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Abstract

A number of logical languages have been proposed to represent the dynamics of the world. Among
these languages, the Situation Calculus (McCarthy and Hayes 1969) has gained great popularity. The
GOLOG programming language (Levesque et al. 1997, Giacomo et al. 2000) has been proposed as a high-
level agent programming language whose semantics is based on the Situation Calculus. For efficiency
reasons, high-level agent programming privileges programs over plans; therefore, GOLOG programs do
not consider planning. In this article we present algorithms that generate conditional GOLOG programs
in a Situation Calculus extended with uncertainty of the effects of actions and complete observability of
the world. Planning for contingencies is accomplished through two kinds of plan refinement techniques.
The refinement process successively increments the probability of achievement of candidate plans. Plans
with loops are generated under certain conditions.

Keywords: Cognitive robotics, planning, loop induction, uncertainty.

1 Introduction and motivation

Several logical languages have been proposed to represent the dynamics of the World (Kowalski and Sergot
1986, Allen and Hayes 1985, McDermott 1982, Sandewall 1998, Thielscher 1998). Among these languages,
the Situation Calculus (McCarthy and Hayes 1969), a second-order language, has gained great popularity,
especially after a simple solution to the frame problem was proposed by Reiter (1991). The original language
regards actions as the only entity that may change the world, i.e., change from one situation to another. These
actions are atomic, instantaneous, and have deterministic effects. Since these characteristics are somewhat
inadequate for real world applications, a number of extensions to the language have been made, such as
concurrent actions (Lin and Shoham 1992, Reiter 1996), actions with durations (Baier and Pinto 1998), and
continuous change (Pinto 1998, Reiter 1996). Given a Situation Calculus theory, an agent can determine
how the world changes after she executes actions in the sense that she can evaluate the truth value of logical
formulae after executing an arbitrary sequence of actions.

Stemming from this research, the GOLOG agent programming language (Levesque et al. 1997, Giacomo
et al. 2000) has been proposed. GOLOG is a logic-based, interpreted, agent programming language designed
to model agents on dynamic worlds at a high abstraction level. The language can be used for diverse
applications, such as high-level robot control (Burgard et al. 1998, Lespérance et al. 1999, Boutilier et al.
2000) and intelligent software agents programming (Ruman 1996). The GOLOG language is similar to
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structured programming languages; the main differences are that the effects and execution of the program
can be determined by the agent through a Situation Calculus axiomatisation, and that its execution semantics
is defined in logic.

The approach of programming agents — sponsored by the cognitive robotics area — is completely
orthogonal to the planning approach. Planning is the process by which an agent looks for acourse of action
to accomplish somegoal. A goal is something the agent desires to make true. The planning problem has been
addressed in different ways. The first works on this area gave rise to the so-calledclassical planning, which
relies on several assumptions. Among them is the deterministic effects of actions assumtion, that states that
every action has a deterministic effect, which can be determined from the conditions that hold upon the
execution of actions. Other assumtions state that the world is perfectly observable, i.e., agent can determine
all conditions that hold on states, and that the agent is alone in the world. Variations of the classical planning
problem arise by relaxing some of those assumptions. The planning problem is computationally intractable;
in fact, classical planning is P-SPACE complete (Bylander 1994). For this reason, the cognitive robotics
area favours high-level programming over planning. However, for agents acting in worlds with actions
with uncertain effects, the benefits of this approach are in doubt. Programmed agents will certainly be more
efficient but somewhat less flexible. Flexibility is a desired property of intelligent agents (Wooldridge 2002).

Classical planning has been subject of study since the beginnings of AI. Nevertheless, the problem of
planning in the context of cognitive robotics has had minor development. In a work by Reiter (2001),
a simple but efficient classical GOLOG planner is proposed. Plans are generated by a GOLOG program
and optimised using search-space pruning as suggested by Bacchus and Kabanza (2000). Boutilier et al.
(2000) propose an extension to GOLOG that generates plans as an optimisation of sequences of actions.
In this version, actions are regarded to have probabilistic outcomes and the optimisation is made through
considering a Markov Decision Process for actions. Using only the Situation Calculus as framework, Finzi
et al. (2000) have proposed an open-world classical planner.

In this article, we are concerned with the problem of integrating planning under uncertainty into GOLOG

programs. Planning under uncertainty is obtained by allowing actions to have non-deterministic effects.
There exist two variants of planning under uncertainty depending on whether or not probability distributions
are associated with outcomes of actions. When probabilities are considered, we talk about probabilistic
planning under uncertainty.

We are interested in the problem of planning under uncertainty since in many domains the notion of
uncertainty of effects of actions is central. Imagine a robot whose objective is to lift a dozen of glasses in
order to carry them from one place to another. The action of lifting a glass involves the execution of an
extra-logical procedure which, if executed over a particular glass, will have the effect of lifting the glass.
Nevertheless, many external conditions may influence upon the real effects of the ‘lifting action’. With a
positive probabilityp, the action could fail because of excess of humidity on the surface of the glass or
because the force applied over it was not enough due to automatic control level problems. One could give
many different examples in which the notion of uncertainty of effects of actions is crucial; therefore, we
think that integrating planning under uncertainty into GOLOG is an important issue which must not be left
unexplored.

The planning problem under uncertainty has been widely treated under other formalisms. Most of these
planners are based on the STRIPS(Fikes and Nilsson 1971) action representation. The first developed,CNLP

(Peot and Smith 1992), considers uncertainty without probabilities. Based on a similar action representation,
the BURIDAN (Kushmerick et al. 1995) and C-BURIDAN (Draper et al. 1994) algorithms are proposed for
probabilistic planning. TheCASSANDRA algorithm (Pryor and Collins 1996) is also based on STRIPS and
does not consider probabilities. The Weaver architecture (Blythe 1998) uses the STRIPS action represen-
tation to generate conditional plans. It is based upon the PRODIGY (Veloso et al. 1995) classical planning
architecture.
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Decision-theoretic planning is also a way of doing planning under uncertainty. In this view, Markov
Decision Processes (Boutilier et al. 1999) are used to generate plans which are optimalpolicies. A policy is
a function that returns the action that the agent must execute given the current state of the world in order to
maximise the final utility (reward) of the agent.

With the exception of the work by Boutilier et al. (2000), none of this planners directly generate pro-
grams — which could be integrated into GOLOG— nor are they based in a first-order logic representation
of the world. In this article we propose algorithms to fill this gap. We will discuss the advantages and limi-
tations of our approach in relation to that of Boutilier et al. (2000) and other approaches in a later section.

This article is structured as follows. In section 2 we describe the Probabilistic Situation Calculus. In
section 3 we define an extended version of the GOLOG semantics to handle uncertainty. In section 4 we de-
scribe the problem of planning under uncertainty and show two plan refinement strategies for accomplishing
planning under uncertainty. We show cases in which programs with loops can be induced with a great im-
pact on the probability of achievement of the goal. In section 5 we discuss limitations of our approach. In
section 6 we show related work. We conclude in section 7, sketching directions for extending this work to
partial observability of the world.

2 Theoretical framework

In this section we present the Probabilistic Situation Calculus, a variation of the Situation Calculus. The
original Situation Calculus (McCarthy and Hayes 1969) is useful to represent worlds in which effects of
actions are deterministic. On the other hand, the Probabilistic Situation Calculus gives an account of non-
deterministic effects of actions and the probabilities associated to them. The Probabilistic Situation Calculus
we present here is a variation of the original by Pinto et al. (2000). For more details on the Situation Calculus,
refer to Pirri and Reiter (1999).

2.1 Elements of the language

The Probabilistic Situation Calculus is a many-sorted, first-order logical language extended with induction.
We use the sortsS , I , E , A , F , andD for situations, input actions, outcome actions, actions, fluents, and
domain objects, respectively.

Situations represent a snapshot of the world in a given moment plus a history of the evolution of the
world. There is a distinguished initial situationS0, which describes the world before anything has occurred.
The world changes from one situation to another as the result of the execution of actions. Once an action
is executed over the world, another situation is generated. The termdo(a,s) is used to denote the situation
which results from the execution of actiona in situations.

Input actionsare the set of actions that agents execute in the world, i.e., grabbing an object, tossing a
coin, etc. On the other hand,outcomesare natural actions — executed by nature — which complement
the effects of an input action. An outcome is always associated with an input action. Finally, an action is
an ordered pair〈i,e〉 consisting of an input actioni and an outcomee. To exemplify the notion of action
consider the input action ‘flip a coin’. This action has a deterministic effect, ‘coin on the floor’, and two
non-deterministic effects: ‘coin landed tails’ and ‘coin landed heads’. In our framework, this action could
be modelled by two actions, each having the same input,〈 f lip, tails〉 and〈 f lip,heads〉, wheretails is an
outcome whose effect is ‘coin landed tails’ andheadsis an outcome whose effect is ‘coin landed heads’.
Deterministic actions are modelled by an input with only one possible outcome.

Fluents are functional terms of the language that serve to describe properties of the world. These prop-
erties are static within situations but may change between different situations. We use the special predicate
holds⊆ F ×S to state that a fluent is true during a situation. For example, the sentenceholds(on(A,B),S0)
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may be used to establish that objectA is over objectB in situationS0
1. Theholdspredicate can be straight-

forwardly extended toformulae of fluents, which are like first-order formulae where terms can only be
fluents, e.g.(∀x)¬on(x,A). Fluents cannot have situation terms as arguments.

The binary predicate symbolPossi ⊆ I × S states when an input action is possible in a situation, i.e.
Possi(i,s) is true if and only if input actioni is possible in situations. The functionOutcome: I ×E×S →
[0,1]2 is such thatOutcome(i,e,s) = p if and only if p is the probability that input actioni will have outcome
e in situations.

2.2 Foundational axioms

The following axioms are necessary to precisely define the structure of the situations as well as to formalise
precisely the notion of probability.

(∀P).(P(S0)∧ (∀a,s)[P(s)⊃ P(do(a,s))])⊃ (∀s)P(s), (1)

(∀a1,a2,s1,s2).do(a1,s1) = do(a2,s2)⊃ a1 = a2∧s1 = s2, (2)

(∀b,b′,e,e′).〈b,e〉= 〈b′,e′〉 ⊃ b = b′∧e= e′. (3)

In short, axioms (1) and (2) force the structure of situations to be a tree. Axiom (3) is a unique names axiom
for actions.

The following axioms constrain theOutcomepredicate to correctly reflect the notion of probability
within the language.

(∀i,s).¬Possi(i,s)⊃ (∀e)Outcome(i,e,s) = 0, (4)

(∀i,s).Possi(i,s)⊃ ∑
e∈E

Outcome(i,e,s) = 1. (5)

Axiom (4) forces that no outcome of an impossible input action will have a positive probability. On the
other side, axiom (5) obliges that the sum of probabilities of outcomes of a possible input action is 1. Notice
that axiom (5) is not a proper formula of the language, nevertheless, it is intended to represent the standard
notion of summation in the real numbers.

ThePoss⊆ A×S predicate is used to specify when an action is possible. It is defined by:

(∀i,e,s).Poss(〈i,e〉,s) def= Possi(i,s)∧Outcome(i,e,s) > 0, (6)

thusPoss(〈i,e〉,s) is true, if and only if input actioni has an associated outcomeewith a positive probability.
We define also the following macros as syntactic sugar:

in(a) = i
def= (∃e)a = 〈i,e〉 out(a) = e

def= (∃i)a = 〈i,e〉

2.3 Theories of action

When modelling a certain domain it is necessary to construct a theory of action. We illustrate how to
construct one by modelling this sample domain:

“In the world of coins and tables there are two coins and one table. There is one agent in the
world who may execute two actions: grab a coin from the table or the floor, and drop the coin
causing it to fall on the floor.”

1This view of fluents differs from that of Reiter (1991), since this version is reified.
2We use[0,1] to refer to the interval of real numbers between 0 and 1.
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First, we define the actions and fluents of the domain. We use the termsgrab(x) anddrop(x) to denote,
respectively, the input action of grabbing and dropping coinx. Since we regardgrab(x) as a deterministic
action, the outcome forgrab(x) is grab(x), and the possible outcomes fordrop(x) aretails(x) andheads(x).
The language constantsC1 andC2 denote the coins.

The fluentheadsUp(x) denotes thatx is heads up. The fluentson f loor(x), ontable(x) andholding(x)
denote, respectively, that coinx is over the floor, over the table or held by the agent.

A theory of actionsΣ is formed by the union of the following sets of axioms:

1. An initial description set,ΣS0. In this case we suppose both coins are tails up and over the table.

holds(ontable(x),S0)≡ x = C1∨x = C2, (7)

¬holds(headsUp(x),S0)≡ x = C1∨x = C2, (8)

¬holds(on f loor(C1),S0)∧¬holds(on f loor(C2),S0). (9)

2. A set of precondition axioms,Σprec, for actions. These axioms define all the necessary and sufficient
conditions by which an input action may be executed. In our example, input actiongrab(x) is possible
if x is either on the table or on the floor. Input actiondrop(x) is possible if the agent is holding coinx.

Possi(grab(x),s)≡ holds(ontable(x),s)∨holds(on f loor(x),s)
Possi(drop(x),s)≡ holds(holding(x),s)

3. A set of successor state axioms,Σssa, one for each fluent, compiled from effect axioms. These axioms
establish all the conditions under which a property holds in a given situation, giving a solution to the
frame problem. We refer the reader to Reiter (1991) for more details.

In our example, the successor state axioms are the following:

Poss(a,s)⊃ [holds(headsUp(x),do(a,s))≡
out(a) = heads(x)∨ (holds(headsUp(x),s)∧¬out(a) = tails(x))],

Poss(a,s)⊃ [holds(ontable(x),do(a,s))≡
holds(ontable(x),s)∧¬in(a) = grab(x)],

Poss(a,s)⊃ [holds(on f loor(x),s)≡
in(a) = drop(x)∨ (holds(holding(x),s)∧¬in(a) = grab(x))],

Poss(a,s)⊃ [holds(holding(x),s)≡
in(a) = grab(x)∨ (holds(holding(x),s)∧¬in(a) = drop(x))].

The first axiom states that a coinx is heads up in situations if s is a result of executing an action with
heads(x) as outcome or ifs is not a result of an action withtails(x) as outcome. The reading of the
remaining axioms is analogous.

4. A set of axioms for outcomesΣprob. In our example,

Possi(grab(x),s)⊃Outcome(grab(x),grab(x),s) = 1,

Possi(drop(x),s)⊃Outcome(drop(x), tails(x),s) = 0.5,

Possi(drop(x),s)⊃Outcome(drop(x),heads(x),s) = 0.5.

The first axiom says that actiongrab(x) is deterministic. The last two axioms state thattails(x) and
heads(x) are equally probable after executingdrop(x).
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5. Unique name axioms setΣuna for domain objects, fluents, and actions. These axioms are used to
distinguish actions and domain objects. In our example:

C1 6= C2

The rest of the axioms say that actions with different names are in fact different. Note that we distin-
guish actions belonging to the same sort.

heads(x) 6= grab(y)∧ tails(x) 6= heads(y)∧ tails(x) 6= grab(y),
grab(x) 6= drop(y),

ontable(x) 6= holding(y)∧ontable(x) 6= headsUp(y)∧headsU p(x) 6= holding(y)

3 U-GOLOG : a non-deterministic GOLOG

The GOLOG language is a logic-based, interpreted, robot programming language designed to model dynamic
worlds at a high abstraction level. The language has been successfully used in high-level robot control and
intelligent software agents programming.

Apart from the natural high-level control use, GOLOG can doplan verification. Given a programσ and
formula of fluentsϕ, it can be determined whetherϕ holds during or after the execution of the program.

Up to the moment, we have knowledge of three extensions to GOLOG in order to represent actions with
uncertain effects (Baier 2000, Reiter 2001, Grosskreutz and Lakemeyer 2001). Grosskreutz and Lakemeyer
(2001) treat uncertainty explicitly within GOLOG programs and not in the Situation Calculus ontology, i.e.,
programs simulate action’s non-deterministic effects. We describe the extension by Baier (2000) which is
very similar to the one by Reiter (2001).

3.1 The GOLOG language definition

The semantics of the language is based on the Situation Calculus, and defines which situations are the result
of the execution of a U-GOLOG program. Since situations represent histories of the world, the semantics
defines the sequence of actions that may result from the execution of a program.

In a U-GOLOG program we distinguish the following elements:

Primitive actions and test conditions

• Primitive actions, denoted byα (possibly with subscripts). U-GOLOG primitive actions differ from
those of the original GOLOG in that primitive actions are not actual actions but inputs executed by the
agent. The special actionNoOpis a primitive action that has no effects over the world.

• φ?: test conditions. Hereφ is a fluent formula. These formulae play the same role in U-GOLOG as
boolean expressions in traditional imperative languages. In GOLOG, test conditions can be executed
in a particular situations if and only if the condition holds in the situation situations. In case a test
condition is attempted to be executed in a situation where the condition does not hold, the program
fails, i.e., it cannot be logically entailed that the agent will be in any situation after executing that
action.

6



Complex actions They are denoted by the lettersσ andδ and can be inductively defined as:

• α, a primitive action, is also a complex action.

• If σ1 andσ2 are complex actions, then the following are also complex actions:

– (σ1;σ2), is asequence of actions. The execution of the sequence corresponds to the execution
of σ1 followed by the execution ofσ2.

– if φ thenσ1elseσ2 endIf, is aconditional sentence. σ1 is executed ifφ holds, otherwise,σ2 is
executed.

– while φdoσendWhile: while loops. σ is executed whileφ holds.

It is also possible to define procedures, which should be understood in the same way as in structured
programming languages. However, for simplicity, we omit them from our simplified language.

Definition 1 A U-GOLOG program is a complex actionσ, which corresponds to the main program.

In the original GOLOG, actions are deterministic and, therefore, the agent has complete control over the
effects that her actions have in the world. Under non-deterministic effects of actions, however, the agent has
complete control on what she decides to do but incomplete control on the effects of the actions she executes.
Thus, the primitive actions of our U-GOLOG programs (i.e., the simple actions denoted byα) are input
actions. The real action executed over the world will depend on the outcomes associated to every particular
input action.

The semantics of U-GOLOG given by Baier (2000) is strongly based on the CONGOLOG semantics
(Giacomo et al. 2000) which defines, primarily, what situations are generated in a single step of execution
and, ultimately, what situations are the result of the execution of a program. The ternary predicateDo
is defined such thatDo(σ,s,s′) is true if and only if programσ may terminate in situations′ if started at
situations. If a programσ cannot be executed in a particular situations, thenDo(σ,s,s′) is false for all
situationss′.

Example 1 Consider the theory of coins and tables,Σ, of section 2.3. Letδ be the U-GOLOG program
defined by

δ def=

grab(C1);drop(C1); if ¬headsUp(C1) thengrab(C1);drop(C1);elseNoOp

Given the semantics of U-GOLOG, δ may end in any of the following situations3:

S1 = do([〈grab(C1),grab(C1)〉,〈drop(C1),heads(C1)〉],S0)
S2 = do([〈grab(C1),grab(C1)〉,〈drop(C1), tails(C1)〉,〈grab(C1),grab(C1)〉,〈drop(C1),heads(C1)〉],S0)
S3 = do([〈grab(C1),grab(C1)〉,〈drop(C1), tails(C1)〉,〈grab(C1),grab(C1)〉,〈drop(C1), tails(C1)〉],S0)

3We use the abbreviationdo([a1, . . . ,an],s) to refer todo(an, . . . ,do(a1,s) . . .).
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3.2 Computing probabilities

In probabilistic planning, it is of a central relevance to be able to compute the probability that a given prop-
erty holds after the execution of a program. This task is essential to achieve the so-calledplan assessment.
Plan assessment consists of computing the probability that a goal holds after the execution of a plan.

In example 1, it would be interesting to be able to compute the probability thatheadsUp(C1) holds after
the execution of programδ. In order to be able to compute this probability, and any of this kind, we introduce
the following:

• The ternary functionProbSG is such thatProbSG(σ,s,s′) is the probability that, if the agent is in
situations, after the execution ofσ, it gets to situations′.

The following axioms defineProbSG for primitive actions:

ProbSG(α,s,s′) = Outcome(α,e,s)≡ Poss(〈α,e〉,s)∧s′ = do(〈α,e〉,s),
ProbSG(φ?,s,s′) = 1≡ holds(φ,s)∧s= s′,

ProbSG(φ?,s,s′) = 0≡ ¬holds(φ,s)∧s= s′.

For complex actions we define the following.

ProbSG((σ1;σ2),s,s′) =
ProbSG(σ1,s,s

′′)×ProbSG(σ2,s
′′,s′)≡ Do(σ1,s,s

′′)∧Do(σ2,s
′′,s′) (10)

ProbSG(if φ thenσ1 elseσ2endIf,s,s′) =

{
ProbSG(σ1,s,s′) iff holds(φ,s)
ProbSG(σ2,s,s′) otherwise

ProbSG(whileφ doσ ,s,s′) =

{
1 iff ¬holds(φ,s)
ProbSG(σ;whileφ doσ ,s,s′) otherwise

• We define the predicateProbG such thatProbG(g,σ,s) is the probability that fluent formulag holds
after executing programσ in s.

ProbG(g,σ,s) = ∑
s′∈{s′′|Do(σ,s,s′′)}

ProbSG(σ,s,s′)×holds(g,s′). (11)

whereholds(g,s′) is 1 whenholds(g,s′) is true and 0 otherwise.

Remark 1 Let δ be defined as in example 1. From axioms for ProbSG, ProbG, it follows that

ProbG(headsUp(C1),δ,S0) = 0.75

A straightforward implementation of a U-GOLOG interpreter from the semantics axioms is given by
Baier (2000).

4 Planning under uncertainty

For us, planning is the process by which an agent looks for acourse of actionto accomplish somegoal. A
goal is something the agent desires to make true. In our framework, a goal is a fluent formula. The course of
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action sought by the agent is known as aplan. In our framework, a plan corresponds to a GOLOG program
which specifies the actions the agent should take.

We are concerned with the problem of planning under uncertainty. This problem arises when disre-
garding the complete knowledge about the initial state and deterministic effect of actions assumptions of
classical planning. Solutions given to the planning problem by classical planners consist, roughly, by lin-
ear sequences of actions (linear plans), i.e. programs with no loops or conditionals. When planning under
uncertainty these solutions are clearly insufficient. For example, consider the world of coins and tables of
section 2.3 and imagine one wants a plan for having coinC1 heads up with an probability of, at least, 90%.
It is easy to see that no linear sequence of action will achieve the goal with a probability over 0.5.

When considering non-deterministic effects of actions, the planner must identify certain key conditions
or contingenciesunder which it may take different courses of action. The recognition of contingencies is
done be adding if-then-else constructs to programs. Plans which have an account of these contingencies are
known in the literature ascontingent plans. Furthermore, the recognition of certain patterns in the plans
allows to generate loops within the plan.

4.1 An algorithm for complete knowledge

In this section we deal with planning under uncertainty under complete knowledge. This implies that we
assume our agents will always know the conditions that are true in the world. We show, however, that the
algorithm proposed can cope with uncertainty about the initial state too.

As suggested above, good solutions to the planning problem are U-GOLOG programs instead of linear
plans. The following definition formalises our notion of plan.

Definition 2 Given a Probabilistic Situation Calculus theory of actionΣ, a U-GOLOG programσ is a plan
for goal G with probability threshold P in situation S if and only if,

Σ |= ProbG(G,σ,S)≥ P

where G is a formula of fluents and P a real number between 0 and 1.

Following ideas from Green (1969), a plan could be generated by a constructive demonstration of the the-
oremΣ |= ProbG(G,σ,S) ≥ P. Nevertheless, this approach is quite unfeasible since a theorem prover may
explore infinitely many programs before getting to a plan.

Given a certain goal, our algorithm starts generating an initial linear sequence of actions that achieves
the goal with a certain positive probability threshold given as parameter, i.e., asatisfiabilitysolution. Since
this it is a linear sequence of actions, this initial plan can be generated using a classical planning search
technique.

[insert figure 1 about here]
Suppose that the first step of our algorithm generates the sequence of inputsi1; i2; i3; i4 as a satisfiability

sequence to achieve some particular goalG from situationS0. Furthermore, suppose that the execution of
this sequence leads to the situations shown in figure 1, where leaves labelled with a

√
satisfy the goal,

whereas the ones labelled with a× do not. If the outcomes associated to each input are equally probable,
the sequence achieves the goal with a probability of 0.5. Notice that when the program is executing, it may
reach some situations in which the remaining sequence of actions will never achieve the goal. All situations
labelled with a black-filled circle are in the same case. These are bad situations in the sense that if one
executes the remaining sequence in that situation, the goal cannot be reached. Formally, a bad situation is
defined as follows.
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Definition 3 (Bad Situations for a Goal and a Plan) A situation s is bad for a goal formula G and a com-
plex actionσ if the probability of achieving the goal after executingσ in s is 0, i.e.,

Bad(s,g,σ)
def
= ProbG(g,σ,s) = 0

In the example of figure 1, if we get toS4 after performing the sequencei1; i2 it is completely impossible
to achieve the goal using the remaining sequencei3; i4. Therefore,S4 is bad for goalG and plani3; i4, and
S5 is bad for goalG and plani4.

The refinement of the linear sequence of actionsi1; i2; i3; i4 is done in the following steps. Initially, the
agent is inS0, thus, we say that the set ofcurrent situationsis {S0}. This set is used to simulate situations in
which the agent may be while executing the actions in the plan.

The algorithm finds no bad situations for plani1; i2; i3; i4 in the set of current situations ({S0}). Then, it
generates the set of successor situations for input actioni1, obtaining a new current set with one situation,
{S1}. Again, since the current set contains no bad situations, the algorithm generates three new current
situations resulting from the execution ofi2 in S1, {S2,S3,S4}.

The algorithm then determines that there is one bad situation (S4 in figure 1) in the current set. At this
point, the algorithm has detected there is a contingency in which the plan does not work. Here is where
the refinement is done. If we are in situationS4 then we should not continue with the remaining plani3; i4.
Then, to improve the plan, the agent should identify whether it is in situationS4 and, if that is the case, a
new plan should be generated for the goal. Thus, the algorithm modifies the candidate plan by adding an
if-then-elseconstruct. The refined plan looks like the following:

i1; i2;

if in situationS4 then new plan forG in S4

elserecursive refinement ofi3; i4 for the rest of current set

We cannot have a condition ‘in situationS4’ directly in a GOLOG program, since conditions in a GOLOG

program can only be fluent formulae, which do not have any situation terms. Certainly, the properties that
hold in S4 are different from the ones that hold inS2 andS3, otherwise the plani3; i4 would not fail inS4.
Therefore, there must exist a property (or condition) which makesS4 different from the others. We call this
condition adiscriminating conditionwhich should be a fluent formula that uniquely identifies situationS4

from the other situations in the current set. Since the discriminating condition is, in general, an arbitrary
formula, the problem of finding such formula is quite complex. For this reason, our algorithms are restricted
to find a discriminatingfluent instead of a formula. Thus, in our example, the algorithm will search for a
fluent that is true inS4 and false in the rest of the current set or vice versa. If fluentF is found to be true in
S4 and false in the rest of situations, then the condition used in theif-then-elseconstruct isF .

The ‘new plan forG in S4’ is generated by re-invoking the plan refiner inS4, that is, we do replanning
for goalG. In each reinvocation, the refiner is called with a higherdepth level. This depth level is used to
stop replanning and represents how many recursive invocations have been already done. When this variable
has exceeded certain top level — given as a parameter — replanning is ignored, and, in turn, recursion is
stopped.

[insert figure 2 about here]
For the generation of linear, satisfiability sequences of actions to achieve the goal, we use theFindSeq

procedure, shown in figure 2. The version we present in figure 2 is the simplest version one can think of. It
uses a breadth-first procedure which stops as soon as it has found a sequence that achieves the goal with the
given threshold. See section 5 for a discussion of this.
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Figure 2 also shows pseudo-code4 for a simple, conditional-generating, refinement algorithm,CRefine.
Arguments should be understood as input/output arguments as in a PROLOG program. We now describe the
algorithm.

CandPlan, an input argument, is a linear sequence of actions, which corresponds to a candidate plan for
the goal. It is initialised as an empty plan.FinalPlan is an output argument, where the final plan is returned.
CurSitsis the set ofcurrent situations. The planner assumes it can be in any of the situations in this set.T
is a probability threshold used to generate linear sequences of actions to achieve the goal.Levelis the depth
level, used to stop replanning.Top is the maximum depth level the algorithm can reach.

WhenCRefine is invoked, it partitions the set of current situationsCurSitsinto two sets:BadSitsand
GoodSits. BadSitsis a set which contains all bad situations inCurSits. If BadSitsis empty, it means that our
candidate plan is not bad (in the sense of definition 3) for any of the current situations. Thus, it generates the
situations resulting from executing the first action of the sequenceCandPlanand recursively invokes itself
with this new set and the remaining sequence of actions.

If BadSitsis not empty, it means we can be in bad situations. In this case, ifGoodSitsis not empty, it
means thatCandPlanis good for some situations but bad for others. The algorithm looks for a fluent literal5

l which is true inGoodSitsand false inBadSits. It then returns as final plan

if l thenPlanForGoodselsePlanForBads,

wherePlanForGoodsis the plan returned by a recursive call toCRefine overBadSitsandPlanForBadsis
obtained from a recursive call toCRefine overBadSitsandGoodSitswith Level incremented in one.

Observe thatCurSitsis initialised to thesetof initial situations. Since we may use several situations
as the initial current-situations set, the algorithm can do planning with uncertainty of the initial state of the
world.

The following remark gives an account of an execution:

Remark 2 Given the theory of action of section 2.3, the plan returned in FinalPlan by the execution of

CRefine(headsUp(C1),{},FinalPlan,{S0},0.4,0,2)

is

grab(C1);drop(C1);

if headsUp(C1) then NoOp; else

grab(C1);drop(C1);

if headsUp(C1) then NoOp; else

grab(C1);drop(C1);
endIf

endIf

which achieves the goal with probability 0.875.

The version ofCRefine presented is the simplest one can think of. In fact, it does not have any account
of probabilities. A probability-aware version has also been implemented. This version, when generating
a PlanForBads, chooses the most probable bad situation, among situations inBadSits, for replanning. In
this way, it minimises the probability of failure of the new plan inBadSits. This version stops when the
situations inBadSitshave a probability smaller than a parameter. An incremental-refinement algorithm has
also been implemented. This version receives a probability threshold as parameter an generates, if possible,
a plan that satisfies the threshold by successively refining a candidate plan using theCRefine strategy.

4The pseudo-prolog code assumes the procedural semantics of prolog, i.e., when there is no possible demonstration for a sub-
goal, the underlying theorem prover backtracks.

5A fluent literal l is a fluent or a negation of a fluent.
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4.2 Loop induction

From the examples of the previous section it should be obvious that the refinement operators ofCRefine will
never solve problems such as that of remark 2 in a completely satisfactory way, since they will never return
a plan like

while ¬headsUp(C1) do grab(C1);drop(C1)endWhile,

which achieves the goal with probability 1. This plan shows that in certain cases loops dramatically increase
the probability of achievement of plans.

The plan returned byCRefine in remark 2 suggests that loops could be induced when repeated sequences
of if-then-else conditionals appear involving the same body, e.g., in that remark, thegrab(C1);drop(C1)
sequence appears repeatedly. In fact, ifCRefine is invoked on the same arguments but replacingTopby 3
we obtain the following program:

grab(C1);drop(C1);

if headsUp(C1) then NoOp; else

grab(C1);drop(C1);

if headsUp(C1) then NoOp; else

grab(C1);drop(C1);

if headsUp(C1) then NoOp; else

grab(C1);drop(C1);
endIf

endIf
endIf,

which achieves the goal with probability 0.9375. A loop with a bodygrab(C1);drop(C1) can be induced
because, along the execution of the program, the same conditions hold before every execution of the body.
This body can be seen as aretry sequencesince its repetition increases the probability that the goal is
achieved. Each time the body is executed two things can occur: the body achieves certain key condition,
after which the program may continue (positive case) or the body needs to be re-executed (negative case).
For inducing loops from the detection of this pattern, it is necessary to assure that the state of the world
in the negative cases is always the same. In our example, this means that all conditions must be the same
after any execution ofgrab(C1);drop(C1), in negative cases. Therefore, before specifying loop induction
we have to precisely define the notion ofstate.

Although the concept of state is inherent in most other approaches that address the planning problem,
it is not part of the ontology of the Situation Calculus. A state is the set of properties that hold in a given
situation. A state can be properly defined if and only if the theory of action isdefinitionalfor the predicate
holds, i.e., a theory that assumes the closed world assumption on theholdspredicate. The theory of action
of section 2.3 can be made definitional if axioms (7)-(9) are replaced by:

holds( f ,S0)≡ f = ontable(x)∧ (x = C1∨x = C2),

which defines all the cases in whichholdsis true in the initial situation. This condition essentially serves to
assure that the predicateholdswill have the same extent in all models of the theory.

Definition 4 The state of a situation s is

state(s) = { f |holds( f ,s)}

12



We now define the refinement operator, which takes as input a program and a situation and induces a
program with loops6.

LRefine(δ,s,δ′) def=
δ = σp;σ`; if l then σt elseσ`;σt endIf∧
δ′ = σp;σ`; while ¬l do σ` endWhile;σt∧
(∀s′)(Do(σp,s,s

′)⊃ ((∀s′′)Do(σ`;¬l?,s′,s′′)⊃ state(s′) = state(s′′)))
∨

δ = σp;σ`; if l then σt elseσ`;while ¬l do σ` endWhile;σt endIf∧
δ′ = σp;σ`;while ¬l do σ` endWhile;σt∧
(∀s′)(Do(σp,s,s

′)⊃ ((∀s′′)Do(σ`;¬l?,s′,s′′)⊃ state(s′) = state(s′′)))
∨

δ = σp; if l thenσ1;σt elseσ2;σt endIf∧
δ′ = σp; if l then σ1elseσ2endIf;σt

∨
δ = δ′.

(12)

The operator defines four cases7. The first case is a simple loop induction from a conditional construct.
If a conditionalσp;σ`; if l then σt else σ`;σt endIf appears in a program, then it was generated by a
CRefine refinement on the sequenceσp;σ`;σt . This means that the probability of success of the plan is
increased whenσ` is repeated when¬l holds after executingσp;σ`. If, moreover, the state of the world after
executingσp is the same that the state of situations in whichl does not hold and that result after executing
σp;σ` (negative case), then a loop can be induced.

The second case, induces a loop from a loop nested within a conditional construct. This is useful when
loops have already been induced inside a conditional. The third case is used to join different branches of the
program. Finally, the last case states that a refinement may leave a program unchanged.

We say that theLRefine operator isstate conservativein the sense that after the execution of the loop
body, the world is always in the same state if the loop condition does not hold.

The following theorem supports the benefits of loop induction.

Theorem 1 Let s be any situation andσ = σp;σl ;σt a plan found byCRefine for a goal g in s such that g
succeeds with a positive probability p if f holds after the execution ofσp;σl , and fails otherwise. Further-
more, suppose that every situation s− that results from the execution ofσp;σl is such that when fluent f does
not holdstate(s−) = state(s). Then the refinement ofσ, σ+ = σp;σl ;while¬ f doσl endWhile;σt achieves
goal g with probability p, which is an upper bound to anyCRefine refinement forσ.
PROOF: Let r (0 < r < 1) be the probability thatf holds after executingσp;σl . Observe that upon the first
refinement ofCRefine, the programσ1 = σp;σl ; if f thenσt elseσl ;σt is generated. By definition, in each
execution path of the program, the state resulting after executing bothσp;σl andσ1 are the same whenf does
not hold after their execution. Thus, the probability that goalg is true afterσ1 is rp+(1− r)rp. It is easy to
show by induction that the probabilityp j that goal holds after aj th refinement ofσ is p j = rp∑ j

i=0(1− r)i .
On the other handσ+ is equivalent to the program generated by infinitely manyCRefine refinements;

therefore, it achieves the goal with probabilityp+ = rp∑∞
i=0(1− r)i = p. Furthermore, it is easy to see that

p j < p, for all natural j. �

6In this definitionl stands for a fluent literal.
7We have omitted some cases which are permutations of the then and else bodies.
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The direct consequence of this theorem is that loop induction always yields better plans in case retry se-
quences appear within the plan.

One important property to be determined about a plan is the probability that the goal holds after its
execution. According to axiom (11), in order to determine the probability that any formula holds after the
execution of a program with loops it would be necessary to generate all possible executions of the program
and evaluate the truth value of the goal in each terminal situation. However, programs with loops of this
nature have infinitely many different executions, making that approach infeasible; even more, considering
that loops could be induced nested inside conditionals. Another alternative is to do Montecarlo simulation
of the program. Once again, this solution is expensive since to obtain reasonable precision one needs several
hundreds simulations. The following corollary to theorem 1 is of essential relevance for plan assessment,
since it gives a fast way to compute the probability of achievement of plans that contain loops.

Corollary 1 Let σ = σl ;while¬ f doσl endWhile;σt be a program generated by a refinement ofCRefine
andLRefine for a goal g in a situation s. Then the probability that goal g holds after the execution ofσ in s
is:

ProbG(g,σ,s) =
ProbG(g,σl ;σt ,s)

ProbG( f ,σl ,s)
PROOF: Straightforward from theorem 1.�

Note that both terms of the fraction can be efficiently computed since they are probability of success of
sequences of actions. In caseσt contains a loop, the rule can be recursively applied. This result cannot be
applied to other formulae different from the goal formula for it is necessary that goal fails iff does not hold
after the execution ofσl .

We have empirically seen that successive applications ofCRefine andLRefine lead to good plans. In
order to useCRefine to refine a program with loops it is necessary to make some modifications. TheCRefine
algorithm simulates the execution of programs but, now, it may encounter loops which can generate infinitely
many executions. Since loops generated byLRefine are state conservative, we can determine precisely in
which kind of situations the program will be after executing a loop. ThereforeCRefine does not compute
all situations that result from the execution of a loop but only those that result after a successful termination
of the loop, i.e., a loop execution that ends with the loop condition not holding. Furthermore, theCRefine
algorithm is extended to handle recursive refinement of if-then-else constructs in a straightforward way.

We have implemented in PROLOG the refinement operator defined by (12). The program returned by
successively applying the refinement operator on the program of remark 2:

grab(C1);drop(C1);while ¬headsUp(C1) thengrab(C1);drop(C1)endWhile.

Furthermore, if the goal is to have both coins heads up and held by the agent, successive interleaving of
CRefine andLRefine leads to the plans shown in figure 3. Its last refinement achieves the goal with prob-
ability 1 and is computed in 0.87 seconds by our SWI-PROLOG implementation on a Pentium III 1GHz
machine running Linux, using a blind breadth-first sequence generator implementation forFindSeq (as in
figure 2) and no optimisations of any kind. This is a considerable improvement overCRefine refinements;
in fact, a plan without loops and 96% of probability of achievement can be generated byCRefine in over 5
seconds.

[insert figure 3 about here]

5 Limitations and discussion

The most important limitation is time complexity of the algorithms. The time complexity strongly depends
on FindSeq’s execution time. We have only implemented breadth-first forward-chaining generators of se-
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quences as the one shown in figure 2. Our search is completely blind; however, this can be improved through
the application of heuristics appropriate to particular problems. Several well-known algorithms can be used
to program this procedure, taking advantage of research in the area. For example, it is possible to use it-
erative deepening with an incrementable fixed horizonh. In this case, the algorithm can search themost
probablesequence of actions that satisfies the goal, shorter thanh steps. If no sequence is found to meet
the threshold, the horizon can be incremented in more than one unit. The advantage of this view is that, in
certain cases, longer sequences of actions can achieve goals with higher probability than shorter ones. This
approach would find such sequences. It is also possible to use heuristics-aided search such asA∗ or IDA∗.
Utility models such as the ones used for MDPs could also be used in this search. Furthermore, we think
domain-dependent optimisations to the search such as those by Reiter (2001) — which is, in turn, based on
work by Bacchus and Kabanza (2000) — can also be applied to increase efficiency.

Our algorithm does not manage a plan cache for goals and states. This makes it prone to invokeFindSeq
with the same goal for situations with equal state. Although this may seem to be a drawback, it is possible
to extendFindSeq to remember plans it has previously generated to avoid repeated searches.

The algorithm supposes complete observability of the world. Although this may seem a serious draw-
back, plans generated by these algorithms can be used in domains where properties of the world can be
perfectly sensed. Thus, before every conditional sentence a sensing action can be added. In domains with
partial observability of the world, this may not be possible and therefore the search strategy should be
changed. Currently we are developing algorithms that can cope with this issue (see section 7).

6 Related work

In this section we analyse the relationship between our work and that developed by the AI community re-
garding Planning under Uncertainty and Probabilistic Planning. We consider the differences and advantages
if any of our approach with respect to three different lines of research that address the problem.

6.1 Classical planners under uncertainty

The first working algorithm for conditional plans isWARPLAN-C(Warren 1976), which constructs condi-
tional plans forconditional actionsthat may have two possible outputsp or ¬p. The idea of this planner
is similar to that of ourCRefine procedure. TheCNLP planner(Peot and Smith 1992) assumes incomplete
knowledge about the state of the world and generates conditional plans consisting of a set of steps,context
labels for those steps, and a set of ordering constraints. Its action description is a variant of the STRIPS

action notation. Both algorithms do not deal with probabilities.
The work by Kushmerick et al. (1995) was the first attempt of doing planning under uncertainty with

probabilities. In this work, an algorithm (called BURIDAN) for constructing satisfiability plans in domains
with complete knowledge is given. BURIDAN does not construct conditional plans. In fact, it cannot find
a solution to the coins problem for a probability threshold of 0.8. Following the same ideas, the algorithm
C-BURIDAN is proposed by Draper et al. (1994). The latter algorithm assumes incomplete knowledge
and takes as input a probability distribution over initial states, a goal expression, a threshold and a set of
action descriptions. One of the most important differences between them is that C-BURIDAN can generate
plans with contingencies, i.e., which simulates a conditional construct. The action representation of both is
strongly based on that ofCNLP, therefore plans are described in a similar way.

The CASSANDRA algorithm (Pryor and Collins 1996), is another example of a planner whose action
representation is based on STRIPS. The algorithm generates conditional plans in the form ofif-then-else
sentences. There is no notion of probabilities in this planner.
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The B-PRODIGY algorithm (Blythe 1998), uses the STRIPSaction representation to generate conditional
plans. It is based upon the PRODIGY classical planner Veloso et al. (1995). In this framework, assessment
of plans is rather complicated, since it has to generate a Bayesian belief net.

Blum and Langford (1999), and Weld et al. (1998), have extended the well-known GRAPHLAN (Blum
and Langford 1997) algorithm for planning under uncertainty. The first of these extensions, PGRAPHPLAN,
uses a forward-chaining strategy to generate finite-horizon, contingent plans for domains with probabilistic
actions when the initial state is completely known. On the other hand, the second extension (SGP) can
generate contingent plans with information gathering actions. Uncertainty is modelled without probabilities
through multiplepossible worlds. Sensory actions are used to eliminate some of the uncertainty of possible
worlds.

The main difference between the algorithms described above and ours is that they are not embedded in
any cognitive robotics programming language. Furthermore, to our knowledge, none of these planners are
able to generate plans with loops.

6.2 Decision-theoretic planning

A different approach is taken in decision-theoretic planning (Boutilier et al. 1999). Here, Markov Decision
Processes (MDPs) are used to generate plans that are optimalpolicies. A policy is a function that returns the
action that the agent must execute given the current state of the world. Moreover, they have afinite horizon
in the sense that they explore the search space up to a fixed number of states away from the initial state.
Goals are represented through a utility model, such that each state has an associated utility. Thus, an optimal
policy is such that maximises the utility (reward) of the agent.

A rather different approach is taken by the work by Hansen and Zilberstein (2001). An infinite horizon
algorithm for MDPs is adapted to generate solutions with loops. A loop in this framework means that the
optimal policy considers that the agent could return to an already visited state. Each state is over an optimal
path to the goal state, and an optimal action is considered in every possible state. Plans in this approach look
like directed graphs, where each node correspond to a state and arcs corresponds to actions.

Since a policy is a mapping of a state to an action, translating policies generated by MDP-style algo-
rithms to GOLOG programs would be rather difficult because it would be necessary to determine the state of
the agent after every action execution. Moreover, states are not part of the ontology of the Situation Calculus
and, therefore, it would be necessary to make unnatural changes to GOLOG.

As an alternative to the use MDPs, Pollock (2000) proposes to use standard regression planning as a
means to do decision-theoretic planning in the OSCAR planner. This approach is similar to ours in the sense
that classical planning techniques are used in domains with non-determinsm. Since this type of planning
is decision-theoretic, the objetive of the planning problem is to maximise the expected utility rather than to
achieve a particular goal. Plans generated by OSCAR are not conditional; however, Pollock (2002) gives
a thorough description of cases in which contingencies may be added to a plan. Currently, OSCAR cannot
generate conditional plans.

6.3 Decision-theoretic GOLOG

An integration of decision-theoretic planning and GOLOG as been made by Boutilier et al. (2000). In this
work (referred to as BRST), given a simple linear program, the DTGOLOG interpreter finds an optimal
way to execute the sequence, based on the perceptions of the agent, a utility model and a finite horizon.
The program actually executed could be seen as program containing if-then-else constructs such as those
generated byCRefine. The optimisation is done on-line and relies on the fact that the effect of stochastic
actions can be sensed right after their execution. Although the agent is supposed not to be aware of the
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truth value of fluents it can be immediately aware after executing asense action, therefore the complete
knowledge about the world underlies this approach.

BRST’s approach relies on a utility model and, furthermore, on a probabilistic distribution associated
to actions. In our approach, although a probabilistic model may exist, it is not vital for our algorithms.
DTGOLOG can be extended to do planning if given a null program and an appropriate utility function as
input. In this case, the goal cannot be made completely explicit for it must be encoded as the maximum
reward for the agent. Planning for different goals implies the use of multiple reward functions, which is
not considered in the original DTGOLOG. Also, BRST’s approach considers a finite horizon to optimise
programs. The problem of choosing horizons is far from being trivial.

The main difference of BRST’s approach and ours is that BRST is essentially an on-line optimisation
procedure. Our planning algorithms are off-line. In both approaches the problem of partial observability
and imperfect sensors has not been addressed. Nevertheless, in the following section we briefly describe
ongoing work in this matter.

7 Conclusions and future work

We have presented two algorithms for planning under uncertainty and complete knowledge, which generate
GOLOG programs. The first generates a conditional program and the second may induce loops in certain
cases. The probability of success of plans is incremented by successive refinements. Although a probabilistic
view for non-deterministic effects of actions is not necessary for our algorithms to work, in case such view is
taken, the probability of success of plans with conditional plans and plans containing loops can be efficiently
computed.

This research is especially relevant for the cognitive robotics area which has traditionally privileged
high-level programs over planning, sacrificing flexibility. A U-GOLOG program may now contain — after a
slight modification of its semantics — an invocation to planning procedures inside a program. The execution
of the plan can then be on-line monitored, recalling the planning procedure if it fails. On the other hand, loop
induction is especially relevant for domains containing uncertainty in which repetition of retry sequences of
action may be the only way of accomplishing goals with a satisfactory probability.

One of the main drawbacks of our approach is that it assumes perfect knowledge about the world.
Currently we are developing algorithms that deal with uncertainty and incomplete observability of the world
(Baier 2000). In particular, we are able to model the sensing actions as explicit knowledge acquisition
actions, e.g.,sense( f ) is an action that senses the truth value off . Conditional constructs can only condition
over observable properties. In ongoing work, we are developing algorithms that address the imperfect
sensors issue. In this version, actions such assense( f ) are regarded as non-deterministic actions which
might have incorrect outcomes. Through plan refinement, an account of these imperfections is reflected in
the plans, generating appropriate contingencies that increase the probability of success of them.
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Figure 1: Execution of a sequence of input actionsi1; i2; i3; i4, wherei1 is deterministic and the rest are
non-deterministic.
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CRefine(Goal,CandPlan,FinalPlan,CurSits,T,Level,Top)←
BadSits= {s|s∈CurSits∧Bad(s,Goal,CandPlan)}
if BadSits= {} then

if CandPlan= {} then
FinalPlan= NoOp

else if(∃α,σ)CandPlan= α;σ then
NewSits= {s|(∃s′)s′ ∈CurSits∧Do(α,s′,s)}
CRefine(Goal,σ,σ′,NewSits,T,Level,Top)
FinalPlan= α;σ′

endIf
else
GoodSits= CurSits−BadSits
FirstBad= an element ofBadSits
FindSeq(Goal,CandPlanForBads,FirstBad,T)
if Level< Topthen

CRefine(Goal,CandPlanForBads,PlanForBads,BadSits,T,Level+1,Top)
else

PlanForBads= CandPlanForBads
endIf
if GoodSits= {} then

FinalPlan= PlanForBads
else

Property= fluent literall |(∀s)s∈GoodSits⊃ holds(l ,s)∧
(∀s)s∈ BadSits⊃ ¬holds(l ,s)

CRefine(Goal,CandPlan,PlanForGoods,GoodSits,T,Level+1,Top)
FinalPlan= if PropertythenPlanForGoodselsePlanForBads

end

procFindSeq(Goal,Seq,S,T)←
BreadthFirstGenerate(Seq)
do(Seq,S, ),
probg(Goal,Seq,S,P),
P >= T.

Figure 2: Pseudo-prolog code for a simple algorithm for planning under uncertainty with complete knowl-
edge
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grab(c2);
drop(c2);
if headsUp(c2) then

grab(c1);
drop(c1);
grab(c2);
grab(c1);
NoOp;

else
grab(c2);
drop(c2);
grab(c1);
drop(c1);
grab(c2);
grab(c1);
NoOp;

endif

P = 0.375

grab(c2);
drop(c2);
while -headsUp(c2) do

grab(c2);
drop(c2);

endWhile
grab(c1);
drop(c1);
grab(c2);
grab(c1);
NoOp;

P = 0.5

grab(c2);
drop(c2);
while -headsUp(c2) do

grab(c2);
drop(c2);

endWhile
grab(c1);
drop(c1);
if headsUp(c1) then

grab(c2);
grab(c1);
NoOp;

else
grab(c1);
drop(c1);
grab(c2);
grab(c1);
NoOp;

endif

P = 0.75

grab(c2);
drop(c2);
while -headsUp(c2) do

grab(c2);
drop(c2);

endWhile
grab(c1);
drop(c1);
while -headsUp(c1) do

grab(c1);
drop(c1);

endWhile
grab(c2);
grab(c1);
NoOp;

P = 1

(a) (b) (c) (d)

Figure 3: Generation of a plan forholding(C1)∧holding(C2)∧headsUp(C1)∧headsUp(C2). Plan (a) is a
plan generated byCRefine over the goal. Plans (b) and (d) are applications of theLRefine operator over the
previous plan. Plan (c) is a refinement byCRefine over (a). The probability of success of the goal is shown
below the plans.
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