Book].Members, [Book].[All Books] } ON ROWS

FROM [SalesCube]
WHERE ( [Measures].[Sales] )

Note the use of the “{...}” notation to specify a set of members to show on an axis, the use of the
“.Members” notation to specify the set of members in a dimension, and the use of the “[All ...]”
members for referring to the top of the dimension hierarchies. The WHERE clause specifies that
the Sales measure should be displayed. Figure 2.18 shows the MDX query result.

Book Boston Miami All Cities
Gone With the Wind 43765 21923 65688
Winnie the Pooh 2345 89 2434
All Books 46110 22012 68122

Figure 2.18: MDX query result

MDX also offers a large number of functions that can be used for navigating in hierarchies
(some of these “understand” time semantics such that it, e.g., is possible to compare the current
month’s sales to sales in the same month last year), performing calculations, ranking data, and much
more.

2.8.7 GRAPHICAL QUERYING AND VISUALISATIONS
The MultiDimensional eXpressions (MDX) query language is very powerful and allows the analyst
to do advanced querying. However, the language is complex and only IT specialists are capable of
writing MDX queries.The typical business analyst must then either get help from such a specialist to
write and execute the query or must use a more user-friendly system.Therefore, many OLAP clients
with rich graphical user interfaces (GUIs) exist.The OLAP clients provide the user with easy-to-use
components (e.g., tables and graphs) that can be shown on the GUI. The user can then perform
OLAP operations such as drill-down, slicing, or pivoting by clicking or using menus. Behind the
scenes, OLAP clients typically generate MDX or SQL queries.
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A popular means to give an overview of summarized data such as key performance indicators
(KPIs) or total sale compared to last year is a so-called dashboard (think also about the dashboard in
a car, which should be readable and understandable in the short timeframe the driver has to look at
it). A dashboard, thus, shows a limited number of components, or pre-defined analysis results that
give a high-level overview. A dashboard may support further analyses of the data, e.g., by enabling
drill-down.

2.9 SUMMARIZING EXAMPLE

We proceed to summarize some of the concepts introduced in this chapter by extending the book
retailer example. We follow the four-step process from Section 2.7.

In the first step, we choose the business process to model. For a book retailer, an obvious
candidate is sales of books as this process directly brings profit to the book retailer. Other processes
may also be so important that they should be modeled. That may include inventory to avoid out-of-
stock or over-stock items, which lead to loss of profit, and customer flow to optimize staff scheduling
so that long customer waiting times are avoided at the cash registers. Here we choose to only consider
sales of books.

In the second step, we choose the grain of the business process. At the finest possible grain, we
can capture each individual sale of a book. Alternatively, we can capture aggregated data such as total
sales per book per store per date. The finest granularity gives the largest flexibility for analysis (the
aggregated sales can be found from the non-aggregated sales figures), but more storage is needed
and performance may become worse. To see this, assume that our book retailer has 200 shops, each
of which on average sells 1000 book copies each day. If we capture each individual sale, we would
on average get 200 · 1000 = 200, 000 new facts each day. It is, however, not the case that all books
are equally popular. Some books, e.g., the Harry Potter books, sell extremely well, while others are
nearly never sold. Assume that 250 different books are sold (in a number of copies—4 on average)
from each shop on an average day. If we only capture the aggregated sales per book per shop per
date, we would only get 200 · 250 = 50, 000 new facts each day. In other words, by aggregating the
sales, we get 75% less facts and thus need much less storage and get better performance, as there is
less data to consider in queries. With the aggregated data, there are, however, aspects of the business
we cannot investigate. For example, we cannot see during which hours books sell the best, and we
cannot use data mining to investigate whether certain books are likely to be sold together. It is, thus,
very important to understand the needs of the business when creating a multidimensional database.
In general, the finest possible granularity should be used. For now, however, we assume that the book
retailer only needs the aggregated sales per book per shop per date.

In the third step, we design the dimensions. From the grain “sales per book per shop per date,”
we can see three (emphasized) dimension candidates. In the examples throughout the chapter, we
have used a Location dimension with City as the lowest level. However, the book retailer may
have several shops in one city. Thus, we now use a Shop dimension instead. We also rename the
Time dimension to the Date dimension to avoid confusion about whether the dimension represents
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dates (e.g., May 26th 2010) or specific times (e.g., 11:02 a.m.). When we pick attributes for the
dimensions, as much relevant context as possible should be included. The “relevant” context is what
business analysts can make use of. For example, it is relevant to know how large a shop is (a large
shop should probably sell more than a small shop), but the yearly consumption of electricity in a
shop does not seem relevant. Note that there is also a trade-off between the utility of an attribute
and the cost or difficulty of obtaining the necessary data. In this example, we choose to include the
following attributes.

Book dimension

• BookID (surrogate key)

• ISBN number (a business key as each book has a unique ISBN number)

• Title

• Edition

• Author

• Original title (the book may be a translated publication)

• Publisher

• Published (when the book was released)

• First published (the book may be a republishing)

• Genre

• Language (the book retailer sells books in several languages)

• Number of pages

• Binding (paperback/hard-cover)

Date dimension

• DateID (surrogate key)

• Date

• Month

• Year
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Shop dimension

• ShopID (surrogate key)

• Address

• City

• State

• Size (floor space)

• Shelf space

• Opened (the date when the shop opened)

• Has café

The dimension schemas are shown in Figure 2.19. The attributes not shown here are level
properties of the lowest level.The hierarchies for the Date and Shop dimensions are straightforward.

T

Book

Author

T

Month

Year

Day

T

City

State

Shop

Figure 2.19: Schemas for the dimensions (level properties not shown)

For the Book dimension, we choose to make it possible to roll-up the individual book titles to
authors. This will be directly supported by client tools that understand hierarchies (e.g., MDX-
based solutions). However, it could be that the analysts need other hierarchies, for example, to
roll-up sales based on publisher of the book or genre of the book. We will come back to this in the
next chapter.
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In the fourth step, we choose measures. An obvious choice is the number of sold books (with
the sum formula for aggregation). Also the sales price in dollars for the sold books seems relevant
(prices may change over time and location, e.g., due to special campaigns).

This completes the modeling (although a real-world design document would be much more
elaborate and precise). We have now modeled a multidimensional database that helps the book
retailer’s analysts in understanding how books sell. However, our multidimensional model has a
number of limitations and inaccuracies. First of all, we only have a single Author attribute. This is
fine when a book has a single author. But in the real world, many books are co-authored by several
authors. We could then choose to write all their names in the Author attribute or only write the first
author’s name. However, both of these approaches yield incorrect results when we want to roll-up
to the Author level. What we need is a way to represent the many-to-many relationship between
books and authors. Regarding the hierarchies, it would also be desirable if we had more hierarchies
on the Book dimension. For example, it could make sense to have a hierarchy with the levels Book,
Subgenre, Genre, and All, or a hierarchy with the levels Book, Publisher, and All. Another problem
is that there is no way to capture changes with the current modeling. A shop may, for example, be
expanded such that its floor area increases. If we update the shop’s dimension value, old facts will
incorrectly be associated with the new size. All of these issues (and many others) are dealt with in
the next chapter.

2.10 EXERCISES
1. Illustrate how the data in the cube in Figure 2.20 can be presented in a two-dimensional table

by nesting its dimensions. Assume that the cell that cannot be seen in the drawing contains
the number 7201.

2. Show how the cube in Figure 2.20 could look if we roll-up to the � level in the Location
dimension.

3. Show how the result from Exercise 2 looks if we drill-down in the Date dimension.

4. Define the schema for a Date dimension with at least 5 levels and identify relevant attributes.
Can a Week level be included? Should the attribute Weather be included if the dimension is
designed for an ice-cream retailer?

5. For each of the following statements,decide what type (event or state) of fact we are considering.

(a) A fact exists for (d, p, c, s) if product p was sold to customer c from shop s on day d.
The measure is the total price.

(b) A fact exists for (d, p, s) if product p was sold from shop s on day d. The measure is the
total price.

(c) A fact exists for (d, p, s) for each product p, each shop s, and each day d. The measure
is the total inventory of p in s on d.
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Figure 2.20: A cube

(d) A fact exists for (d, p, s) for each product p, each shop s, and each day d. The measure
is the total amount of p sold in s in the year until day d.

(e) A fact exists for (c, e, d) when a call from customer c was answered by employee e on
day d. There is no measure.

(f ) A fact exists for (c, e, d) when a call from customer c was answered by employee e on
day d. The measure is the length of the call in seconds.

6. For each of the following statements,determine whether the measure is additive, semi-additive,
or non-additive.

(a) A fact exists for (d, p, c, s) if product p was sold to customer c from shop s on day d.
The measure is the total price.

(b) A fact exists for (d, p, s) if product p was sold from shop s on day d. The measure is the
total price.

(c) A fact exists for (d, p, s) for each product p, each shop s, and each day d. The measure
is the total inventory of p in s on d.

(d) A fact exists for (d, p, s) for each product p, each shop s, and each day d. The measure
is the total amount of p sold in s in the year until day d.

(e) A fact exists for (b, c, d) if currency c was exchanged in bank branch b on day d. The
measure is the total amount exchanged in US Dollars.
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(f ) A fact exists for (b, c, d) if currency c was exchanged in bank branch b on day d. The
measure is the average exchange rate between c and US Dollars for all transactions
involving c on day d.

(g) A fact exists for each (b, c, d) where c is a currency, b a bank branch, and d a date. The
measure is the total amount of c kept in b on day d.

7. In this exercise, we consider a chain of stores selling newspapers and magazines. The chain
sells many different kinds of publications (e.g., relating to fashion, children, cars, sports) from
many different publishers. The types of stores range from small corner shops to super stores
with co-located cafés. However, the chain is a bit old-fashioned, as each shop manager at the
end of each day has to enter information into a spreadsheet about how many copies were sold
of each publication that day.The spreadsheet is then sent to the headquarters. Currently, this is
the only way headquarters can collect and analyze sales data from the shops.The management
now wishes to gain more insight into the sales of the different publications (and types of
publications) from each shop. Design a data warehouse that can help the management. Include
relevant hierarchies and attributes. Remember that a certain publication has many “editions.”

8. Draw a star schema for the data warehouse designed in Exercise 7.

9. Draw a snowflake schema for the data warehouse designed in Exercise 7.

10. Write SQL queries that find the total sales of sports publications in 2009 when using the star
schema and the snowflake schema from the two previous exercises. Discuss pros and cons in
each case.
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C H A P T E R 3

Advanced Concepts
Having covered the fundamental concepts of multidimensional databases in the previous chapter,
we proceed to consider advanced concepts that provide solutions to the problems pointed out at
the end of the previous chapter where many-to-many relationships were not supported and where
hierarchies were somewhat limited. First, we look into how to handle changes in dimensions. The
examples will extend the simple examples used throughout Chapter 2. The complete example from
Section 2.9 is extended in Section 3.4.

3.1 SLOWLY CHANGING DIMENSIONS
Like any database, a multidimensional database or data warehouse models selected aspects of some
reality. Which specific aspects to capture depends on the intended uses of the database. Due to the
dynamic nature of reality, the modeled reality as well as the uses of the data warehouse change over
time.This implies that the database must be able to evolve in order to continue to serve its purposes.
In this section, we consider the handling of changes in a database that is represented by means of a
star schema. As described in Section 2.5.1, such a database has a central fact table and a number of
dimension tables.

3.1.1 THE PROBLEM
Recall that a data warehouse models some real-world process that we are interested in studying.
The example we consider focuses on the sales process for books. As the process evolves, new rows
are inserted into the fact table and into the dimension tables. In our example in Figure 2.3, when
sales come in for a new day, that day is inserted as a row into the Time dimension table, and a
row is inserted into the Sales fact table for each combination of book and a city for which there
was at least one sale during that day. If a new book starts to be sold, that book is inserted into the
Book dimension table, and if sales start to occur in a new city, that city is inserted into the Location
dimension table.

This scenario represents the desired evolution of a data warehouse. In practice, however, it
is necessary to be able to cope with other types of change, including the so-called slowly changing
dimensions, which occur when the existing rows in dimension tables need to be updated [48]. The
mental image intended by this naming is that although existing rows in dimension tables need to be
updated occasionally, this happens infrequently.

Consider the star schema shown in Figure 2.3 with the slightly revised Book dimension table
shown in Figure 3.1. The table now includes a Rating column that indicates how well the customers
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BookID Book Rating Genre
7493 Tropical Food 4 stars Children’s books
9436 Winnie the Pooh 5 stars Children’s books
9948 Gone With the Wind 4 stars Fiction
9967 Italian Food 4 stars Cooking

Book (dimension)

Figure 3.1: Revised Book dimension table for the Sales cube

like the book. Both the rating and the genre of a book may change over time. For example, the
rating of “Gone With the Wind” may drop to “3 stars” or the genre of the book “Italian Food” may
be refined to “Mediterranean cooking.” The fundamental problem with simply updating the rows
accordingly is that these rows are already being referred to by fact table rows with old sales. These
already existing fact table rows rely on the existing dimension table rows with their specific attribute
values. When updating such attribute values, the old fact table rows refer to dimension table rows
that have changed. For example, purchases of “Gone With the Wind” when rated as “4 stars” now
appear to be purchases of a book with only a “3 stars” rating. This way, incorrect information is
created. Next, the fundamental problem with not changing the rows to reflect changes of rating and
genre classifications is that the data warehouse is outdated. New rows entered into the fact table
really need to refer to the updated Book dimension table rows. As an aside, observe that an update
of the genre of the “Tropical Food” row from “Children’s books” to “Cooking” is acceptable in that
this change is a correction of an error.

3.1.2 SOLUTIONS
We consider three approaches to addressing the changes that may occur in dimension table rows.

The first approach is to simply overwrite the old attribute values.This is called a type 1 update.
As already pointed out, old fact table rows now refer to dimension table rows that have changed, and
if the original state of the data warehouse was correct, the data warehouse now contains incorrect
information. The good news is that new fact table rows will be able to refer to correct dimension
table rows.

This approach is easy to implement, and if the dimension table updates are simply error
corrections, as in the case of “Tropical Food” being classified as a children’s book, the solution is
ideal. Further, there may be cases where the inaccuracies introduced by the updates are considered
as unimportant. For example, this might be the case for the genre refinement. However, the bottom
line is that this approach basically ignores the fundamental problem.

The second approach, called a type 2 update, is to version the rows in the dimension tables.
A change is captured by inserting a new row with the updated attribute values, leaving the existing
row unmodified. This has the conceptual effect that the dimension tables go from recording rows to
recording “versions of rows.” The primary key column thus has to be generalized to capture versions
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of rows instead of rows. This generalization is straightforward when surrogate keys are used, as is
the recommended approach. With this approach, the old fact table rows continue to refer to the
original dimension table rows, while new fact table rows refer to the new dimension table rows. In
our example, if the rating of “Gone With the Wind” changes, we create a new row for this book that
differs from the existing row only on the Rating value, and new sales of “Gone With the Wind” will
refer to this new row.

This approach enables the capture of correct information in the data warehouse. It has the
effect that the dimension tables increase in size. This is usually not a problem, as the space used by
dimensions typically is much smaller than the space used to store facts.Now that the dimension tables
change over time, it may be relevant to capture accurately these changes. In case a time dimension
is present, which is typically the case in a data warehouse, the first time a fact table row refers to
a row in a dimension table can be determined, and this time can serve as a conservative bound on
when the dimension table row came into existence. The exact time when a change happens in a
dimension can be captured by inserting a special row in the fact table. This row refers to the new
dimension row and to the row in the time dimension table that represents the time when the change
happened. This is, however, cumbersome to use in queries. A simpler alternative is to introduce two
time-valued columns in the dimensions where changes may occur. These columns record the times
when the rows became valid and invalid, respectively. Note that for a version that is still valid, we
can let the column telling when it becomes invalid point to some date far into the future. A NULL
value could also be used, but that renders querying more difficult.

The solution can be extended with a column that for each row tells whether the row is the
most recent version of the row. This column is then updated in the old version when a new version
is inserted. A column can also be added to record the version number of each row. Note that the
two latter columns (recording if a version is the most recent and the version number, respectively) in
principle can be deduced from the two time-valued columns (recording when versions become valid
or invalid, respectively). However, some queries are much easier to formulate when the two latter
columns are present in the dimension table. Figure 3.2 shows the Book dimension table when this
scheme is applied.

BookID Book Rating Genre ValidFrom ValidTo Newest Version
7493 Tropical Food 4 stars Children’s books 2006-03-01 2008-12-31 No 1
9436 Winnie the Pooh 5 stars Children’s books 2000-01-01 9999-12-31 Yes 1
9948 Gone With the Wind 4 stars Fiction 1999-06-01 2008-10-15 No 1
9967 Italian Food 4 stars Cooking 2003-04-05 2009-05-01 No 1
9995 Gone With the Wind 3 stars Fiction 2008-10-16 9999-12-31 Yes 2
10100 Tropical Food 4 stars Cooking 2009-01-01 9999-12-31 Yes 2

11319 Italian Food 4 stars
Mediterranean
cooking 2009-05-02 9999-12-31 Yes 2

Book (dimension)

Figure 3.2: Book dimension table with row versions (“type 2 updates”)
The third approach to support slowly changing dimensions is quite different. For each dimen-

sion table column that may change, an additional version of that column is introduced.This is called
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a type 3 update. It has the effect that we are able to record two values for columns that may change.
We use one to record the current value, and we use the other to record the previously current value.
When this scheme is applied to our example, we obtain the dimension table shown in Figure 3.3.

BookID Book Rating OldRating Genre OldGenre
7493 Tropical Food 4 stars 4 stars Cooking Children’s books
9436 Winnie the Pooh 5 stars 5 stars Children’s books Children’s books
9948 Gone With the Wind 3 stars 4 stars Fiction Fiction

9967 Italian Food 4 stars 4 stars
Mediterranean
cooking Cooking

Book (dimension)

Figure 3.3: Book Dimension table with versioned columns (“type 3 updates”)

With this approach, fact table rows from before and after the most recent change to an attribute
refer to the same dimension table row; and as this row holds both the current value and the most
recent, previously current value, fact table rows refer directly to two values of the same attribute.
This arrangement may be utilized to analyze data across changes. For example, one can study the
difference in the distribution of sales across two different genre classifications of books in preparation
for deciding whether or not to introduce a new genre classification of books that is more useful for
analyses.

This approach is limited by its ability to capture only two values for each attribute that can
change, and this renders the approach useful only for certain special cases. It should also be noted that
it is not possible to capture when the changes occur for the attributes. The approach may, however,
be generalized to support cases where changes happen for all dimension members at given times.
Sales districts could, for example, be redefined for each year. In the Shop dimension, there could
then be an attribute for each year showing the sales district for that year.

When the type 2 or type 3 approaches are applied, to be able to reflect changes in the real
world, it often makes sense to combine them with the type 1 approach for the handling of error
corrections. In Figure 3.2, we created a new row version for the book “Tropical Food,” which was
defined erroneously to be a children’s book. Creating a new version only fixes the problem from the
point on when the new version took effect; old facts that do not refer to the new version still refer
to the wrong information. A better solution for this error is to simply change the wrong genre value
for the book.

We have only considered star schemas in this section. In a snowflake schema, slowly changing
dimensions may, however, also occur. The type 1 and type 3 approaches can then be used straight-
forwardly. The type 2 approach can also be used, but to avoid an overly complex scenario, the row
versioning should be kept in the dimension table for the lowest level.Thus, if a new version is created
at a higher level, corresponding new version(s) should also be created for the lower levels.

We conclude by remarking that the most versatile technique for handling slowly changing
dimensions is the row versioning approach (“type 2”), and this approach is generally recommended.
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3.2 OTHER SPECIAL KINDS OF DIMENSIONS

3.2.1 MINIDIMENSIONS
In Section 3.1, we considered slowly changing dimensions. It is natural to ask when slowly changing
dimensions become rapidly changing, and to consider how to address such cases.

Assume that our book retailer has access to detailed information about customers who have
joined a loyalty program.This detailed information includes address, birthday, marital status, number
of children, education, job category, yearly salary, etc.When members of the loyalty program purchase
products from a shop, they show their membership cards to get rebates. This arrangement allows
the book retailer to track the purchases of the members in considerable detail.

The book retailer can then also include information about the individual member in the
multidimensional database by means of a Customer dimension. That way, the book retailer can
analyze how book sales are related to age, level of education, etc. We assume that the retailer includes
30 attributes describing the customers. However, customer information will change over time, such
as when a customer moves or gets a raise, and so the Customer dimension is a slowly changing
dimension.The retailer can use type 2 updates where new versions are created to track these changes.
A new version is created whenever one or more of the attributes get a new value.Thus, the Customer
dimension is going to have many dimension value versions (or row versions in a relational OLAP
system).

When changes to a dimension are frequent and we use row versioning, the effect is that the
size of the dimension may get very large. This may occur in the example above. Still, with proper
indexing, it is generally possible to handle large, rapidly changing dimensions.

In special cases where the versioning simply yields a dimension that is too large, one possible
remedy is to split the dimension into two (in relational OLAP, both dimension tables are referenced
from the fact table). The idea is to break off the attributes that change often and place them in a
new dimension, called a minidimension.

The minidimension can hold all possible combinations of the values of the often changing
attributes. Here, “all possible combinations” can either mean the Cartesian product of the attribute
values, i.e., all combinations possible from a theoretical point of view, or it can mean all combinations
that actually occur in real life. The size of the latter set is often only a fraction of the size of the
Cartesian product. To reduce the size of the minidimension, the detailed attribute values may be
replaced by ranges of values. For example, if a customer dimension originally recorded the average
annual income of the customers, the new minidimension may instead record annual income ranges,
using, e.g., 5 ranges. This limits the number of possible values in the minidimension.

In our example, the retailer can thus create a minidimension, Profile, that describes “customer
profiles” (and not the individual customers) and holds all the attributes that change often, such as
salary, number of children, and credit rating, while the (relatively) static attributes (e.g., education
and birth date) and those that only describe an individual customer, such as address, remain in the
Customer dimension.
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Since all possible combinations are represented in a minidimension, there is no need for the
handling of changes in a minidimension; instead, changes in the modeled world are captured by
means of the facts. For example, if a customer gets a higher salary, it is not necessary to update
anything in the relevant minidimension. Rather the change is captured the next time a fact occurs
for the given customer. The new fact will then reference the minidimension’s dimension value that
now covers the salary.

The negative consequences of using a minidimension are that the data becomes less detailed
and that some queries may become harder to formulate because the attributes they refer to are now
in two dimensions rather than in one. In a relational OLAP-based implementation, the fact table
needs an extra foreign-key column. Since a data warehouse normally holds a large number of fact
rows, the increased space needed is not negligible. Another consequence is that some changes only
can be captured when a fact occurs. With a slowly changing dimension, it is possible to capture a
change in, e.g., demographic information about a customer’s salary, on the day the change happens
even if there is no fact for the customer for that day. If the information, on the other hand, is placed in
a minidimension, the change cannot be captured until the next time a fact occurs for that customer.

3.2.2 OUTRIGGERS
We have just seen how the book retailer can describe customer profiles with a minidimension, Profile,
to keep the Customer dimension small in size even when it changes rapidly. Now assume that the
book retailer wants to be able to see the current profile associated with a given customer without
relying on the existence of a fact for the customer and the current profile. A naive solution would
be to include the 30-some attributes from the Profile dimension in the Customer dimension and
then use type 1 updates to represent the current profile. However, it does not seem like a good
idea to maintain some 30 Profile attributes in both the Profile minidimension and in the Customer
dimension. A better solution is to reference the Profile minidimension directly from the Customer
dimension (and use type 1 updates to only reference a customer’s current profile). A dimension that
is referenced from another dimension is called an outrigger .

Outriggers are used in relational OLAP environments where the outrigger’s dimension table
is referenced by a foreign key in another dimension table. To use the outrigger, a join between the
dimension table and the outrigger is performed. Note that the use of an outrigger is different from
using a snowflake schema. The outrigger does not have to be normalized.

A dimension can be used both as an ordinary dimension and as an outrigger at the same time.
This is, for example, the case for the Profile dimension described above. Another typical example
is a time dimension. A time dimension is normally part of a cube such that a fact is related to a
certain date, but the time dimension may also be referenced from other dimensions, e.g., from the
Customer dimension to keep track of a customer’s birthday or from the Book dimension to keep
track of when a book was published.



3.2. OTHER SPECIAL KINDS OF DIMENSIONS 41

3.2.3 DEGENERATE DIMENSIONS
In the following, we assume that our book retailer now uses a finer granularity and keeps track of
each individual transaction where one or more books are sold (i.e., not only the sales per book per day
per location).The dimensions Book,Time, and Location are still used, but these are not sufficient as
we cannot identify the individual transactions. So we need another dimension to be able to identify
a unique transaction. This dimension thus holds a unique identifier from each transaction, e.g., the
unique number the cash register prints on the receipt or just a “dumb” integer value that is increased
for each transaction. However, there are no other descriptive attributes and the dimension’s only
levels are the lowest level for the unique identifier and the special � level for all transactions. Such
a dimension that consists only of a single identifier is a degenerate dimension.

In a relational representation, as covered in Section 2.5, there is no need to create a separate
dimension table for a degenerate dimension. If we did, the fact table would have a foreign key
referencing the dimension table, which would only have a single attribute. Instead, it is easier and
yields better query performance (as joins can be avoided) to just place the identifier attribute of the
degenerate dimension directly in the fact table, thus avoiding the separate dimension and the foreign
key. Note that it then is important to use an integer as the identifier to keep the size of the fact table
down.

Figure 3.4 shows the fact table for our book retailer when we have added the degenerate
dimension Transaction (the fact table is the the only place where the transaction’s identifier, Trans-
actionID, is represented). Note that we have added the measure Price, as the finer granularity allows
us to keep track of the price a book was sold for in a given transaction (which may differ from
transaction to transaction and from shop to shop due to special offers, campaigns, etc.).

BookID CityID DayID TransactionID Sale Price
7493 854 2475 102 1 10
7493 854 2475 123 1 10
7493 854 2475 232 2 20
7493 854 2475 244 1 10
7493 876 3456 400 1 15
7493 876 3456 523 1 15
9436 876 3456 523 1 12

Sales (fact table)

Figure 3.4: Revised fact table for the Sales cube

3.2.4 JUNK DIMENSIONS
With the transaction-level granularity introduced and used in the previous section, it is of relevance
for our book retailer to provide even more context about each book being sold in a transaction. Now
we also want to capture how the book is being displayed (with the three options “Displayed in prime
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location,” “Displayed in secondary location,” and “Not displayed”), if the book is discounted (with
the two options “Discounted”, “Not discounted”), and finally whether some promotion event takes
place (with the four options “Release,” “Book signing,” “Other event,” “No event”).

To capture these options, we could add the three dimensions Display, Discount, and Event.
Each of these dimensions has very few (between two and four!) dimension values.However, as each of
the three dimensions has very few dimension values, it is viable to “merge” them into one dimension,
Promotion. This dimension holds all possible combinations of the options, in total 3 · 2 · 4 = 24
dimension values. We call such a dimension with combinations of unrelated values, a junk dimension.
A junk dimension should only be used to group flags and low-cardinality descriptions as there would
otherwise be too many possible combinations.

While the the querying can become slightly harder with a junk dimension instead of several
independent dimensions, this arrangement reduces the dimensionality of the cube. In a relational
representation, this leads to huge space savings, as the fact table then only needs one extra column
to accommodate the new contextual information instead of three extra columns (remember that the
fact table is likely to hold many millions of rows).

Kimball & Ross [48] give a good mental image of the junk dimension by comparing it to a
kitchen’s junk drawer where scissors, rubber bands, tape, etc. are kept. It would be nice to have a
drawer for each category, but there is not enough space for that. Therefore, we make a pragmatic
solution and put all these unrelated items in one drawer, the junk drawer.

3.2.5 TIME DIMENSIONS
Most real-life multidimensional databases model processes or states that evolve over time (in our
example, the book retailer sells books every day). To model this evolution, time dimensions are used.
Time dimensions are thus found in nearly all multidimensional databases. Recall from Section 2.6
that Inmon views the presence of a time dimension as a defining characteristic of a data warehouse.

There are two kinds of time dimensions: A date dimension represents the date (e.g., “November
11, 2009”) while a time-of-day dimension represents the clock time (e.g., “11:47 a.m.”) during some
unspecified day. Whether or not both kinds of time dimensions are present in a multidimensional
database depends on the intended use of the database. Sometimes it is enough to capture the date
and not the more detailed time of day. The granularity of these dimensions may also vary depending
on the intended usage. For example, data could be collected at a monthly level instead of a daily
level (meaning that the date dimension would represent a specific month, e.g., “November, 2009,”
instead of a specific day).

It would be possible to include both the date and the time of day in a single dimension.
However, this dimension would quickly grow to be huge. Assume that such a dimension represented
each minute in each day. For a single day, there would thus be 60 · 24 = 1,440 dimension values.
For a single year, there would be 1,440 · 365 = 525,600 dimension values. In comparison, there
are only 1,440 dimension values in the time of day dimension (independently of how many years
are represented in the date dimension) and 365 dimension values per year in the date dimension.
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Further, it may be more natural for analysts to consider the time of day and the date independently.
For example, this would make it possible to create a pivot table with dates at the month level on
one axis and times of day at the hour level along the other axis, thus enabling analysis of how sales
during the day are affected by the season.

Even if a DBMS to be used for data warehousing offers a DATE attribute type, the use of
time dimensions is recommended instead of just having a simple DATE attribute in the fact table.
By having time dimensions, domain-specific knowledge can also be represented and made easily
available to analysts. For example, it can be captured easily whether a day is a part of a holiday season
or whether a special event like the Soccer World Cup takes place during a particular day. This kind
of information cannot be extracted from an ordinary DATE type. Also, the time dimensions are
easier to use in queries since no calender logic must be performed in the query when a dimensional,
hierarchical representation is in place. Time-related drill-down and roll-up operations are thus also
much easier to perform.

To make a time dimension as useful as possible, it is important to include many descriptive
attributes—also if these attributes represent the same thing. For example, there is a one-to-one rela-
tionship between DayNumberInWeek (with values 1, 2, ..., 7) and WeekDay (with values Monday,
Tuesday, ..., Sunday), but it is still useful to include both attributes to make the formulation of queries
and browsing of dimension values easy and intuitive. Another example is the number of days in a
certain month, which in principle could be derived from the month (and the year, in case of Febru-
ary), but instead of burdening the user with this, an attribute, e.g., called NumberOfDaysInMonth,
should be included in the date dimension.

A date dimension typically has more than one hierarchy as both calendar year and fiscal years
are often captured. We return to multiple hierarchies in Section 3.3.5.

3.2.6 DATA QUALITY DIMENSIONS
Sometimes it is possible to evaluate the quality of the data in a database. Assume, for example, that
one of the book retailer’s shops usually sells 3–5 copies of a certain book each day, but one day appears
to have sold 1,000 copies of that book. This is likely to be an error, but it could be true due to a
discount or a new film being based on the book. Thus, it can be dangerous to just remove the data.
Instead, a special dimension can be used to describe each fact. Which dimension values to include
in such a data quality dimension depends on the business needs. Typical values are “Normal value,”
“Out-of-bounds value,” “Unlikely value,” “Verified value,” “Unverified value,” and “Uncertain value.”

Inclusion of all the data even if the associated quality is questionable gives the analysts the
full picture. If they wish to only use high-quality data, they can constrain the data quality dimension
to “Normal value” or “Verified value.” If they wish to see all data (including possibly wrong data),
they can ignore the data quality dimension altogether.
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3.3 ADVANCED HIERARCHIES
The hierarchies we considered in Chapter 2 were simple hierarchies. We assumed that they were
balanced (i.e., in any given instance of the hierarchy, all leaves belong to the schema’s lowest level),
covering (i.e., in any given instance, each path starts at the root and then goes to the level immediately
below in the schema and then to the next level immediately below and so on, without skipping
any level), and strict (i.e., in any given instance, no dimension value has more than one parent).
Intuitively, this means that the instance forms a balanced tree. In this section, we consider more
general hierarchies that do not fulfill these requirements, and we discuss how to support such
hierarchies. Further, we describe how a dimension can have several hierarchies rather than just
one as assumed in Chapter 2.

3.3.1 PARENT-CHILD HIERARCHIES
In the hierarchies we have considered so far, level values of one type have been grouped into level
values of containing type. For example, cities were grouped into states. In some cases, the type of the
parent level is, however, not different from the type of the child level. Thus, the parent can itself be
a child of another parent of the same type. We represent this by means of a parent-child hierarchy. A
typical example is an Employee dimension. Employees have managers that are employees themselves
and have other managers. For example, assume that the employee Smith has Johnson as manager.
Johnson has Davis as manager and Davis has Douglas as manager, etc. Smith, Johnson, Davis, and
Douglas are all represented as Employee-level values.

It is not practical to use any fixed number of levels in the Employee dimension to represent
such a hierarchy. For the book retailer, a small shop may have only a shop manager and few assistants
(i.e., two levels), while a big shop also has mid-level managers (i.e., three or more levels). Instead
of having a fixed number of levels, we let a parent-child hierarchy’s schema have a single level.
However, in instances of the hierarchy, we allow a dimension value (from the single level) to have
another dimension value (from the same level) as parent. In that way, we in effect can have an
unlimited number of levels in an instance. To roll-up, the measure values of a parent’s children are
combined into a single value for the parent by means of the measure’s formula.

In relational OLAP, a parent-child dimension can be implemented by having a single dimen-
sion table with a foreign key column that references the table’s primary key column. Consider as an
example the Employee dimension in Figure 3.5 and its relational representation where ManagerID
is the foreign key column referencing EmployeeID.

In some systems, it is possible to assign names to the levels in a parent-child hierarchy. We can
choose to name the top-level “President,” the next level “Vice-president,” the level below that “Shop
Manager,”, and the following level “Assistant.” In our example, that means that Dougles belongs to
the President level, Davis and Button belong to the Vice-president level, Johnson and Brown belong
to the Shop Manager level, and Smith, Geller, and Hansen belong to the Assistant level.

The above method is capable of capturing a parent-child hierarchy, and some relational OLAP
systems are capable of using such a representation. However, this representation is not convenient
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Douglas

Davis

Johnson

Smith Geller

Brown

Hansen

Button

EmployeeID Employee ManagerID
1 Douglas NULL
2 Davis 1
3 Johnson 2
4 Smith 3
5 Geller 3
6 Brown 2
7 Hansen 6
8 Button 1

Employee dimension table

Figure 3.5: A parent-child dimension and a relational representation of it

for analysis using standard SQL. If we want to find the total sales generated by the shop managers
and every staff member below them, the representation in Figure 3.5 is very hard to use since there
is no easy way to traverse the hierarchy and roll-up from assistants to shop managers. To overcome
this, another representation with a so-called bridge table can be used. A bridge table holds a row
for each path between an ancestor and a descendant in the hierarchy, including the trivial paths of
length 0. The bridge table has the following columns.

- Ancestor: A foreign key column referencing the primary key column of the dimension table to
capture a row’s ancestor.

- Descendant: A foreign key column referencing the primary key column of the dimension table
to capture a row’s descendant.

- Distance: An integer capturing the length of the path between Ancestor and Descendant.

- Bottom Flag: A Boolean value indicating whether Descendant is at the lowest level (i.e., does
not have descendants).

- Top Flag: A Boolean value indicating whether Ancestor is at the top-most level (i.e., does not
have ancestors).

The parent-child hierarchy shown in Figure 3.5 is represented by the bridge table shown in
Figure 3.6 (assuming the same EmployeeIDs as before). It can, e.g., be seen from the first row that
Douglas with EmployeeID 1 manages himself; from the second row, it can be seen that Douglas
also manages Davis who has EmployeeID 2.

The fact table remains unchanged, and it is possible to ignore the bridge table and join the
fact table directly with the dimension table. In the example, this means that the fact table has a
foreign key column that references the Employee dimension table and that the fact table represents
what each individual employee has sold. The bridge table comes into play if we want to traverse the
parent-child hierarchy and, e.g., roll-up sales to shop managers. To do that, we join the dimension,
bridge, and fact table with the condition that EmployeeID (the primary key) of the dimension table
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Ancestor Descendant Distance Bottom Top

Flag Flag
1 1 0 False True
1 2 1 False False
1 8 1 True False
1 3 2 False False
1 6 2 False False
1 4 3 True False
1 5 3 True False
1 7 3 True False
2 2 0 False False
2 3 1 False False
2 6 1 False False
2 4 2 True False
2 5 2 True False
2 7 2 True False
8 8 0 True False
3 3 0 False False
3 4 1 True False
3 5 1 True False
6 6 0 False False
6 7 1 True False
4 4 0 True False
5 5 0 True False
7 7 0 True False

Figure 3.6: A bridge table representing a parent-child hierarchy

is equal to the Ancestor attribute in the bridge table and the foreign key column in the fact table
is equal to the Descendant column in the bridge table, and we place relevant constraints on the
Employee dimension as shown next.

SELECT E.EmployeeID, SUM(F.Sales_Amount)
FROM Employee E, Bridge B, Sales F
WHERE E.EmployeeID = B.Ancestor AND B.Descendant = F.EmployeeID
AND E.Title = ’Shop Manager’
GROUP BY E.EmployeeID

To understand how this works, recall that the bridge table holds a row for each path between an
ancestor and a descendant in the hierarchy. When we join the Employee dimension table (restricted
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to shop managers) to the bridge table, we get a row for each combination of a shop manager and
an employee below the manager (including the manager). These rows are then joined with the fact
rows such that we get the sales that the employees made. Finally, the GROUP BY ensures that we
sum up all sales for employees below a given manager.

By using the Distance attribute in the bridge table, we can carry out more advanced analyses.
If we add the constraint B.Distance = 1 to the query above, we find the sales by those employees
directly under the managers. If we instead use B.Distance > 0, we find the sales made by the
managers’ employees, but we do not include the sales the shop managers made themselves. Likewise,
the Top and Bottom flags can be used to express some queries conveniently.

3.3.2 UNBALANCED HIERARCHIES
In an instance of an unbalanced hierarchy, dimension values exist that belong to a level different from
the lowest level in the hierarchy’s schema and do not have any children in the instance. In other
words, dimension values for the lowest level are missing such that the instance forms a tree where
the leaves have different distances to the � level.

One example of an unbalanced hierarchy is the parent-child hierarchy in Figure 3.5. Another
example (which is not a parent-child hierarchy) arises if the book retailer’s large shops become
subdivided into departments such that departments belong to a shop. The smaller shops are not
subdivided, meaning that a given shop has zero or more departments. The schema for the revised
Shop dimension is shown in Figure 3.7, where we have extended the notation used so far to be able
to show more advanced schemas.

Thus, a level is represented by a box where the level name is shown in bold on the top-most
line. Below the level name and inside the box, level properties are shown, if any. A line between two
levels A and B (where A is drawn above B) still means that there is a hierarchy where the A level is
above the B level, i.e., B values are grouped into A values. Such a line can have explicit cardinalities
shown where it connects to the boxes. In Figure 3.7, it can be seen that a shop has from 0 to many
(the * represents an unbounded positive integer) departments, while a department belongs to from
1 to 1 (i.e., exactly 1) shop. If no cardinalities are shown, we implicitly assume that if A can roll-up
to B then each A value belongs to exactly one B value and that at least one and possibly many A

values belong to a given B value.
In Figure 3.8, which shows an instance of the revised Shop dimension, we can see that the

shop Shop2 has departments while the shop Shop1 does not. (Ignore for now the part of the schema
from City and up; we explain this part soon.)

At the implementation level, it is difficult to support unbalanced hierarchies. If the levels are
of the same type, a parent-child hierarchy may of course be used. If the levels are of different types,
it is, however, harder because different facts in effect have different granularities with respect to the
hierarchy. One solution is to make the unbalanced hierarchy balanced by padding it with placeholder
values at the lower levels. This operation can be done transparently by the system [67]. A complete
coverage of this is beyond the scope of this book.
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Department

 ...

Shop

 Address
 Shop size
 Shop shelf space
 ...

City

State

0..*
1..1

1..*
1..1

1..*
0..1

T

0..*
1..1

1..*

1..1

 Department size
 Department shelf space

Figure 3.7: Revised schema for the Shop dimension

3.3.3 NON-COVERING HIERARCHIES
A non-covering hierarchy allows instances to skip levels between the leaves and the root. Consider the
Shop dimension in Figure 3.7 where City values are grouped into State values. Here, the city Wash-
ington, D.C. does not belong to a state. This means that we skip the State level when representing
Washington, D.C.This phenomenon would also occur if the book retailer expands to other countries
without states, such as many European countries. Note that in our new notation, the cardinality 0..1
from City to State means that a City value may belong to no State value or to a single State value.
If it belongs to no State value, it still belongs to a value from a level above State, in this case �.

A way to support non-covering hierarchies is to insert placeholder values whenever a value
lacks a containing value in the (immediate) parent level in the schema. In the example instance,
a placeholder value is thus inserted at the State level. This placeholder value has the City level
value Washington, D.C. as its single child. The name and level property values appropriate for
this placeholder are determined by business needs. It may make sense to include a fake state called
“Washington, D.C” such that analysts could do queries as if Washington, D.C. was a state, or it
may be better to leave the name empty to show that this is just a placeholder. In some systems, such
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Virginia

Arlington

Shop1

Florida

Miami

Shop2

1st Floor 2nd Floor

Shop3

Washington, D.C.

Shop4

New Books 2nd Hand Books

T

Figure 3.8: An instance of the revised Shop dimension

as Microsoft Analysis Services (where a non-covering hierarchy is called a ragged hierarchy), it is
possible to hide placeholder values when an analyst makes use of a hierarchy.

3.3.4 NON-STRICT HIERARCHIES
We have so far considered hierarchies where each dimension value (apart from the special � value)
belongs to exactly one parent value. Such a hierarchy is called a strict hierarchy. In an instance of a
non-strict hierarchy, a child can have more than one parent such that many-to-many relationships
can exist between dimension values at different levels. Non-strict hierarchies occur often in the
real world. In our book retailer example, there is a many-to-many relationship between books and
authors (an author can write many books, and a book can have many authors). This is shown in
Figure 3.9.

Book

Author

T

1..*
1..1

 Year of birth
 ...

 Number of pages
 Binding
 ...

1..*

1..*

T

A.A. Milne B.W. Kernigan D.M. Ritchie

The C Programming 
Language

The Red House 
Mystery

Winnie the 
Pooh

Figure 3.9: Schema and example instance for the Book dimension with many-to-many relations between
authors and books
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Many-to-many relationships cause problems with respect to aggregations. Assume that a book
B is written by two authors. If we roll-up from the Book level to the Author level, and then further
from the Author level to the � level, we count the sales of B twice (once for each author) unless we
take special care.

To represent the many-to-many relationships in ROLAP, it is not enough to use a single
column to represent a level in case of a star schema or a single foreign key in case of a snowflake
schema. Instead, we include a table for each of the two levels participating in a many-to-many
relationship and include a bridge table in-between the two.This is illustrated for the Book dimension
in Figure 3.10.

BookID Title · · ·
1 Winnie the Pooh · · ·
2 The C Programming Language · · ·
3 The Red House Mystery · · ·

Book level table

AuthorID Name · · ·
1 A.A. Milne · · ·
2 B.W. Kernigan · · ·
3 D.M. Ritchie · · ·

Author level table

BookID AuthorID
1 1
2 2
2 3
3 1

Bridge table

Figure 3.10: Tables representing the Book dimension in ROLAP

With the suggested solution, we cannot represent the ordering of authors of a book, and
we cannot assume that authors are always ordered alphabetically. Therefore, we allow a many-to-
many relationship to have properties, as illustrated in Figure 3.11. When represented in ROLAP, the
properties of many-to-many relationships result in columns in the bridge table. In this example, the
order is just a positive integer. Further, we include a percentage that shows how large a fraction is
“owned by” a parent.

If we, e.g., roll-up the dollar sales to the Author level, this fraction is multiplied with the
measure values such that we count an amount from a single sale exactly once. In Figure 3.12, we
show an example of a book with two authors where the percentage is 0.5 for each of them. If a single
copy of the book is sold for 40 dollars, and we roll-up the dollar sales to the Author level, we thus
find that each of the two authors has generated a sales amount of 0.5 · 40 dollars = 20 dollars in
that single sale. When loading data into the database, it is, of course, important that these property
values are assigned correctly such that percentages add up to exactly 1.0 or that there, for a given
book, is only one first author, etc.
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Book

 Number of pages
 Binding
 ...

Author

 Year of birth
 ...

1..*

1..*

T

1..*
1..1

Order
Percentage

Figure 3.11: Schema for the Book dimension with many-to-many relations between authors and books
and order represented

BookID Title · · ·
1 Winnie the Pooh · · ·
2 The C Programming Language · · ·
3 The Red House Mystery · · ·

Book level table

AuthorID Name · · ·
1 A.A. Milne · · ·
2 B.W. Kernigan · · ·
3 D.M. Ritchie · · ·

Author level table

BookID AuthorID Order Percentage
1 1 1 1.0
2 2 1 0.5
2 3 2 0.5
3 1 1 1.0

Bridge table

Figure 3.12: Tables representing the Book dimension including properties in the bridge table

3.3.5 MULTIPLE HIERARCHIES AND PARALLEL HIERARCHIES
In many cases, it is convenient or even necessary to have more than one hierarchy in a dimension.
Consider the revised Time dimension shown in Figure 3.13 where there are two hierarchies (level
properties are not shown). Both group days into months, but they group months into quarters
differently: One of the hierarchies represents the normal calendar, while the other represents a fiscal
calendar.

Compared to Chapter 2 (cf. Section 2.2), we extend our notion of a dimension such that a
dimension is organized into one or more containment-like hierarchies that may or may not share
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Day

Month

 . . .

Fiscal Quarter

Fiscal Year

Calendar Quarter

Calendar Year

1..1

3..3

1..1

3..3

1..1

4..4
1..1

4..4
1..1

T

1..*

1..1

1..*

1..1

 . . .

 . . .

 . . . . . .

 . . .

28..31

Figure 3.13: Schema for the Time dimension with multiple hierarchies

intermediate levels (the � level is always shared). When a dimension has more than one hierarchy,
we say that the dimension has multiple hierarchies. Often, it does not make sense to use the multiple
hierarchies together in a single analysis. In an analysis of the book retailer’s sales, it is not interesting
to consider a pivot table where the x axis shows fiscal quarters and the y axis shows calendar quarters.
This is not interesting as the two hierarchies have the same analytical purpose: grouping of days
into coarser time units. The hierarchies just group the days differently. Further, the groupings are
very correlated, and a pivot table with these two groupings on the axes would only have cells with
numbers along the diagonal.

In those cases where a dimension has two or more hierarchies that have different analytical
purposes, we refer to them as parallel hierarchies. In the Book dimension for our book retailer, we have
so far assumed that books are grouped based only on their author(s). However, it is also interesting
for the book retailer to group books based on their genre and publisher. (Figure 3.14, to be covered
shortly, illustrates this.) Hierarchies introducing these groupings have different analytical purposes,
and it makes sense to use them simultaneously. For example, a pivot table can meaningfully show
publishers on the x axis and genres on the y axis when the analyst investigates how well different
publishers are doing with respect to different genres.
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3.3.6 SUMMARIZABILITY
Consider a measure that is additive along a dimension. When higher-level aggregates can be com-
puted from lower-level aggregates in a hierarchy in the dimension, we say that the hierarchy is
summarizable with respect to the measure. For example, we can calculate our book retailer’s na-
tionwide sales of books from the sales of books in the different states, and the sales in states can
be calculated from the sales in cities that can in turn be calculated from the sales in the individual
shops. So, the hierarchy in the Shop dimension is summarizable with respect to the sales measure.
In general, hierarchies should be made balanced, covering, and strict to ensure summarizability.

The ability to reuse already aggregated data in new queries has the potential for offering
dramatic computational savings. It is much faster to aggregate (already calculated) numbers showing
the sales in each state than it is to consider each fact when processing a query for the total number
of sold books. Modern OLAP systems exploit such shortcuts heavily to provide fast answers based
on precomputed aggregates.

3.4 SUMMARIZING EXAMPLE
We end the chapter by elaborating on the book retailer’s data warehouse. We still consider the sales
of books from shops as the business process. However, we use a transaction-level granularity and
capture each individual sale. This results in a data warehouse with many more facts than with the
design in Section 2.9 where sales where aggregated to show daily sales per book per shop. We use
the same dimensions as in Section 2.9, but we extend them and also add some new dimension: Time
of Day, Promotion, and Transaction.

Figure 3.14 shows the Book dimension, which has three parallel hierarchies such that the
sales can be rolled up to authors, genres, and publishers. Note that a book can have several authors
and several genres (such that bridge tables are needed in a ROLAP-based solution) and that these
many-to-many relationships have properties. We decide that if a book has N authors (or genres)
then the fraction for each author (or genre) should be 1/N .

The Book dimension is not a slowly changing dimension; when a new book or book edition
is published, a new dimension value is created.

The Shop dimension is shown in Figure 3.15. It has only one hierarchy. As we have discussed
previously, the city Washington, D.C. does not belong to a state. If the book retailer has a shop
there, we overcome this problem by pretending that Washington, D.C. is also a state and create a
placeholder value. The Shop dimension is slowly changing, and type 2 updates are used. If we were
to subdivide shops into departments to capture department-level sales, we would need to subdivide
all shops into departments such that facts refer to departments. That means that for small shops, we
would have to include a single, artificial department.

The Date dimension is shown in Figure 3.16. It has two (non-parallel) hierarchies that group
days into normal calendar units and fiscal calendar units. Note that the Day level has a level property
that is used to capture whether some special event takes place on a given day. This property should,
however, be used only for events, e.g., Labor Day, that are relevant for all shops. If some local event
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Book
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 Languge
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 Binding
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 Year of birth
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Figure 3.14: Book dimension

takes place near one shop, this event should not be represented in the Date dimension, as this would
be misleading when analyzing sales from the other shops.

The Time of Day dimension is shown in Figure 3.17. It has a single hierarchy that groups min-
utes into hours and hours into periods (“Morning,” “Noon,” “Afternoon,” “Evening,” and “Night”).
Note that the Time of Day dimension only makes sense with the finer granularity where we capture
each individual sale. When we considered daily sales, we could not see when the sales happened
during the day.

The Promotion dimension is shown in Figure 3.18. It represents how the book is displayed
(e.g., “Displayed in Window”), whether it is discounted (e.g., “Clearance sales”), and whether some
promotion takes place (e.g., “Book signing”).These differ from shop to shop and from book to book,
so we cannot represent them in the Book or Shop dimensions. They are unrelated, so they could be
placed in different dimensions, but as they all have few possible values, we group them together in
a junk dimension.

The Transaction dimension is included to be able to see which books were sold together in
a single sale. However, we have already captured where the transaction took place (with the Shop
dimension) and when (with the Time of Day and Date dimensions). In other words, since there is
nothing left to be represented in the Transaction dimension, we choose to model it as a degenerate
dimension consisting only of an integer that uniquely identifies each transaction.

As measures, we pick sales price and sales count, both with SUM as the associated formula
(although we consider the individual transactions, a customer can buy two or more copies of the
same book).
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Shop

 Address
 Size
 Shelf space
 Has café
 Location rating
 Open date
 Version
 Valid from
 Valid to

City

 City population size
 Has university

State

 State population size

1..*

1..1

1..*

1..1

T

1..*
1..1

Figure 3.15: Shop dimension

3.5 EXERCISES
1. Extend the example in Section 3.4 to include information about the customers who are mem-

bers of a loyalty program.

2. Consider the following Customer dimension.

ID Login Gender Birthday City Credit rating Version
1 Cat Male 1980-11-02 Amsterdam 3 1
2 Fish Male 1970-01-04 Berlin 4 1
3 Bird Female 1980-05-02 London 5 1
4 Cat Male 1980-11-02 Paris 3 2
5 Tiger Female 1975-08-09 Madrid 4 1

Assume that each customer has a unique Login and that the dimension is slowly changing.
Changes to Gender and Birthday are handled with type 1 updates (overwrites) while changes
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Figure 3.16: Date dimension

to City and Credit rating are handled with type 2 updates (new versions). Show the dimension
after the following changes.

(a) The customer Cat corrects his birthday information to 1981-11-02.

(b) The customer Tiger moves to Amsterdam.

(c) The credit rating for the customer Tiger is updated to 5.

(d) The customer Tiger updates her birthday information to 1975-09-09.

3. Discuss if updates of the Login attribute can be handled in Exercise 2.

4. If type 2 updates are used for handling a slowly changing dimension, it is often the case that
when a row version v1 is replaced by a new row version v2, all facts will refer to v2. This is,
for example, the case when a supermarket is expanded. After the expansion, all sales facts will
refer to the Shop dimension’s new row version showing the the expanded size. In other cases,
new facts may, however, meaningfully refer to previous versions. Give an example of this.

5. Consider a chain of stores where the sales districts are reorganized each year (always with
effect from January 1st). The management wants to be able to see which sales district a shop
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Hour

Minute
60..60
1..1

Period

3..6
1..1

T

5..5
1..1

Figure 3.17: Time of Day dimension

Details

 Display type
 Discounted
 Book promotion

T

1..*
1..1

Figure 3.18: Promotion dimension

belonged to in a given year by means of the Shop dimension. Discuss if this can be supported
by using the following.

(a) type 1 updates

(b) type 2 updates

(c) type 3 updates

(d) generalized type 3 updates

6. Recall your solution to Exercise 7 in Section 2.10. Now assume that the chain invests in
new point of sale (POS) technology. The new POS system collects information about each
individual sales transaction (a given transaction may involve more than one publication—
e.g., the customer could buy both “Local News” and “Global News” at the same time) and
include timestamp and salesperson. This information can be transferred automatically to the
headquarters. Extend your solution to handle the finer data granularity and extended context.
Include a degenerate dimension, an outrigger, and a junk dimension in your design.
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7. Write SQL that uses the bridge table in Figure 3.6 to find the sum of the sales amounts from
all sales made by Brown (with EmployeeID 6) or anyone above Brown in the organization.

8. Consider a parent-child hierarchy that captures the following: The company A1 owns the
companies B1, B2, and B3. The company A2 owns the company B4. The company B1 owns
the company C1.

(a) Show the parent-child hierarchy instance graphically.

(b) Show the parent-child hierarchy instance in the form of a bridge table.

9. How can the number of rows in a bridge table for a parent-child hierarchy be calculated?

10. Give examples of non-summarizability in

(a) unbalanced hierarchies

(b) non-covering hierarchies

(c) non-strict hierarchies

11. For each of the following hierarchy instances, determine whether it is each of balanced, cov-
ering, and strict.

T

T

T

(a)

Production

Spain

Madrid

(b)

Logistics

Office A Storehouse Office B

(d)(c)

Air Force

Base 1 Base 2

Navy

Base 3 Base 4 Memorial Museum

(e)

T

Spain

Bilbao Madrid

Germany

Berlin Hamburg

T

SpainGermany

Berlin Hamburg

Germany

Berlin Hamburg
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C H A P T E R 4

Implementation Issues
In this chapter, we describe how multidimensional databases are implemented. Because multidimen-
sional databases often hold hundreds of gigabytes or terabytes of data, smart solutions are needed
to achieve good performance. When analysts use a multidimensional database, they should in most
cases only need to wait seconds (or less) to get answers to their queries. The queries may, however,
need to access and aggregate large amounts of data, e.g., to find the total sales in the last five years
grouped by product category, and it is challenging to answer such queries quickly. Much of this
chapter is therefore focused on query performance, but we also describe different ways to implement
OLAP systems and the workings of the Extract-Transform-Load (ETL) process.

4.1 MATERIALIZED VIEWS
Materialized views that hold aggregates are one of the most important means of improving query
performance in a multidimensional database management system. In a nutshell, a precomputed
aggregate view is the materialized result of a query that aggregates (e.g., summarizes) parts of or all
the data in the database. The word “materialized” means that the result is stored physically such that
the system can answer the query by just reading the (already computed and stored) result instead of
computing it from the detailed base data.

The use of materialized views can speed up query processing drastically to be several hundreds
or thousands times faster than when using the base data. Often many different queries can even be
answered efficiently by using the same materialized view. If we, for example, have an aggregate that
holds the summarized sales for cities, we can also use that aggregate to calculate the total sales for
states and the single total of all sales. It is important to note, however, that the end user should not
be burdened with the task of deciding when to use a precomputed aggregate: The system has to take
care of this transparently to the user.

In the following, we consider a ROLAP-based system with a star schema like the one shown
in Figure 4.1 where SalesID is a degenerate dimension. The techniques we describe also work for
more complex schemas like the one presented in Section 3.4, but for clarity, we use a simple example
here.

With such a schema, most queries sent to the DBMS would be of the form shown next.

SELECT levels, SUM(Sale)
FROM the fact table joined with one or more dimension tables
WHERE some conditions hold
GROUP BY levels



60 4. IMPLEMENTATION ISSUES

BookID Book Genre
7493 Tropical Food Cooking
9436 Winnie the Pooh Children’s books

Book (dimension table)

SalesID BookID ShopID DayID Count Price
1021 9436 854 2475 2 30
1021 7493 854 2475 1 20
2098 7493 876 3456 1 20
2231 9436 876 3456 2 40
3049 9436 876 2475 1 20

Sales (fact table)

ShopID City State
876 Arlington Virginia
854 Boston Massachusetts

Shop (dimension table)

DayID Day Month Year
2475 May 11, 2008 May 2008 2008
3456 March 13, 2009 March 2009 2009

Time (dimension table)

Figure 4.1: A star schema

To answer a query of this form can be very time consuming if all rows from the fact table need to be
used to find the answer. Assume that the Sales fact table in Figure 4.1 has a billion rows, the Book
dimension table has 100,000 rows, and the Shop dimension table has 100 rows. If our book retailer
now wants to determine how the sales are distributed across genres, the following query can be used:

SELECT Genre, SUM(Price)
FROM Sales, Book
WHERE Sales.BookID = Book.BookID
GROUP BY Genre

To answer this query, we use all rows (one billion!) from the fact table.
Assume now that there is a precomputed aggregate that holds the total sales of each book

from each shop. This materialized view can be created as shown next.

CREATE MATERIALIZED VIEW TotalSales(BookID, ShopID, Price, Count) AS
SELECT BookID, ShopID, SUM(Price), SUM(Count)
FROM Sales
GROUP BY BookID, ShopID

The considered query can then be rewritten (by the system—not by the user) to use the precomputed
aggregate:
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SELECT Genre, SUM(Price)
FROM TotalSales, Book
WHERE TotalSales.BookID = Book.BookID
GROUP BY Genre

At most (i.e., if each book was sold from each shop), the aggregate holds 10 million rows since we
assumed there were 100 shops and 100,000 books. To read 10 million rows (which have even fewer
columns) is much faster than reading a billion rows. As a rough estimate of the time it takes to
execute a query, we can use the number of rows that must be read.

The problem is then to decide which precomputed aggregates to create. One extreme is to not
have any. But if there are no precomputed aggregates, query responses will be slow.The other extreme
is to precompute each possible aggregate. Unfortunately, they will occupy huge amounts of disk space
and will take unreasonably long to compute in the first place. Further, they need to be updated when
updates to the base data occur. So this extreme is also not practical. A good compromise in-between
the two extremes must therefore be found. Unfortunately, the problem of picking the optimal set of
aggregates is an NP hard problem.

In practice, heuristic techniques are used in picking a good (but likely not optimal) set of
materialized views. As already stated, an aggregate can often be used to answer many queries. This
then influences the decision of which aggregates to precompute. A good heuristic is to precompute
an aggregate if it is considerably smaller than another precomputed aggregate that can be used. In
one paper [31], a greedy heuristic algorithm is proposed. This algorithm is guaranteed to pick a set
of aggregates with a benefit that is at least 63% of the benefit of an optimal algorithm (the benefit
can be seen as the number of rows that do not have to be read when answering each possible query).

Modern OLAP systems support precomputed aggregates and implement good heuristics for
choosing them. When choosing them, the tools can also take usage patterns into consideration such
that the most often used queries get optimized the most. The use of the precomputed aggregates
happens transparently to the end user when using such tools.

4.2 INDEXING
Indexing is another important means of improving query performance, and it is applied in ROLAP
as well as in MOLAP. Here, we explain indexing from a ROLAP viewpoint.

4.2.1 INDEXING OVERVIEW
Fact tables are typically very large and are used in the majority of queries.Therefore, a fact table often
has many indices such that most queries can benefit from one or more of them. Typically, a separate
index is built on each dimension key. If the DBMS supports index intersection, the indices can
then be used in combination when answering a query. It can also be a good idea, however, to create
indices on combinations of dimension keys for those combinations that are often used together by
queries. There are too many combinations to create an index on each combination (the order of
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RowID BookID Title Binding Language . . .

1 9436 Winnie the Pooh Hardcover English . . .

2 1029 Le Petit Prince Paperback French . . .

3 8733 Alice in Wonderland Paperback English . . .

4 2059 Wind in the Willows Hardcover English . . .

5 5995 A Bear Called Paddington Paperback English . . .

6 1031 Pierre Lapin Hardcover French . . .

7 3984 Le avventure di Pinocchio Hardcover Italian . . .

Figure 4.2: Book dimension table also showing the special system-maintained attribute RowID, which
normally cannot be seen by the user

the attributes in the index also matters). The combinations for which to create indices thus have to
be chosen carefully based on the typical usage. In general, the key referencing the Date dimension
should be put first in combinations since most queries refer to dates.

Dimension tables should also be indexed. Depending on typical usage, it may or may not
make sense to build indices on all individual columns. And as for fact tables, indices can be built on
combinations of attributes.

Virtually any DBMS supports the B-tree index which is a tree structure where the leaves
contain lists of row IDs (where a row ID can be a physical location of the row or something else
the system can use to identify and find a certain row). To find rows that have a given value for the
indexed attribute, the system traverses the tree and obtains a list of row IDs. The row IDs are then
used to retrieve the rows. The B-tree is an efficient index. However, when the indexed attribute has
low cardinality (i.e., holds few different values), another representation can be a better choice. We
describe this index type below.

4.2.2 BITMAP INDICES
When there are few values in a column, we can create a position bitmap for each value instead of
maintaining lists of row IDs for each value (as in the B-tree). We call such a collection of position
bitmaps a bitmap index.

Consider, for example, columns such as Binding and Language in the Book dimension table
shown in Figure 4.2 where there are few distinct values. For ease of presentation, Figure 4.2 also
shows the row IDs that correspond to the physical order of the rows in the table. A bitmap index
on Binding has the following two position bitmaps:

Hardcover: 1001011
Paperback: 0110100

A bitmap index for Language has the following three position bitmaps:

English: 1011100
French: 0100010
Italian: 0000001
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The principle of the bitmap index is that the position bitmap for the value v has a 1 on position
p if and only if the p’th row in the table takes the value v. For example, the position bitmap for
Hardcover in the bitmap index on Binding has a 1 in the first position, meaning that the first row
in the table has the value “Hardcover” in Binding.

A bitmap index makes it very fast to locate rows with a certain value. If we were to find
all books in English, the position bitmap for English would immediately indicate which rows to
retrieve. It is also possible to combine bitmap indices. To find all hardcover books in English can
be done by computing the logical AND of the position bitmaps for hardcover in Binding and for
English in Language. In other words, we compute:

1001011
AND 1011100
= 1001000

This tells us that the first and fourth rows in the table fulfill the query. The logical AND can be
computed very efficiently as a single CPU operation can compare 32 or 64 bits on a modern CPU.

It is also possible to use other operators on bitmap indices.To find the books written in French
or Italian, we compute the logical OR of the position bitmaps for French and Italian in Language:

0100010
OR 0000001
= 0100011

It is also possible to find the books written in a language other than English (i.e., the books written
in French or Italian in this example), by computing the logical NOT of the position bitmaps for
English in Language:

NOT 1011100
= 0100011

When there are few values, a bitmap index occupies little space. There is one position bitmap
for each distinct value, and in each position bitmap, a single bit is needed for each row. In contrast,
the B-tree would need space to store a row ID for each row and some extra space for intermediate
nodes. As a row ID typically consists of 4 or 8 bytes (i.e., 32 or 64 bits), it is clear that the bitmap
index is advantageous when the cardinality of the indexed column is low.

It is also possible to make the bitmap index occupy less space. The first optimization is to skip
trailing zeros (i.e., a sequence of zeros not followed by a one). If the table has x rows, but the length
of the position bitmap for a given value is y < x, it can be assumed that the last x − y positions
in the bitmap hold zeros. Other optimizations can be achieved from various kinds of compression.
In a bitmap index on an attribute with n different values, each position (each column in the two
example bitmap indices shown above) in the position bitmaps has exactly one bit set to 1 and the
remaining n − 1 bits set to 0. In other words, the probability of a 1 in an index is 1/n. The larger n

is, the smaller the probability of seeing a 1. In other words, there are many sequences consisting only
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of 0s. These sequences are very suitable for compression. A number of different algorithms exist for
this kind of compression, and they help by making bitmap indices occupy less space while still being
very efficient to use.

4.3 JOIN INDICES

A join index is another means of speeding up query performance. While it differs from materialized
views and indices, it shares characteristics of both.

Like a materialized view, a join index represents the pre-computation of a query, in this case,
a join query; and when updates occur to base data, a join index generally also needs to be updated
to ensure that it remains correct. Unlike a materialized view, which is a self-contained unit of data,
a join index contains pointers to the rows in the argument tables that satisfy the join predicate.

Like an index, a join index references base data using pointers and serves to reduce or eliminate
searching for certain queries. As is typical for indices, a query that uses a join index will likely also
need to access data outside the join index proper, namely the base data pointed to. Unlike an index
and like a materialized view, a join index is capable of speeding up certain queries dramatically, while
offering no speedup whatsoever of other queries. Specifically, queries that are covered by the join
index can be supported, while the join index offers no support for non-covered or unrelated queries.
An index such as a B-tree or a bitmap index in a sense supports a broader range of queries but with
less dramatic speedups.

Consider, for example, the part of a star schema shown in Figure 4.3, which contains the fact
table Sales and the dimension table Book. A common query pattern is to join Sales and Book to
investigate how books sell. Without a join index, this would lead to a nested-loop join or a hash join.
With the join index shown in Figure 4.3, however, the join is already computed and stored. For each
row in Book, the join index holds a list of pointers to rows in Sales that join to that row in Book.
For example, it can be seen that the row with RowID 1 in Book joins with the rows with RowIDs 2,
4, 5, and 8 in Sales. Note that the RowIDs are pointers to the rows in the tables allowing the rows
to be retrieved quickly. Instead of storing lists of pointers to rows, position bitmaps can be stored.

By doing this, the join index looks as shown in Figure 4.4. It can be seen that the row with
RowID 1 in Book joins with the rows at the 2nd, 4th, 5th, and 8th positions in Sales.These position
bitmaps hold many more zeros than ones and should be stored in a compressed form. A join index
can also be extended to include attributes, e.g., the join attribute BookID or attributes used for
selection such as Genre.

A join index represents a different point in the range of tradeoffs between the use of storage
space and query performance than do materialized views. A variety of algorithms may be used for
updating join indices when updates to the base data occur. Join indices may be applied to one, two,
or several tables.
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RowID BookID Title Genre . . .

1 7493 Tropical Food Cooking . . .

2 9436 Winnie the Pooh Childrens’ books . . .

3 9948 Gone With the Wind Fiction . . .

4 9967 Italian Food Cooking . . .

Book (dimension table)

RowID BookID ShopID SalesID DayID Count Price
1 9436 854 1021 2475 2 30
2 7493 854 1021 2475 1 20
3 9948 876 2098 3456 1 20
4 7493 876 2231 3456 2 40
5 7493 876 3049 2475 1 20
6 9436 854 3362 3569 2 30
7 9967 731 3460 3569 1 35
8 7493 731 3460 3569 1 15
9 9948 731 3460 3569 1 15

Sales (fact table)

Book_RowID Sales_RowID
1 〈2, 4, 5, 8〉
2 〈1, 6〉
3 〈3, 9〉
4 〈7〉

Join index for Book and Sales

Figure 4.3: A fact table, a dimension table, and a join index with a list of pointers

4.4 QUERY PROCESSING
When processing queries, the system performs different optimizations to achieve fast processing. In
Section 4.1, we saw how a precomputed aggregate can be significantly faster to use than the base
data. It is the job of the DBMS, or a specialized middleware in case the DBMS cannot do it, to
rewrite queries to use precomputed aggregates when possible. The user should not reference the
precomputed aggregates in queries.

The DBMS will also decide which indices to use. RDBMSs generally support B-trees, and
some also support bitmap and join indices as described in Section 4.2. As discussed there, the choice
of indices also has a significant influence on the query execution time.

When choosing an execution plan for a query, an RDBMS can sometimes exploit the char-
acteristics of a star schema. Recall that the dimension tables have very few rows compared to the
fact table. A typical query joins the fact table with a number of dimension tables in a so-called star
join and also places restrictions on the dimension tables. An example of such a query is given next.
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RowID BookID Title Genre . . .

1 7493 Tropical Food Cooking . . .

2 9436 Winnie the Pooh Childrens’ books . . .

3 9948 Gone With the Wind Fiction . . .

4 9967 Italian Food Cooking . . .

Book (dimension table)

RowID BookID ShopID SalesID DayID Count Price
1 9436 854 1021 2475 2 30
2 7493 854 1021 2475 1 20
3 9948 876 2098 3456 1 20
4 7493 876 2231 3456 2 40
5 7493 876 3049 2475 1 20
6 9436 854 3362 3569 2 30
7 9967 731 3460 3569 1 35
8 7493 731 3460 3569 1 15
9 9948 731 3460 3569 1 15

Sales (fact table)

Book_RowID Sales_positions
1 010110010
2 100001000
3 001000001
4 000000100

Join index for Book and Sales

Figure 4.4: A fact table, a dimension table, and a join index with position bitmaps

SELECT Book, SUM(Count)
FROM Sales, Book, Date
WHERE Sales.BookID = Book.BookID AND Sales.DayID = Date.DayID
AND Book.Genre = ’Cooking’ AND Date.Month = ’May 2010’

The query optimizer may recognize a star join and find plans that consider the (relatively small)
dimension tables before the (big) fact table. More concretely, the DBMS can use the given predicates
to first filter the dimension tables and then compute the Cartesian product of the remaining rows.
This is in contrast to non-OLAP settings, in which the optimizer often tries to avoid computing
Cartesian products.

In the example above, there are only 31 days in May 2010 and a limited number of cookbooks,
say, 1,000. The Cartesian product with all combinations of days and books to consider thus only
holds 31,000 rows. When this Cartesian product is computed such that the relevant key values for
DayID and ShopID are available, the referencing facts can be retrieved efficiently from the fact table
by means of indices.
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Another method to compute a star join exploits join indices with position bitmaps like the one
shown in Figure 4.4. This method first considers each dimension table to find rows that fulfill the
given predicates. The join index’s position bitmaps for all found rows are then combined by means
of a logical OR. For the query above and the example in Figure 4.4, the Book dimension would thus
be considered to find the two books with the genre Cooking. The join index’s position bitmaps for
these two books would then be combined as follows:

010110010
OR 000000100
= 010110110

The resulting position bitmap shows which rows in the fact table refer to books with the genre
Cooking. Something similar is done for the Date dimension to find a position bitmap for those
fact table rows that refer to dates in May 2010. In the second step, the method then combines the
position bitmaps found for each of the query’s dimension tables by computing the logical AND of
them. The resulting position bitmap shows which fact table rows that are relevant to the query.

In a third method to compute a star join, queries are rewritten to use subqueries such that the
relevant fact table rows can be retrieved efficiently. The query above could, for example, be rewritten
into the following query:

SELECT Book, SUM(Count)
FROM Sales, Book
WHERE Sales.BookID = Book.BookID AND Book.Genre = ’Cooking’
AND Sales.DayID IN
(SELECT DayID FROM Date WHERE Month = ’May 2010’)

By first finding the relevant DayIDs from the Date dimension in a subquery, a bitmap index on
the DayID attribute in the fact table can be used to efficiently reduce the number of fact table
rows to consider. In the second step, the dimension tables with the attributes needed (only Book in
this example) are joined with the result of the first step. A method like this is used by the Oracle
DBMS [62].

4.5 OLAP IMPLEMENTATIONS
OLAP systems can be implemented in different ways. We have already seen how relational database
technology can be used in so-called ROLAP systems. Here, we briefly present the dominant cate-
gorization of OLAP systems.

Multidimensional OLAP (MOLAP) systems store data in specialized multidimensional struc-
tures. A simple implementation is to use multidimensional arrays for storing a cube, but for a sparse
cube (i.e., a cube with many empty cells), large parts of the allocated arrays would not hold data. MO-
LAP systems therefore typically include provisions for handling sparse arrays and apply advanced
indexing and hashing to locate the data when performing queries.
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In contrast, Relational OLAP (ROLAP) systems use relational database technology for storing
the data. Section 2.5 describes how relational tables are used for dimension and fact data. In order
to achieve good query performance, ROLAP systems employ specialized index structures such as
bitmap indices, materialized views, and precomputed aggregates.

Generally, MOLAP systems provide faster query response and more space-efficient storage,
while ROLAP systems scale better in the number of facts, are more flexible with respect to cube
redefinitions, and provide better support for frequent updates. However, the boundaries are changing
as MOLAP systems are becoming more scalable.

The virtues of the two approaches are combined in the Hybrid OLAP (HOLAP) approach,
which generally stores higher-level summary data using MOLAP technology, while using ROLAP
technology to store the detail data. Some HOLAP systems allow even more flexibility, giving users a
choice between MOLAP and ROLAP at the level of individual cubes and/or materialized aggregates.

4.6 EXTRACT-TRANSFORM-LOAD

In this section, we describe the Extract-Transform-Load (ETL) process that is an important part of
a data warehouse project. Recall that a data warehouse is a repository of integrated enterprise data
collected from different source systems within, and possibly also outside, the enterprise. To get the
data into the data warehouse, the ETL process is used. It consists of three main steps as indicated
by its name.

In the Extract step, data from the source systems is extracted.The contents of a data warehouse
typically stems from different heterogeneous sources like relational databases, flat files, spreadsheets,
logs, and different applications used in the organization, e.g., ERP systems. As data warehouses hold
large amounts of data, it is too time consuming to extract all the relevant data each time the ETL is
run. Instead, the ETL should only extract data that was added or updated since last time the ETL
was run. This “delta” is then used to update the data warehouse to represent the new state. In some
cases, it is easy to find the delta. For example, a unique log file may exist for each day such that it is
easy to locate the new data. In other cases, it is much more difficult. It could, e.g., be the case that
the source system with customer information only holds the current data and cannot tell what was
added or updated since the last extraction. In that case, the ETL process must compute the delta
itself by comparing the available data with the previous extract.

In the Transform step, transformations are applied that make the data fit the schema of the
data warehouse. This includes combining the data from the different source systems. Much of the
work done in this step is cleansing where aspects of the data, e.g., dates, spellings, and codings, are
homogenized and where data of a bad quality is fixed, e.g., by adding missing fields or correcting
wrong values such as negative sales prices. Unfortunately, the quality of the data extracted from
the source systems often does not live up to the strict requirements needed for the data warehouse,
so much cleansing is needed. Another typical transformation is conversion of character sets, e.g.,
from EBCDIC to Unicode.The transformations must also normalize/denormalize the data into the
desired dimensional data warehouse schema. It is also the job of this step to assign surrogate keys
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to the data and maintain slowly changing dimensions by detecting changes and taking the actions
necessary to contend with these. It is important that ETL maintains referential integrity such that
a fact does not refer to a non-existing dimension value. The ETL transformations must ensure that
only data of good quality is loaded into the data warehouse. A popular saying about allowing bad
data in the data warehouse is “Garbage in, garbage out.”

In the Load step, the data warehouse is fed with new data such that the data structures (e.g.,
tables in case of relational technology) are updated to contain the new data. Normally, the data
warehouse is taken offline during the load such that no users query the data warehouse concurrently.
Since data warehousing involves large amounts of data, it can be challenging to load the data
warehouse in a limited time frame. Again, it is much faster to handle a delta than doing a full load
in each ETL run.

To speed up the loading, the data warehouse’s indices can be dropped and rebuilt after the load
(but before users start querying the data warehouse again). Parallel loads of different dimensions
and fact tables represents another means to gain faster loading. In addition to loading the base data,
it may also be necessary to update other structures, e.g., precomputed aggregates, join indices, or
MOLAP cubes. The load traditionally takes place at a time when fewest users are bothered by it,
e.g., during the weekend or during the late night. This means that the data warehouse does not hold
the newest data but only data from the previous week or previous day. Recently, it has, however,
become popular to do “near real-time data warehousing” where the data warehouse is refreshed
frequently and—nearly—holds the newest data. This calls for new and advanced solutions, as the
data warehouse obviously cannot be taken offline many times during a day to be loaded.

While the purpose and tasks of the ETL may sound to be well-understood and easy, the
opposite is, in fact, the case. In virtually any data warehouse project, the majority of the time is spent
on getting the ETL right. A lot of time is needed to understand when, where, and how to extract
data from the different sources and to understand what the data from different sources mean and
how the data can be combined. In addition to that comes all the technical challenges about obtaining
fast loads, etc.

4.7 EXERCISES
1. Consider the star schema shown in Figure 4.1 and the materialized view TotalSales created as

follows:

CREATE MATERIALIZED VIEW TotalSales(BookID, ShopID, Price, Count) AS
SELECT BookID, ShopID, SUM(Price), SUM(Count)
FROM Sales
GROUP BY BookID, ShopID

For each of the following queries, show how it can be rewritten to use TotalSales or explain
why it cannot be rewritten to use TotalSales.
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(a) SELECT State, SUM(Count)
FROM Sales, Shop
WHERE Sales.ShopID = Shop.ShopID
GROUP BY State

(b) SELECT Book, MAX(Price)
FROM Sales, Book
WHERE Sales.BookID = Book.BookID AND Book.Genre = ’Cooking’
GROUP BY Book

(c) SELECT Year, SUM(Price)
FROM Sales, Time
WHERE Sales.DayID = Time.DayID
GROUP BY Year

(d) SELECT State, Genre, SUM(Price), SUM(Count)
FROM Sales, Book, Shop
WHERE Sales.ShopID = Shop.ShopID AND Sales.BookID = Book.BookID
GROUP BY State, Genre

2. Consider the following Employee dimension:

EmployeeID Name Gender Office Title
1 Bruce Male London Developer
2 Carl Male Glasgow Tester
3 Dorthea Female Cardiff Developer
4 Erica Female London Tester
5 Frederic Male London Project manager
6 Gina Female Glasgow Developer
7 Harvey Male Cardiff Developer

Show the bitmap indices on the Gender, Office, and Title attributes and use them to:

(a) Find all female developers.

(b) Find all employees located outside Cardiff.

(c) Find all female employees located outside Cardiff.

(d) Find all employees that are developers or working in the London office.

3. Bitmap indices can also be used on numeric attributes such as Salary. However, a position
bitmap is typically not made for each possible value then. Instead, one uses the “binning tech-
nique” where values are grouped together in “bins”: [0; 1000), [1000; 2000), [2000; 3000),

etc.

(a) Explain why a position map is not made for each value taken by a numeric attribute.



4.7. EXERCISES 71

(b) Show the bitmap index for Salary in the following table by using bins of size 1000 as
listed above.

RowID EmployeeID . . . Salary
1 40 . . . 980
2 45 . . . 1600
3 100 . . . 900
4 23 . . . 2000
5 55 . . . 1500
6 69 . . . 2500
7 20 . . . 1100
8 87 . . . 2999

(c) Explain how the bitmap index can be used to find those employees with a salary between
1500 and 2500. Do the position bitmaps give the answer directly or is a refinement step
needed?

4. Show a join index for Sales and Shop in Figure 4.1.

5. Show the details of the different ways to compute the result of the following star join query
on the data in Figure 4.1.

SELECT State, SUM(Price)
FROM Sales, Book, Shop, Time
WHERE Sales.BookID = Book.BookID AND Sales.ShopID = Shop.ShopID
AND Sales.DayID = Time.DayID
AND Time.Year = 2008 AND Book.Genre = ’Cooking’
GROUP BY State
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C H A P T E R 5

Further Readings
This chapter first offers an overview of background material for the coverage offered in the preceding
chapters, including material on which those chapters are based. Then Section 5.2 briefly covers
readings on a range of advanced topics that we have not covered in any detail, but that represent
extensions of the subjects covered and that are subject to ongoing research. Finally, Section 5.3 offers
an overview of software resources that are available for free download.

5.1 BACKGROUND READINGS
Through its coverage of general background material, this section offers context for those who want
to study topics covered in the previous chapters in further detail, and it identifies the sources on
which the previous chapters are based.

History of the Field As noted in Section 1.2, industrial OLAP tools date back to as early as the late
1960s. Data warehouses started to appear in industry in the 1980s, at which time the first companies
began to build large data warehouses that integrated data from many sources for analysis purposes.

Also in the 1980s, multidimensional databases became subject to academic research in the
database community, where they were named statistical databases [80] because these databases were
considered in the context of statistical applications. Data Warehousing emerged only as an academic
subject in the mid 1990s [95]. The field then enjoyed an explosion of activity the next few years,
with lots of work on data modeling, query language constructs, change propagation, materialized
views, bitmap indices, etc.

The field is thus characterized by a dual nature, with significant concurrent contributions from
academia and industry. In the following, we therefore reference both academic and practitioner-
oriented work, as appropriate. A detailed account of the academic history of multidimensional
databases and data warehouses, along with a discussion of many advanced topics such as hierarchies,
time, materialized views, incomplete information, etc. is given by Rafanelli [75].

Inmon et al. The person most often credited for coining the term “data warehouse” is Bill Inmon,
who is also called “the father of data warehousing.” The first edition of his bestselling book “Building
the Data Warehouse” [35] was published in 1992 and has since appeared in new editions. In 2007,
Computerworld listed Inmon among “The Ten IT People Who Mattered in the Last 40 Years” in
the computer profession, citing him as the father of a 28 billion dollar industry.

Section 2.6, on data warehouse and data mart architecture, is inspired by Inmon’s writings.
Unlike Kimball, Inmon argues that a data warehouse should not be modeled exclusively using di-
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mensional techniques. Rather, the data warehouse itself should be used only for data integration and
consolidation, not for the actual data analysis, which should, instead, be done in separate (multi-
dimensional) data marts based on the data warehouse [36]. Since multidimensional modeling can
lead to an unfortunate and less general data warehouse design, Inmon argues that a data warehouse
should be modeled using traditional relational database design techniques since the resulting designs
are then more robust to future changes.

Inmon also advocates the so-called operational data store that, like the data warehouse, is
an integrated and consolidated database containing enterprise data [37], but it is used only for
operational purposes and thus contains only current data, not historical data. Most recently, Inmon
and colleagues have published books about the next generation of data warehouses [39] and the use
of unstructured data in data warehouses [38].

Kimball et al. Ralph Kimball is a very influential pioneer in dimensional modeling of data warehouses
based on relational databases, i.e., the relational OLAP approach. Kimball founded Red Brick
Systems in 1986 and served as the company’s CEO until it was sold to Informix, now owned by
IBM, in 1992. He then entered the data warehousing consultancy and education business.

The first edition of Kimball’s bestselling book on relational dimensional modeling “The Data
Warehouse Toolkit” [48] was published in 1996 were it fueled the increasing industry interest in
data warehouse modeling. The book contains a large number of case studies from different domains
that serve to introduce new modeling concepts in an intuitive manner. According to Kimball, the
dimensional modeling concepts of hierarchical dimensions and measures (which Kimball calls “facts”)
were first used by syndicated data providers such as ACNielsen that used them to integrate and
analyse retail market data.

Kimball and co-authors have later published another best-selling book “The Data Ware-
house Lifecycle Toolkit” [50] that covers the entire development and deployment lifecycle of a
data warehouse, including initial requirements analysis, modeling, technical design, ETL, end-user
applications, deployment, and continuous growth of the data warehouse system.

Another popular book [47] by Kimball and colleagues concerns specifically ETL and delves
into advanced ETL techniques such as the near-real-time feeding of a data warehouse. Kimball and
his so-called “Kimball Group” have published widely in industry magazines and blogs over the years
on best practice and guidance for data warehouses. An updated collection of these is available [49].

The coverage of relational OLAP modeling in Sections 2.5 and 2.7, parts of Section 2.8,
Sections 3.1–3.2, and parts of Section 3.3 is to varying degrees either inspired by or based on the
writing of Kimball and his colleagues.

Multidimensional OLAP Whereas Kimball has been a proponent for relational OLAP systems,
Erik Thomsen has focused on “pure” multidimensional OLAP systems. His 1997 bestselling book
“OLAP Solutions: Building Multidimensional Information Systems” describes multidimensional
concepts and modeling in practical terms, detailed in a large number of case studies. Later,Thomsen
and colleagues have published books that combine general concepts with tool-specific advice and
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information, e.g., “Microsoft OLAP Solutions” [89]. Another book with the same kind of focus is
“MDX-Solutions: With Microsoft SQL Server Analysis Services 2005 and Hyperion Essbase” by
George Spofford et al. [82] that provides an in-depth description of the MDX language covered
briefly in Section 2.8.6.

Tool-Specific Books A number of books are available that target users of specific business intelligence
tools. Here we cover a few. Section 5.3, which covers software resources, provides information on
how the tools covered here can be downloaded for use.

Sivakumar et al. [32] offer quite comprehensive coverage of Microsoft Analysis Services,
covering aspects such as the design of dimensions and cubes, administration, and performance
optimizations. The book’s use of easy-to-follow, step-by-step explanations, complete with graphical
illustrations, makes this a very helpful do-it-yourself book.

A book by Stackowiak et al. [83] concerns data warehousing using Oracle’s offerings. The
book’s objectives are to offer best practices for designing, implementing, and managing data ware-
houses with Oracle technology, to enable integration with solutions from other vendors, to explain
how to analyze data using Oracle’s tools, and to help the reader address performance challenges.The
book may serve well as an introduction to the offerings from Oracle.

Next, Ballard et al. [4] offer a brief overview of IBM’s InfoSphere technology and delve
into one component, the InfoSphere Warehouse Cubing Services, that is designed to provide a
multidimensional view of data stored in a relational database. This book is available for free.

Finally, a book by Bouman and van Dongen [8] covers Pentaho’s business intelligence offer-
ings. It explains system installation, it covers key business intelligence and data warehouse concepts
and techniques, and it explains the use of all parts of Pentaho’s business intelligence suite.

Database Textbooks with Data Warehousing Coverage The topics of multidimensional data mod-
eling and data warehousing have also found their way into popular database textbooks. While the
textbooks cover these topics in less detail than we do, we include here an overview of the textbook
coverage.

The textbook [14] by Connolly and Begg stands out as one of the two textbooks with the
best coverage of multidimensional databases and data warehousing. Specifically, one chapter offers
an overview of data warehousing, a following chapter focuses on the design of a dimensional data
warehouse based on star schemas, and a third chapter offers an overview of OLAP, i.e., the querying
of a data warehouse. The textbook by Hoffer et al. [33] covers the motivation for data warehousing
and the architecture of the data warehouse in quite some detail. Likewise, ETL is covered better
than in other textbooks, as is star schema based data warehouse design.

Ramakrishnan and Gehrke [77] cover star schema design and offer the best coverage across
database textbooks of querying using primarily SQL:1999. The textbook by Atzeni et al. [3] covers
the architectural setting of a data warehouse, star and snowflake schemas, and querying. In their
textbook [20],Elmasri and Navathe also include a chapter that offers an overview of data warehousing
and OLAP, covering cubes and their relational embedding using star schemas. Next, Kifer et al.
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include a chapter on OLAP and data mining in their book [46]. This chapter covers star schemas
and the querying of these, and it covers implementation and ETL very briefly. Similarly, Date’s
textbook [15] affords data warehousing a brief coverage, thus covering ETL, architectural aspects,
star schemas, and querying. Kroenke [51] covers data warehousing as a component of a larger
enterprise system that aims to support reporting. He motivates data warehousing and explains its
architectural context, and he touches upon OLAP as part of this context.

Chapter 4 covers a range of implementation-related techniques that are particularly relevant
for multidimensional databases but that also have more general relevance. Thus, database textbooks
[3; 14; 22; 46; 77; 81] now offer some coverage of techniques such as bitmap indexing, materialized
views, and join indexes.

Industry Surveys The Business Application Research Center, BARC, an independent software
industry analysis company, publishes the largest existing survey on business intelligence products,
called the BI Survey, available at www.bi-survey.com, as well as a collection of in-depth business
intelligence product evaluations, called the BI Verdict (previously called the OLAP Report), available
at www.bi-verdict.com. These web sites offer some free information, while the full reports are
available at a cost only. Readers with an industrial focus may find the free information on these
websites informative.

Real Data Warehouses and Business Intelligence Systems We want to alert the reader’s attention
to Project REAL (where “REAL” is an acronym that expands into “Reference implementation,
End-to-end, At scale, and Lots of users”). In this highly interesting and well documented project,
Microsoft collaborated with several technology partners to build on actual customer scenarios to dis-
cover best practices for creating applications of multidimensional technology. The project, described
at http://www.microsoft.com/sqlserver/2005/en/us/project-real.aspx, is based on
Barnes & Noble’s data warehouse and presents best practices for the development of a Business
Intelligence system. Reports with a wealth of information, as well as a reference implementation,
are available for download via this URL.

The world’s arguably most famous data warehouse is that of Walmart, the largest grocery
retailer in the US and the world’s largest public corporation in terms of revenue (2010 figures). Paul
Westerman, who was member of the team that built the Walmart data warehouse, offers insight into
Walmart’s data warehouse and the development of data warehouses, with focus in retail [94].

Scientific Literature Some of the content of the previous chapters are based in part on contributions
from the scientific literature. Specifically, Pedersen et al. [65; 68] present a multidimensional data
model that supports dimensions with multiple hierarchies that may be unbalanced, non-covering,
and non-strict; our coverage of hierarchies in Section 3.3 is based in part on this work.

Section 5.2, next, covers readings drawn from the scientific literature more generally.

www.bi-survey.com
www.bi-verdict.com
http://www.microsoft.com/sqlserver/2005/en/us/project-real.aspx
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5.2 ADVANCED TOPICS
Due to the popularity of data warehousing, much research continues to be devoted to the extension
of multidimensional data models with the objective of supporting a wider range of applications.This
section covers selected advanced topics in this regard, thus offering pointers to further readings that
may be helpful in identifying directions for further research.

Multidimensional Models for Complex Data The sudden academic interest in multidimensional
databases and data warehouses in the second half of the 1990s resulted in a numerous proposals
for multidimensional data models. The data cube by Gray et al. [28] provided a formal basis for
advanced aggregate querying of relational data, but it did not consider more advanced issues.

Other research focused on handling more complex multidimensional data such as complex
and irregular dimension hierarchies (non-strict, unbalanced, attribute inheritance, etc.) and on com-
plex fact-dimension relationships, and it considered the symmetric treatment of dimensions and
measures [2; 11; 16; 29; 41; 52; 54; 65; 76; 92]. Real data warehouses may often benefit from the
resulting support for complex data [97]. A related issue is the concept of summarizability [34; 53]
that concerns whether or not lower-level aggregate values can be combined, e.g., summed up, to
produce higher-level aggregate values. This concept relates to dimension hierarchies: aggregating
over simple hierarchies (which form balanced trees) is summarizable if the associated aggregation
function is distributive.

Several surveys [68; 93] offer detailed overviews of the multitude of multidimensional data
models and their capabilities. Additionally, several recent textbooks [24; 56] discuss advanced mod-
eling at the conceptual and logical levels, along with physical and implementation aspects of data
warehouses.

Incomplete Multidimensional Data For real-world data cubes, it is very common that the data is
not perfect, but somehow “incomplete.” Within data management in general, incomplete data is a
term used to cover a number of data deficiencies and approaches to coping with these, including
missing/unknown values, uncertainty, imprecision, disjunctive alternatives, exotic incomplete values
(maybe values, open values, no information values, possible information), probabilistic values, and
possibilistic (fuzzy) values [19]. A comprehensive survey of the treatment of incomplete information
in multidimensional databases [19] groups the problems into four main categories: incomplete
measures, incomplete grouping attributes, incomplete information in the hierarchy, and incomplete
metadata.

A number of proposals for handling these issues exist. Dyreson [18] considers a data cube
containing regions of unknown values. Queries on unknown regions are then either redirected
to the nearest regions with complete information or computed as well as possible along with a
completeness measure showing how much complete information is used in the query evaluation.
Jagadish et al. [41] present techniques for handling problems in the metadata specifications and
for aggregating when imprecise values in the grouping attributes exist. Pedersen et al. [66] propose
techniques for handling both imprecise grouping values as well as imprecise measure values. Timko
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et al. [90] considers uncertain/imprecise data cubes for the special domain of spatio-temporal data,
which introduce several new challenges. Finally, Barbara et al. [5] were the first to consider the related
problem of compressing data cubes into approximate cubes, termed quasicubes, where incompleteness
is introduced in return for reduction in storage space.

Temporal Data Warehousing In Inmon’s definition, a data warehouse is time variant and non-
volatile.Thus, a data warehouse accumulates data and invariably has at least one temporal dimension.
Facts reference values drawn from the time dimension(s) to capture some temporal aspect of the
data. In the ideal case, the passing of time simply results in new facts being entered into the data
warehouse, with the dimensions remaining static. However, things are more complicated in reality.
We thus covered temporal aspects of a data warehouse, including the handling of so-called “slowly
changing dimensions” that result when dimensions change over time (see Section 3.1), and we
covered the design of time dimensions (see Section 3.2.5).

Owing to an active research community, the area of temporal relational databases was well
established by the time dimensional data warehousing came into existence.Thus,quite a few temporal
conceptual models and temporal data models and query languages [10] along with a foundation of
temporal database concepts [43; 44] predate dimensional data warehousing.

In fact, temporal and multidimensional databases have evolved separately and with little cross
fertilization. The former area was rooted primarily in academia, and its focus has roughly been
on extending SQL with constructs that enable the effective querying of general temporal data. In
contrast, the latter area was initially rooted primarily in industry, and it adopted a modeling approach
to the handling of specifically temporal multidimensional data. One or more appropriately designed
time dimension tables were used to enable complex aggregate queries that would otherwise be very
difficult to formulate.

However, research has been conducted with the aim of enriching multidimensional data
models and query languages with concepts from temporal databases.

In early research, Bliujūtė et al. [7] propose the concept of temporal star schemas that omit
the time dimension table and, instead, timestamp each row in every table of the schema, treating the
fact table and the dimension tables equally with respect to time. Pedersen et al. [65; 68] propose a
multidimensional data model and query algebra supporting the standard temporal database concepts
of valid and transaction time. In a series of papers, Vaisman and Mendelzon unfold a temporal
multidimensional data model and query language [57; 58; 91]. Golfarelli and Rizzi [25] present a
recent survey of research on temporal data warehousing that offers additional references.

Spatial and Spatio-Temporal Data Warehousing Research has also been conducted on the exten-
sion of multidimensional data models and data warehousing to the geographical domain. Starting
prior to year 2000, Bedard and colleagues have proposed, explored, and developed the concept of
Spatial OLAP in a substantial and growing number of papers (e.g., [78]). Gómez et al. [27] present
a recent survey of the Spatial OLAP literature and also delve into Spatio-Temporal OLAP where
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the objective is to support OLAP for moving objects [42]. The book on advanced data warehouse
design by Malinowski and Zimányi [56] also covers spatial and temporal aspects.

Real-Time Data Warehouses When integrating (mostly internal) data into the data warehouse, the
typical setup has been to load data into the data warehouse periodically, e.g., every week or every
night. However, in recent years, there has been an increasing trend towards requiring new data to
be loaded into the data warehouse almost immediately after being created in the source systems [9].

This is typically termed real-time data warehousing, although a more accurate term is near-
real-time data warehousing, since such systems do not have the ultrashort and ultrastrict timing
requirements of a few milliseconds, which are often associated with “real” real-time systems. Instead,
the requirement is that data is loaded as fast as possible, with delays of up to a few seconds or so.

It is often infeasible to keep a data warehouse (nearly) up-to-date with all available data,
which has led to the notion of right-time data warehousing [87]. Here, the idea is to divide the data
into several priority classes, so that the up-to-date’ness of a data warehouse is dependent on the
priority of the data. This way, the data update frequency for a particular kind of data depends on the
needs.

Within right-time data warehousing, research has been done on how to provide fine-grained
data insertions with immediate data availability, while still maintaining the fast load speeds offered
by bulk loading [87]. Research has also been done on how to schedule the data warehouse loading
activities so that freshness and performance are balanced [85] and on how to include even more
objectives into the scheduling of the real-time data warehouse loading [17; 84].

Loading of near-real-time data warehouses is often done using so-called continuous data
loading where the transactions from the source systems are re-ordered and grouped before being
propagated to the data warehouse [55]. Typically, near-real-time data warehouses are parts of larger
real-time business intelligence systems [1; 17; 79] that typically combine stored warehouse data with
aspects of (non-stored) data streams [12; 96].

Integration of External Data Another interesting direction is the inclusion and integration of
external data sources into multidimensional databases. We do not consider general-purpose data
integration,which is an entire field in its own right [30],but instead focus on the work that specifically
address multidimensional cubes.

The first work in this area considers how to virtually extend an existing (internal) multidimen-
sional data cube with external dimensions from external object databases [64]. Today, most external
data for integration into multidimensional data cubes is found on the web. A recent, comprehensive
survey of integration of data warehouses with web data [73] groups the research in this area along
three main lines:

i Using XML technology for integrating (regular multidimensional) distributed data warehouse
systems.

ii Utilizing XML data in data warehouses in various ways.



80 5. FURTHER READINGS

iii Data warehouses queried in combination with document-centric XML collections.

The first line of research includes work on XML formats for exchanging multidimensional
data and metadata, e.g., XML for Analysis [59] and on architectures for applying such formats
and other XML technologies [61]. Work in the second line considers how to virtually extend
an existing (internal) multidimensional data cube with external dimensions and/or measures from
external XML data [63; 69]; other work studies the creation of creation of new cubes solely from
XML data [26; 45; 74]. Finally, work in the third line aims to extend multidimensional cubes with
a context of XML-based textual documents, termed contextualizing the cubes [71; 72].

A recent development is to integrate semantic web data into data cubes. Here, work has
started on how to build virtual multidimensional data warehouses based on composing selected
parts of ontologies located on the web [60].

5.3 SOFTWARE RESOURCES

In this section, we provide pointers to multidimensional systems that are available for free and can
be downloaded from the Internet. These systems provide the reader to gain practical, hands-on
experience with the concepts covered in this book and to learn how the concepts are implemented
in real systems.

While the commercial tools dominate the business intelligence field, a large number of free
open-source tools have appeared in recent years.One paper [86] presents a survey of open source ETL
tools, DBMSs, OLAP servers, and OLAP clients, covering each individual tool, system, server or
client. Another paper [23] compares “suites,” i.e., bundles of integrated software that offer complete
BI solutions. We now proceed to present commercial tools and after that open source tools. In doing
so, we cover some of the most well-known tools and packages, but other less known tools do also
exist.

Commercial Systems The most widely used systems are commercial and thus cost money to use.
However, some of these are available in free trial or development versions. Users should pay close
attention to the different licenses to understand how the systems can be used.

IBM’s InfoSphere Warehouse software can be downloaded from www-01.ibm.com/
software/data/infosphere/warehouse/enterprise.html. The software includes the DB2
DBMS, an OLAP server, and query and reporting tools.

Microsoft’s SQL Server can be downloaded from www.microsoft.com/sqlserver/2008/
en/us/default.aspx (students may also be able to download it from dreamspark.com). SQL
Server is bundled with an ETL tool, an OLAP server, and a reporting engine.

Oracle Database 11g is available from www.oracle.com/technetwork/database/
enterprise-edition/overview/index.html.The DBMS provides built-in support for OLAP
and cubes without the need for other servers.

www-01.ibm.com/software/data/infosphere/warehouse/enterprise.html
www-01.ibm.com/software/data/infosphere/warehouse/enterprise.html
www.microsoft.com/sqlserver/2008/en/us/default.aspx
www.microsoft.com/sqlserver/2008/en/us/default.aspx
dreamspark.com
www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
www.oracle.com/technetwork/database/enterprise-edition/overview/index.html
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TARGIT BI Suite can be downloaded from www.targit.com/Products/Demo_and_
Videos/Download_30_days_trial_demo.aspx. It provides a graphical OLAP client for analysis
and reporting. The tool emphasizes user-friendliness.

Open Source Extract-Transform-Load Tools The ETL program Pentaho Data Integration (also
referred to as PDI and Kettle) can be downloaded from kettle.pentaho.com. Another ETL tool
called Talend Open Studio is available from www.talend.com. In both Pentaho Data Integration
and Talend Open Studio, the user defines the ETL flow in graphical environments. Both Pentaho
Data Integration and Talend Open Studio are available in “community editions,” which are free to
use and where the source code is available. They are, however, also available in commercial editions
with more functionality.

Open Source DBMSs A number of open-source relational DBMSs are also available. Two of
the most interesting ones are, in our opinion, Ingres Database, available from ingres.com, and
PostgreSQL, available from postgresql.org. Both have rich feature sets and are very solid.

Another open-source DBMS is LucidDB, available from luciddb.org. Custom-built for
data warehousing and business intelligence, LucidDB supports advanced features such as star joins
and bitmap indices. Further, it is a so-called column-store that, unlike traditional row-stores, stores
the data in a table in a by-column fashion rather than in the traditional by-row fashion. This storage
organization can be very efficient for data warehousing. However, at the time of writing, LucidDB
still lacks other important features such as support for foreign keys.

Open-Source OLAP Mondrian is the by far most popular open-source OLAP server. It can be
downloaded from mondrian.pentaho.com. It supports MDX queries and is used in ROLAP
environments such that a cube is defined on top of an underlying relational data warehouse.Mondrian
can be used with any DBMS for which a JDBC driver exists. Next, JPivot, available from jpivot.
sourceforge.net, is an OLAP client that presents data in pivot tables and graphs.

Open-Source Business Intelligence Suites Three popular open-source business intelligence
suites exist. JasperSoft Business Intelligence Suite, available from www.jaspersoft.com/
jaspersoft-business-intelligence-suite/, comes with the MySQL DBMS and special-
ized versions of Talend Open Studio, Mondrian, and JPivot. Next, Pentaho Open BI Suite, which
can be downloaded from pentaho.com, includes Pentaho Data Integration, Pentaho Analysis (us-
ing Mondrian and JPivot), as well as a dashboard application and a data mining application. Finally,
SpagoBI, available from www.spagoworld.org/xwiki/bin/view/SpagoBI/, is an integration
platform that provides the glue that allows the user to integrate different tools into a business intel-
ligence solution. For example, Mondrian or Microsoft Analysis Services can be used as the OLAP
server in a SpagoBI business intelligence solution.

www.targit.com/Products/Demo_and_Videos/Download_30_days_trial_demo.aspx
www.targit.com/Products/Demo_and_Videos/Download_30_days_trial_demo.aspx
www.targit.com/Products/Demo_and_Videos/Download_30_days_trial_demo.aspx
kettle.pentaho.com
www.talend.com
ingres.com
postgresql.org
luciddb.org
mondrian.pentaho.com
jpivot.sourceforge.net
jpivot.sourceforge.net
jpivot.sourceforge.net
www.jaspersoft.com/jaspersoft-business-intelligence-suite/
www.jaspersoft.com/jaspersoft-business-intelligence-suite/
pentaho.com
www.spagoworld.org/xwiki/bin/view/SpagoBI/
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