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Achieving Data Privacy through Secrecy
Views and Null-Based Virtual Updates

Leopoldo Bertossi and Lechen Li

Abstract—We may want to keep sensitive informaticn in a relational database hidden from a user or group thereo!. We characterize
sensitive data as the extensions of secrecy views. The database, before retuming the answers to a query posed by a restricted user, is
updated to make the secrecy views empty or a single tuple with null values. Then, a query about any of those views returns no
meaningful infermation. Since the database is not supposed to be physically changed for this purpose, the updates are only virtual, and
also minimal. Minimality makes sure that query answers, while being privacy preserving, are also maximally informative. The virtual
updates are based on null values as used in the SQL standard. We provide the semantics of secrecy views, virtual updates, and secret
answers (SAs) to queries. The different instances resulting from the virtually updates are specified as the models of a logic program
with stable model semantics, which becomes the basis for computation of the SAs.

Index Terms—Data privacy, views, query answering, null values, view updates, answer set programs, database repairs

1 INTRODUCTION

DATABASE management systems allow for massive
storage of data, which can be efficiently accessed and
manipulated. However, at the same time, the problems of
data privacy are becoming increasingly important and
difficult to handle. For example, for commercial or legal
reasons, administrators of sensitive information may not
want or be allowed to release certain portions of the data. It
becomes crucial to address database privacy issues.

In this scenario, certain users should have access to only
certain portions of a database. Preferably, what a particular
user (or class of them) is allowed or not allowed to access
should be specified in a declarative manner. This specifica-
tion should be used by the database engine when queries
are processed and answered. We would expect the
database to return answers that do not reveal anything
that should be kept protected from a particular user. On
the other side and at the same time, the database should
return as informative answers as possible once the privacy
conditions have been taken care of.

Some recent papers approach data privacy and access
control on the basis of authorization views [27], [33]. View-
based data privacy usually approaches the problem by
specifying which views a user is allowed to access. For
example, when the database receives a query from the user,
it checks if the query can be answered using those views
alone. More precisely, if the query can be rewritten in terms
of the views, for every possible instance [27]. If no complete
rewriting is possible, the query is rejected. In [33], the
problem about the existence of a conditional rewriting is
investigated, i.e., relative to an instance at hand.
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Our approach to the data protection problem is based on
specifications of what users are not allowed to access
through query answers, which is quite natural. Data owners
usually have a more clear picture of the data that are
sensitive rather than about the data that can be publicly
released. Dealing with our problem as “the complement” of
the problem formulated in terms of authorization views is
not natural, and not necessarily easy, since complements of
database views would be involved [20), [21].

According to our approach, the information to be
protected is declared as a secrecy view, or a collection of
them. Their extensions have to be kept secret. Each user or
class of them may have associated a set of secrecy views.
When a user poses a query to the database, the system
virtually updates some of the attribute values on the basis of
the secrecy views associated to that user. In this work, we
consider updates that modify attribute values through null
values, which are commonly used to represent missing or
unknown values in incomplete databases. As a conse-
quence, in each of the resulting updated instances, the
extension of each of the secrecy views either becomes empty
or contains a single tuple showing only null values. Either
way, we say that the secrecy view becomes null. Then, the
original query is posed to the resulting class of updated
instances. This amounts to: 1) posing the query to each
instance in the class. 2} Answering it as usual from each of
them. 3) Collecting the answers that are shared by all the
instances in the class. In this way, the system will return
answers to the query that do not reveal the secret data. The
next example illustrates the gist of our approach.

Example 1. Consider the following relational database D:

Marks | studentID | courseID | mark
001 01 56
001 02 90
002 02 70

The secrecy view V, defined below specifies that a
student with her course mark must be kept secret when
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the mark is less than 60: V,(sid, cid, mark) — Marks(sid,
ctd, mark), mark < 60.!

The view extension on the given instance is V,(D) =
{(001,01,56)}, which is not null. Now, a user subject to
this secrecy view wants to obtain the students’ marks,
posing the following query:

Q(sid, cid, mark) — Marks(sid, cid, mark). (1)

Through this query the user can obtain the first record
Mark(001,01, 56), which is sensitive information. A way
to solve this problem consists in virtually updating the
base relation according to the definition of the secrecy
view, making its extension null. In this way, the secret
information, i.e., the extension of the secrecy view,
cannot be revealed to the user. Here, to protect the tuple
Mark(001,01, 56), the new instance D’ below is obtained
by virtually updating the original instance, changing the
attribute value 56 into NULL.

Marks | studentID | courseID | mark
001 01 NULL
001 02 90
002 02 70

Now, by posing the query about the secrecy view, i.e.,

Qi (sid, cid, mark) — Marks(sid, cid, mark),
mark < 60,

to IV, the user gets an empty answer, ie., now
Vi(D') =@. This is because—in SQL databases—the
comparison of NULL with any other value is not evaluated
as true.

Now, query (1) will get from D’ the first tuple with
NULL instead of 56, which can only be—misleadingly,
expectedly and intendedly—interpreted by the user as an
unknown or missing value for that student in the instance
at hand D (not I, which is fully hidden to the user).

Notice that, among other elements (cf., end of Section 4),
there are two that are crucial for this approach to work:
1) The given database may contain null values and if it has
them or not is not known to the user; and 2) The semantics
of null values, including the logical operations with them.
In this second regard, we can say for the moment and in
intuitive terms, that we will base our work on the SQL
semantics of nulls, or, more precisely, on a logical
reconstruction of this semantics (cf., Sections 2.1 and 2.2).

Hiding sensitive information is one of the concerns.
Another one is about still providing as much information as
possible to the user. In consequence, the virtual updates have
to be minimal in some sense, while still doing their job of
protecting data. In the previous example, we might consider
virtually deleting the whole tuple Marks(001,05,56) to
protect secret information, but we may lose some useful
information, like the student ID and the course ID.
Furthermore, the user should not be able to guess the
protected information by combing information obtained
from different queries.

1. We use Datalog notation for view definitions, and sometimes also for
querics.
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As illustrated above, null values will be used to virtually
update the database instance. Null values and incomplete
databases have received the attention of the database
community [32], [29], [18], [23], [1], and may have several
possible interpretations, for example, as a replacement for a
real value that is nonexistent, missing, unknown, inapplic-
able, and so on. Several formal semantics have been
proposed for them. Furthermore, it is possible to consider
different, coexisting null values. In this work, we will use a
single null value, denoted as above and in the remainder of
this paper, by null. Furthermore, we will treat null as the
NULL in SQL relational databases.

We want our approach to be applicable to, and
implementable on, DBMSs that conform to the SQL
Standard, and are used in database practice. We concentrate
on that scenario and SQL nulls, leaving for possible future
work the necessary modifications for our approach to work
with other kinds of null values. Since the SQL standard
does not provide a precise, formal semantics for NULL, we
define and adopt here a formal, logical reconstruction of
conjunctive query answering under SQL nulls (cf. Sec-
tion 2.2). In this direction, we introduce unary predicates
IsNull and I'sNotNull in logical formulas that are true only
when the argument is, resp. is not, the constant NULL. This
treatment of null values was first outlined in [9], but here
we make it precise. It captures the logics and the semantics
of the SQL NULL that are relevant for our work.? Including
this aspect of nulls in our work is necessary to provide the
basic scientific foundations for our approach to privacy.

In this paper, we consider only conjunctive secrecy views
and conjunctive queries. The semantics of null-based virtual
updates for data privacy that we provide is model-theoretic,
in sense that the possible admissible instances after the
update, the so-called secrecy instances (Sls), are defined and
characterized. This definition captures the requirement that,
on an SI, the extensions of the secrecy views contain only a
tuple with null values or become empty. Furthermore, the
SIs do not depart from the original instance by more than
necessary to enforce secrecy.

Next, the semantics of secret answers (SAs) to a query is
introduced. Those answers are invariant under the class of
Sls. More precisely, a ground tuple £ to a first-order (FO)
query Q(E) is an SA from instance D if it is an answer to
Q(z) in every possible SI for D. Of course, explicitly
computing and materializing all the SIs to secretely answer
a query is too costly. Ways around this naive approach have
to be found.

Actually, we show that the class of Sls, for a given
instance D and set of secrecy views V*, can be captured in
terms of a disjunctive logic program with stable model
semantics [15], [16]. More precisely, there is a one-to-one
correspondence between the Sls and the stable models of
the program. As a consequence, the logic programs can be
used to: 1) compactly specify (axiomatize) the class of Sls;
and 2) compute SAs to queries by running the program on
top of the original instance.

Our work has some similarities with that on database
repairs and consistent query answering (CQA) [3], [5]. In that

2. The main issue in [9] was IC satisfaction in the presence of nulls, for
database repair and CQA [3).
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case, the problem is about restoring consistency of a
database w.r.t. a set of integrity constrains by means of
minimal updates. The alternative consistent instances that
emerge in this way are called repairs. They can be used to
characterize the consistent data in an inconsistent database
as those that are invariant under the class of repairs. It is
possible to specify the repairs of a database by means of
disjunctive logic programs with stable model semantics (cf.,
[5] for references on CQA).

Summarizing, in this paper, we make the following
contributions:

1. We introduce secrecy views to specify what to hide
from a given user.

2. We introduce the virtual Sis that are obtained by
minimally changing attribute values by nulls, to
make the secrecy view extensions null.

3. We introduce the SAs as those that are certain for the
class of Sls. Those are the answers returned to the user.

4. We establish that this approach works in the sense
that the queries about the secrecy view contents
always return meaningless answers; and further-
more, the user cannot reconstruct the original
instance via SAs to different queries.

5. Weprovide a precise logical characterization of query
answering in databases with null values 4 /a SQL.

6. We specify by means of logic programs the Sls of a
database, which allows for skeptical reasoning, and
then, certain query answering, directly from the
specification.

7. We establish some connections between secret query
answering and CQA in databases.

The structure of the remainder of this paper is as follows:

In Section 2, we introduce basic notation and definitions,
including the semantics of conjunctive query answering in
databases with nulls. In Section 3, we introduce the Sls and
investigate the properties of secrecy. Section 4 presents the
notion of SA to a query. Section 5 presents secrecy logic
programs. Section 6 investigates the connection to database
repairs and CQA. Section 7 discusses related work. In
Section 8, we draw conclusions, and point to future work.

2 PRELIMINARIES

Consider a relational schema £ = (U, R, B), where U is the
possibly infinite database domain, with null €U, R is a
finite set of database predicates, and B is a finite set of built-
in predicates, say B = {=, #, >,<}. For an n-ary predicate
R € R, R|i] denotes the ith position or attribute of R, with
1 €i < n. The schema determines a language L(X) of FO
predicate logic, with predicates in R U B and constants in U.
A relational instance D for schema X is a finite set of ground
atoms of the form R(a), with R€ R, and @ a tuple of
constants from U [1].

A query is a formula Q(F) of L(X), with n free variables
Z. D |= Q[f] denotes that instance D makes Q true with the
free variables taking values as in & € Y". In this case, & is an
answer to the query. Q(D) denotes the set of answers to
query Q from D. We will concentrate on conjunctive queries,
that are L(X)-formulas consisting of a possibly empty prefix
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of existential quantifiers followed by a conjunction of
(database or built-in) atoms.

Example 2. Consider the following database instance Dy:

RIA]l B S| B |C
a b b S
c d d g
e | null null |

For the conjunctive query Q(z,z):3Iy(R(x,y) A
S(y, ). it holds, for example, D, | Qifa, f]. Actually,
(DY) = {{a, f), {c,9),{e,3}}. Notice that here, and for
the moment, we are treating null as any other constant in
the domain.

Data will be protected via a fixed set V* of secrecy views
V,. They are associated to a particular user or class of them.

Definition 1. A secrecy view V, is defined by a Datalog rule of
the form

V(@) — Ri(Z1),..-, Ba(Zn), o, (2)

with R; e R,z C ;& and F; is a tuple of variables.?
Formula ¢ is a conjunction of built-in atoms containing
terms, i.e., domain constants or variables,

We can see that a secrecy view is defined by a
conjunctive query with built-in predicates written in L(X).
The conjunctive query associated to the view in (2) is

Q% (%) : IG(Ri(21) A+ A Ru(Ea) A ), )

with 7 = (JZ:) \ £ Conj(Z) denotes the class of conjunctive
queries of L(X), and V(D) the extension of view V, computed
on instance D for £. By definition, V,(D) = Q"(D).

Example 3 (Example 2 Continued). For the given instance
D,, consider the secrecy view defined by V,(z) — R(x,
y),S8(y,z). Here, the data protected by the view are
those that belongs to its extension, namely, V,(D)) =
{{a},{c),{e)}. Sometimes, to emphasize the view pre-
dicate involved, we write instead V.(D,) = {V,(a),
Vi(c), Vi(e)}. The corresponding conjunctive query is
Q% (2): y3=(R(z,y) A S(y, 2)).

Finally, an integrity constraint (IC) is a sentence ¥ of L(X).
D |= ¥ denotes that instance D satisfies 1. For a fixed set Z
of ICs, we say that D is consistent when D = Z, i.e., when D
satisfies each element of I.

For both of the notions of query answer and IC
satisfaction above we are using the classic concept of
satisfaction of predicate logic, denoted with |= . According
to it, the constant null is treated as any other constant of
the database domain. We will use this notion at some
places. However, to capture the special role of null among
those constants, as in SQL databases, we will introduce
next a different notion, denoted with =, . In Example 2,
under the new semantics, and due to the participation of
null in join, the tuple {e, 7} will not be an answer anymore,

3. We will frequently use Datalog notation for view definitions and
queries. When there is no possible confusion, we treat sequences of
variables as set of variables. That is, xq,...,x, as {x,..., 7.}
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ie, Dy, Qile,j]. The two notions, & and f,, will
coexist and also be related (cf., Section 2.2).

2.1 Null Value Semantics: The Gist

In [12]), Codd proposed a three-valued logic with truth
values true, false, and unknown for relational databases with
NULL. When a NULL is involved in a comparison operation,
the result is unknown. This logic has been adopted by the
SQL standard, and partially implemented in most common
commercial DBMSs (with some variations). As a result, the
semantics of NULL in both the SQL standard and the
commercial DBMSs is not quite clear; in particular, for IC
satisfaction in the presence of NULL.

The semantics for IC satisfaction with NULL introduced in
[9), [10] presents an FO semantics for nulls in SQL databases.
It is a reconstruction in classical logic of the treatment of
NULL in SQL DBs. More precisely, this semantics captures
the notion of satisfaction of ICs, and also of query answering
for a broad class of queries in relational databases. In the
remainder of this section, we motivate and sketch some of
the elements of the notion of query answer that we will use
in the remainder of this work. The details can be found in
Section 2.2. In the following, we assume that there is a single
constant, null, to represent a null value.

A tuple ¢ of elements of U is an answer to query Q(E),
denoted D [y Q(E), if the formula (that represents) Q is
classically true when the quantifiers on its relevant variables
(attributes) run over (U \ {null}); and those on of the
nonrelevant variables run over U. The free relevant
variables cannot take the value null either. For a precise
definition, see Section 2.2 (and also [9], [10)).

Example 4. Consider the instance D, and query below:

R A B C S B
1 1 1 null
2 null | null 1
null 3 3 3
Qa(x) : y32(R(x,y,2) A S(y) Ay > 2). (1)

A variable v (quantified or not) in a conjunctive query
is relevant if it appears (nontrivially) twice in the formula
after the quantifier prefix [9]. Occurrences of the form
v = null and v # null do not count though. In query (4),
the only relevant quantified variable is y, because it
participates in a join and a built-in in the quantifier-free
matrix of (4). So, there are two reasons for y to be
relevant. The only free variable is z, which is not
relevant. As for query answers, the only candidate
values for z are: null, 2, 1. In this case, null is a candidate
value because z is a nonrelevant variable.

First, z = null is an answer to the query, because the
formula 3y32(R(zx,y, 2) A S(y) Ay > 2) is true in Dy, with
a nonnull witness value for y and a witness value for 2
that combined make the (nonquantified) formula true.
Namely, y = 3,z = 3. So, it holds D; [y Qafnull].

Next, z = 2 is not an answer. For this value of z,
because the candidate value for y, namely, null that
accompanies 2 in P, makes the formula (R{z,y,z)A
S(y) Ay > 2) false. Even if it were true, this value for y
would not be allowed.

Finally, x =1 is not an answer, because the only
candidate value for y, namely 1, makes the formula false.
In consequence, null is the only answer.

This notion of query answer coincides with the classic
FO semantics for queries and databases without null values
[9], [10]. The next example with SQL queries and NULL
provides additional intuition and motivation for the formal
semantics of Section 2.2. Notice the use in logical queries of
the new unary predicates IsNull and IsNotNull that we also
formally introduce in Section 2.2.

Example 5. Consider the schema S = {R(A, B)} and the
instance in the table below. In it NULL is the SQL null. If
this instance is stored in an SQL database, we can
observe the behavior of the following queries when they
are directly translated into SQL and run on an SQL DB:

R A B S B C
a b b h
a ¢ NULL | s
d NULL 1 m
d e
u u
A NULL
A r
NULL | NULL

(a) Ql(xv y): R(z,y) A y=null
SQL: select * from R where B = NULL;
Result: No tuple
() Qi(x,3) : Riz,y) A IsNull(y)
SQL: Now uses IS NULL
Result: {d, NULL}), {v,NULL), (NULL, NULL)
©) QA y): R(z,y) Ay # null
SQL: select * from R where B <> NULL;
Result: No tuple
(d) Q(z,y): R(z,y) AIsNotNull(y)
SQL: Now uses IS NOT NULL
Answer: The five expected tuples
() Qs(z,y): Rz, y) Az =y
SQL: Select * from R where A = B;
Result: {(u,u)
(f) Q-l(my y) : R(.’E, y) Az # Y
SQL: Select * from R where A <> B;
Result: Four tuples: {a, b), (a,c}, {d,e), {v,1)
(8) QS(Iv ¥, z) : R(.’l), -'/) A R(JL‘, 2) Ay 75 2
SQL: Select * fromR rl, R r2 where
rl.A=r2.Aandrl.B <> r2.B;
Result:{a, b, a,c), (a,c,a,b)
(h) Qli($’y, 2, t) : R(""y y) A S(Z, t) Ay==z
SQL:select * fromRrl, S sl
where rl.B = s1.B;
Result: {a,b,b,h)
(i) SQL: select * fromR rl join S sl
onrl.B=s8l.B;
Result:* (a,b,b, )

4. The same result is obtained from DBMSs that do not require an
explicitly equality together with the join.
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() Qi(z,y,2,t) : R(z, ) AS(2,t) Ny # 2
SQL: Select R1.A, R1.B, S1.B, S1.C
fromRR1l, S S1 where R1.B <> S1.B*;
Result: {a,c,b,h}, {d,e, b, h}, (u,u,b,h}, {v,r,b,h),
{a,b,1,m}, {a,c,1,m), {d,e,l,m), {u,u,],m}, {v,r,],m).

2.2 Semantics of Query Answers with Nulls

Here, we introduce the semantics of FO conjunctive query
answering in relational databases with null values.’ More
precisely, in SQL relational databases with a single null
value, null, that is handled like the SQL NULL. The SQL
queries are first reconstructed as queries in the FO language
L(Z"™") associated to £ = (U, R, B™"), with B™" = Bu
{IsNull(-), IsNotNull(-)}. The last two are new unary built-
in predicates that correspond to the SQL predicates IS
NULL and IS NOT NULL, used to check null values. Their
intended semantics is as follows (cf., Definition 4):
IsNull(null) is true, but fsNull(c) is false for any other
constant ¢ in the database domain. And, for any constant
d € U, IsNotNull(d) is true iff IsNull(d) is false.

Introducing these predicates is necessary, because, as
shown in Example 5, in the presence of NULL, SQL treats IS
NULL and IS NOT NULL differently from = and #, resp.
For example, the queries Q(z) : Iy(R(x,y) A IsNull(y)) and
Q'(z): Iy(R(z,y) A y = null) are both conjunctive queries of
L(Z™™M), but in SQL relational databases, they have different
semantics.

In Example 5, each query Q is defined by the formula ¢
on the right-hand side. Below, we will identify the query
with its defining FO formula. Furthermore, we exclude
from the SQL-like conjunctive queries those like (a) and (c)
in Example 5.

Definition 2. (@) The class Cons¥(Z"") contains all the
conjunctive queries in L(E™") of the form

Q(J_') : ay(Al(jl)A"'AAn(jn))w (5)

where §CU; %, E= (U, %)\ and the A; are atonis

containing any of the predicates in R U B™" plus terms, i.e.,

variables or constants in U. Furthermore, those atoms are

never of the form t = null, null = ¢, ¢t # null, null # t, with

t a term, null or not.

(b) With Conj(Z™V) we denote the class of all conjunctive
queries of the form (4), but without the restrictions on
(imequality atoms imposed on Cong*'(Z™"),

The idea here is to force conjunctive queries 4 la SQL,
i.e., those in Conj(Z™"), that explicitly mention the null
value in (in)equalities, to use the built-ins InNull or
IsNotNull. Notice that the class Conj(E™") includes both
Con(Z"") and Conj(L).

Definition 3. Consider a query in Conj(Z™V) of the form
Q(E) : Jgy(x,5), with 3§ a possibly empty prefix of
existentinl quantifiers, and  is a quantifier-frec conjunction
of atoms. A variable v is relevant for Q [10] if it occurs at
feast twice in +, without considering the atoms IsNull(v),
IsNotNull(v), v@null, or nullv, with 8¢ B. VR(Q)
denotes the set of relevant variables for Q.

5. This semantics can be extended to a broader class of queries and also
to IC satisfaction. It builds upon a similar and more general semantics first
introduced in (9] and (10).

991

For example, for the query Q(x) : Iy(P(x,y,2) AQ(y) A
IsNull(y)), V#(Q(z)) = {y}, because y is used twice in the
subformula P(x,y, 2) A Q(y).

As usual in FO logic, we consider assignments from the
set, Vur, of variables to the underlying database domain U
(that contains constant null), i.e., s:Var - U. Such an
assignment can be extended to terms, as 3. It maps every
variable x to s(z), and every element ¢ of ¥ to c. For an
assignment s, a variable y and a constant ¢, s¥ denotes the
assignment that coincides with s everywhere, possibly
except on y, that takes the value ¢. Given a formula v, ¥{s]
denotes the formula obtained from ¥ by replacing its free
variables by their values according to s.

Now, given a formula (query) x and a variable assign-
ment function s, we verify if instance D satisfies x[s] by
assuming that the quantifiers on relevant variables range
over (U \ {null}), and those on nonrelevant variables range
over U. More precisely, we define, by induction on x, when D
satisfies x with assignment s, denoted D = x[s].

Definition 4. Let x be a query in Conj(Z"™"), and s an
assignment. The pair D, s satisfies x under the null-semantics,
denoted D =, x|s], exactly in the following cases: (below
t,ty,... are terms; and z,,, xo variables)

1. a) D, IsNull(t)s], with s(t) =null. b) Dk,
IsNotNull(t)[s], with s(t) # null.

2. DI, (4 <t2)[s], with 3(t)) # null £ 5(t2), and
5(ty) < &(ty) (similarly for > ).

3. a) DE, (zx=0c)s], with s(x)=ce U\ {null}).
(or symmetrically).

b) D, (&) = 22)[s], with s(x)) = s(x2) # nuil.

¢) DE, (c=c)[s), with c€ U\ {null}).

4. a) DE,(z#c)s] with null #s(z)# ce€
U\ {null}). (or symmetrically).

b) DE,(a #c)sl, with ¢ #£¢, and o,z €
U\ {null}).

5. Dk, R(ti,...,tz)|s], with R€ R, and R(5(t,), ...,
&(t.)) € D.

6. D |, (o A P)[s), with o, 8 quantifier-free, s(y) # null
for every y € Vi(a AB), and D |5, als) and D |, Bls).

7. D, (3y a)ls] when a) if y€ V*(a), there is ¢ in
U\ {nudl}) with D |=, alsY; or b} if y € V*(a), there is ¢
in U with D |, afsY.

This semantics can be applied to conjunctive queries in
ConjV(£™V), The notion of relevant attribute and this
semantics of query satisfaction can be both extended to
more complex formulas. In particular, they can be applied
also to the satisfaction of ICs under SQL null values [10], [9].
Definition 5 [10]. Let Q(Z) : 3gy(Z, §) be a conjunctive query

in Conj(Z"M), with £ = zy,...,n.

(a) A tuple {c,...,c,} U™ is an answer from D
under the null query answering semantics to Q, in short,
an N-answer, denoted D =, Qley, ..., c.], iff there exists an
assignment s such that s(zi) =¢;, for i=1,...,n; and

D, Gy d)s)

6. Of course, when there is an order relation on Y.

7. Here, we use the symbols = and # both at the object and the
metalevels, but there should not be a confusion since valuations are
involved.



(b) Q¥ (D) denotes the set of N-answers to Q from instance

D. Similarly, V¥(D) denotes a view extension according to

the N-answer semantics: V¥(D) = (Q")¥(D).

(c) If Q is a sentence (boolean query), the N-answer is yes
iff D, Q, and no, otherwise.

Notice that D |=, (37)[s] in (a) above requires, accord-
ing to Definition 4, that the variables in the existential prefix
33 that are relevant do not take the value null. The free
variables z; in Q(Z) may take the value null only when they
are not relevant in the query. Example 4 illustrates this
definition. In it, since the free variable z is not relevant,
QY(Dy) = {(null)}. Similarly, in Example 2, it holds:
Q{"(Dl) = {{a, f), (e, D} C Qi(Dn).

Actually, it is easy to prove that, for queries in
Conj(Z™"), it holds in general: Q¥(D) C Q(D). Further-
more, the N-query answering semantics coincides with
classical FO query answering semantics in databases with-
out null values [10], [9]). More precisely, if nul! ¢ U (and then
it does not appear in D or Q either): D =, Q[f] iff D |= Q[f).

Furthermore, every conjunctive query in Conj(E™") can
be syntactically transformed into a new FO query for which
the evaluation can be done by treating null as any other
constant [10), [9]). (A similar transformation will be found in
Proposition 1 below.)

More precisely, a conjunctive query Q(z) € Conj(X™"),
i.e.,, of the form (5), can be rewritten into a classic
conjunctive query, as follows:

QU(E) : (AR A AA(E) A\ v null). (6)
vV (Q)

Itholds D |z, Qf¢] iff D= Q™|[é). Here, on the right-hand
side, we have classic FO satisfaction, and null is treated as
an ordinary constant in the domain. This transformation
ensures that relevant variables range over (U \ {nuil}).
Query Q™(Z) belongs to Conj(=™"), and it may contain
atoms of the form IsNull(t) or IsNotNull(t). However,
replacing them by ¢ =null or t # null, resp., leads to a
query in Conj(Z) that has the same answers as (6) (under
the same classic semantics).

Example 6 (Example 4 Continued). Query Q in (4) can be
rewritten as
QY 3Pz, y, ) A QY Ay >2Ay#nudl). We
had D [£, Qs[1]. Now also D £ 3y32(P(L,y,2) A Q(y) A
¥ > 2 Ay # null) under classic query evaluation, with
null treated as an ordinary constant. Similarly, D
Q7"[2] due to the new conjunct y = null. Finally, D }=
Q7°[null] because D |= (P(null,3,3) AQ(B)A3 >2A3 #
null). Since null is treated as any other constant, we can
compare it with 3. By the unique names assumption, it
holds null # 3.

Although our framework provides a precise semantics for
conjunctive queries in Conj(X) or Conj(Z""!), in both cases
possibly containing (in)equalities involving nudl, a usual
conjunctive query in SQL should be first translated into a
conjunctive query Q in Con™!(Z"") if we want to retain its
intended semantics. After that @™ can be computed.
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3 SECRECY INSTANCES

In this work, we will make use of null to protect secret
information. The basic idea that we develop in this and the
next sections is that the extensions of the secrecy views,
obtained as query answers, should contain only the tuple
with nulls or become empty. In this case, we will say that the
view is null.

Definition 6. A query Q(&) is null on instance D if V(D) C
{(null,...,null)} (with the tuple inside with the same length as
z). Aview V(&) is null on D if the query defining it is null on D.

Example 7 (Example 4 Continued). Consider the secrecy
view V,(z) — R(z,y,2), S(y),y > 2. Its corresponding FO
query Q%(z) in the one in (4), namely

Qa(x) : Jy32(R(z,y,2) AS(Y) Ay > 2).

Under the semantics of secrecy in the presence of null,
we expect the view to be null. This requires the values for
attribute A associated with variable z in Q, to be null, or
the values in B associated with variable y in Q, to be
null, or the negation of the comparison to be true. These
three cases correspond to the three assignments of
Example 4. Thus, the view extension is V,(D,) =
{{null)}, which shows that the view is null on D,.

In this example, we are in an ideal situation, in the sense
that we did not have to change the instance to obtain a
“secret answer.” However, this may be an exceptional
situation, and we will have to virtually “distort” the given
instance by replacing—as few as possible—non-null attri-
bute values by null. More generally, since it does not
necessarily holds that each secrecy becomes null on an
instance D at hand, the view extensions will be obtained
from an alternative, possibly virtual, version I’ of D that
does make each of those views null. In this sense, D’ will be
an admissible instance (cf., Definition 7 below). At the same
time, we want D’ to stay as close as possible to D (cf,,
Definition 11 below). Since there may be more that one such
instance D', we query all of them simultaneously, and
return the certain answers [18) (cf., Definition 12 below). Each
of the query and view evaluations is done according to the
notion of N-answer introduced in Section 2.2.

First, we define the instances that make the secrecy views
empty or null.

Definition 7. An instance D for schema T is admissible for a
set V* of secrecy views of the form (2) if under the N-answer
semantics (cf., Definition 5), each V,(D) is empty or in all its
tuples only null appears. Admiss(V°) denotes the set of
admissible instances.

As Example 7 shows, D, is admissible for the given view.
It also shows that there are some attributes that are
particularly relevant for the view to be null, A and B in
that case. In the following, we make precise this notion of
secrecy-relevant attribute (cf., Definition 8(d) below). Before
we used (plain) “relevance” associated to variables for
query answering under nulls. Not surprisingly, the new
notion is based on the previous one. This will allow us to
provide an alternative and more operational characteriza-
tion of SIs (cf.,, Proposition 1 below).

Definition 8. Consider a view V, defined as in (2).
(a) For R € R in the body of (2) and a term ¢ (i.e., a variable
or constant), pos(V,,t) denotes the set of positions in R
where t appears in the body of V,’s definition.
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(b) The set of combination attributes for V; is

C(V,) = {R[i] | for a relevant variable v, i € pos®(V,, v)}.

(c) The set of secrecy attributes for V, is S(V;) = { R[i]|
for an x in V,(Z) in (2), i € pos®(V,,v)}.

(d) The set of s-relevant attributes® for a secrecy
view V, are those (associated to positions) in the set
A(V,) = C(V))uS(Vs)-

Combination attributes for a secrecy view V. are those
involved in joins or built-in predicates (other than built-ins
with explicit null). Secrecy attributes are those appearing in
the head of V,’s definition, and accordingly, collect the
query answers, which are expected to be secret. Hence,
“secrecy attributes.” They correspond to the free variables
in the associated query Q%.

Example 8 (Example 7 Continued). Consider again the
secrecy view V,(z) — R(z,y,2), S(y),y > 2. Here C(V;) =
{R]2), S[1]}, because y is the only relevant variable; and
S(V,) = {R[1]}, because =z is the only free variable. In
consequence, A(V,) = {R[1], S[1], R[2]}. Atiribute C, i.e.,
R[3), is not s-relevant. Actually, its value is not relevant
to obtain the view extension.

The following proposition provides a characterization of
admissible instance for a set of secrecy of views in terms of
classic FO satisfaction (cf., [24, Proposition 1]). In it we use
the notation D = « for the classic notion of satisfaction by an
instance D of FO formula +, where null is treated as any
other constant.

Proposition 1. Let V° be a set of secrecy views, each of whose
elements V, is of the form (2), and has an expression Q*(z) :
G(AL-, Ri(&:) A @) as a conjunctive query. For an instance
D, D € Admiss(V®) iff for each V, € V*, D | Null-V*, where
Null-V* is the following sentence associated to Q":

n
V(/\R,-(z,»)—» V  v=nulv
i=1 velJ' s nev)

u=nullv -w(p).
welJ snsva

In the theorem, V denotes the universal closure of the
formula that follows it; and v e (U] & NC(V;)) indicates
that variable » appears in some of the atoms R;(;) and in a
combination attribute, and so on.

Sentence Null-V* in (7) originates in the FO rewriting
(@")™ as in (6) of the query Q" asscciated to V*, and the

requirement that the latter becomes null on D.

Example 9 (Example 8 Continued). According to the above
definition, to check whether the database instance D, is
admissible, the following must hold:

Dy E VaVyVz(R(z,y,2) AS(y) — z=null v
y=null v y<2).

8. For distinction from the notion of relevant attribute/variable used in
Sections 2.1 and 2.2
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When checking sentence on D., null is treated as any other
constant. Notice that the values for the non-s-relevant
attributes do not matter.

For x =1,y =1, the antecedent of the implication is
satisfied. For these values, the consequent is also satisfied,
because y =1 < 2. For x = 2,y = null, the consequent is
satisfied since y is null. For z = null, y = 3, the antecedent
is satisfied. For these values, the consequent is also satisfied,
because nuil = null is true. So, Dy [y @', and instance D,
is admissible,

The next step consists in selecting from the admissible
instances those that are close to the database we are
protecting. This requires introducing a notion of distance or
an order relationship between instances for a same schema.
This would allow us to talk about minimality of change.
Since, to enforce privacy on an instance D, we will virtually
change attribute values by null, the comparison of instances
has to take this kind of changes and the presence of nuil in
tuples into account. Intuitively, an SI for D will be
admissible and also minimally differ from D.

Definition 9. (a) The binary relation C on the database domain
U, is defined as follows: cC d iff ¢ = null and d # null. Its
reflexive closure is C .

(b) Fort; = {c1,...,co) and by = {dy,...,dn) inU": {; C
Liffci Cd; foreachie (1,...,n}. Also, L Ch iff t, C Lo
and t-| # f_g.

This partial order relationship £, C #; indicates that {, is
less or equally informative than . For example, tuple
(a,null) provides less information than tuple (a,b). Then,
(a, null) C (a, b) holds.

To capture the fact that we are just modifying attribute
values, but not inserting or deleting tuples, we will assume
(sometimes implicitly) that database tuples have tuple
identifiers. More precisely, each predicate has an additional,
first, attribute 7D, which is a key for the relation, and whose
values are taken in IN and not subject to changes. In
consequence, tuples in an instance D will be of the form
R(k,f), with k € IN, and f € U", and R € R is, implicitly, of
arity n + 1. Below, we will consider only instances D that
are correlated to D, i.e., there is a surjective function x from D
to I, such that x(R(k,{)) = R(k,?), for some . This
mapping respects the predicate name and the tuple
identifier. We say that I is D-correlated (via ). In the
remainder of this section, D is a fixed instance, the one under
privacy protection. We will usually omit tuple identifiers.

Definition 10. (a) For database tuples Ry(ki,t), Ra(ks,?2):

Ry(k1, 1) C Ro(ka, &2) iff Ry = Ry, ky = ky, and t, C t.

(b) For instances Dy,Dy: Dy C Dy iff for cvery tuple
Rl(k1 ,_fl) €D, there is a tup!c Rg(kg,t-g) with Rg(k, t-g) c
Ry(k, t,).

(c) For D-correlated instances Dy, Dy: Dy <p Dy iff: §)
DD, C D, and ii) D, C Dy. As usual, Dy <p Dy iff
Dy <p Dj, but not D; <p D).

Notice that the condition (c-i). for the partial order <,
forces D and D; to be obtained from D by updating
attribute values by null. Condition (c-ii). inverts the partial
order C between tuples (and between instances). The
reason is that we want Sls to be minimal w.r.t. the set of
changes of attributes values by nulls (as customary for
database repairs [5]). Informally, when D, <p D;, D, is
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obtained from D, in comparison with D, via “less”
replacements of values by nulls, and then is close to D.

Definition 11. An instance D, is an SI for D w.r.t. a set V' of
secrecy views iff: a) D, € Admiss(V*), and b) D, is < -
minimal in the class of D-correlated database instances that
satisfy (n). (i.e., there is no instance IV in that class with
D' <p D,.) Sec(D,V*) denotes the set of all the Sls for D
w.r.t V.

Notice that an SI nullifies all the secrecy views, is
obtained from D by changing attribute values by null, and
the set of changes is minimal w.r.t. set inclusion.”

Example 10. Consider the instance D = {P(1,2), R(2, 1)} for
schema R = {P(4, B), R(B,C)}. With tuple identifiers
(underlined), it takes the form D = {P(1,1,2), R(1,2, 1)}.
Consider also the secrecy view:'®

Vi(z, 2) — P(z,y), R(y,2), y < 3.

D itself is not admissible (it does not nullify the secrecy
view), and then it is not an SI either. Now, consider the
following alternative updated instances D;:

Dl P(l) nuu’ 2)1 R(L 2’ nu”)}
D, { P(.l.'.y 1, null), R(lv 2, l)}
Ds { P(.l.: l) 2)v R(ly n“u, I)}
D4 { P(lv 11 null), R(l, nuu’ 1)}

For example, for D, the set of changes can be identified
with the set of changed positions: U, = { (1], R[2]} (ID has
position 0). The D; are all admissible, that is (cf., (7)):

D; |= VaVy¥( Pz, y) A Ry, 2) —
(y=nullv(z=nullAz=null) vy >3).

Dy, D;, and Dj are the only three Sls, i.e., they are <p -
minimal: The sets of changes U, U» = {P[2]}, and U3 =
{R[1]} are all incomparable under set inclusion. D, is not
minimal, because U; = {P[2], R[1]} Z U;, which is also
reflected in the fact that P(L, 1, nuil) T P(}1,1,2); and then,
Dy <p Dy.

4 PRIVACY PRESERVING QUERY ANSWERS

Now, we want to define and compute the SAs lo queries
from a given database D that is subject to privacy
constraints, as represented by the nullification of the secrecy
views. They will be defined on the basis of the class of Sls
for D. This class will be queried instead of directly querying
D. In this sense, we may consider the class of Sls as
representing a logical database, given through its models. In
such a case, the intended answers are those that are true of
all the instances in the class, and become the so-called
certain answers [18].

Definition 12. Let Q(z) € Conj(="™"). A tuple ¢ of constants
inU is an SA to Q from D w.r.l. a set of secrecy views V* iff

9. As opposed to minimizing the cardinality of that set. For a discussion
of different forms of “repairs” of databases, cf., [5].

10. It would be easy to consider tuple ids in queries and view definition,
but they do not contribute to the final result and will only complicate the
notation. So, we skip tuple ids whenever possible.

¢ € Q(D,) for each D, € Sec(D,V*). SA(Q, D, V") denotes
the set of all SAs.

Example 11 (Example 10 Continued). Consider the query
Q(x, 2) : 3y(P(x,y) A R(y, z) Ay < 3). According to Defi-
nition 5, it holds QV(D,) = {(null, null)}, Q¥(D,) =9,
and QY (D3) = . These answers can also be obtained by
first rewriting Q, as in (6), into the query Q™(z,2):
Iy(P(x,y) ARy, z) Ay < 3Ay # null), which can be
evaluated on each of the SIs treating null as any other
constant.

We obtain SA(Q,D, {V;}) = @¥(D)) n @¥(Dy)n
Q" (Dy) = 0. This is as expected, because in this example,
Q is Q%, the query associated to the secrecy view.

The idea behind answering queries from the Sis for D is
that the answers are still close to those we would have
obtained from D (because Sls are maximally close to D).
Furthermore, since all the secrecy views become null on the
Sls, the answers returned to any query, not necessarily to a
secrecy view computation, will take this property into
account. In the query answering part, we are using a skeptical
or cautious semantics, that sanctions as true what is simulta-
neously true in a whole class of models, or instances in our
case (the SIs). Now, we analyze to what extent this approach
does protect the sensitive data. A restricted user may try to
pose several queries to obtain sensitive information.

Example 12. Consider instance D = {P(1,2), P(3,4),
R(2,1), R(3,3)} for schema R = {P(A,B),R(B,C)},
and the secrecy view V(z,z) — P(z,y), R(y, 2). In this
case, V¥(D) = {{1,1)}. D has the following Sls:

Dy | {P(null,2), P(3,4), R(2, null), R(3, 3)}

D, {P(l,null),P(3,4),R(2,1),R(3,3)}
D; | {P(1,2), P(3,4), R(null, 1), R(3,3)}

The user may pose the queries Q(z,y): P(z,y) and
Qs(z,y) : R(z,y), trying to reconstruct D. It holds @ (D,) =
{(nult,2), 3,4)}, Q(D2) = {(1,null), (3,4)}, QY (Dy) =
{(1,2), (3,4)}. Then, SA(Q, D, {V.}) = {{3,4)}. Now,

Q' (D1) = {(2,null), (3,3)}, Q' (Dy) = {{2,1),(3,3)},
Qév(D'I) = {(nullv 1)! (3’ 3)}
Then, SA(Q,, D, {V.}) = {{3,3)}.
By combining the SAs to @, and Q», it is not possible to
obtain V¥(D). For the user who poses the queries Q; and
Qs, the relations look as follows:

PlA]B R|IB|C
3[4 313

Now, we establish in general the impossibility of
obtaining the contents of the secrecy views through the
use of SAs to atomic queries (as in the previous example).
Open atomic queries are the “broader” queries we may ask;
other queries are obtained from them by conjunctive
combinations.

Definition 13. Let V* be a set of secrecy views V,. The secrecy
answer instance for V* from D is Dy. = {R(c)|R € R and
g€ SA(R(%), D,V)}.
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Here, we are building a database instance by collecting
the SAs to all the atomic queries of the form Q(Z) : R(z),
with R € R. This instance has the same schema as D.

Example 13 (Example 12 Continued). Consider the secrecy
view Vi(z,2) — P(z,y), R(y,z). It holds: Dy, =
{P(3,4)} U{R(3,3)} = {P(3,4), R(3,3)}. Notice that

3
V¥(Dy,y) =0 = SAQ", D, {V.}) =((@")"(Dy)
i=1

= {{null,null)} NONQ.

Proposition 2. For every V, of the form (2) in V", SA(Q",
D, va) = Vv(DV')

This proposition tells us that by combining SAs to
queries, trying to reconstruct the original instance, we
cannot obtain more information that the one provided by
the SAs (cf., [24, Proposition 2] for a proof).

The original database D may contain null values, and
users have to count on that. A restricted user will receive as
query answers the SAs, which are defined and computed
through null values. This user could obtain nulls from a
query, and hopefully he will not know if they were already
in D or were (virtually) introduced for privacy purposes.
This is fine and accomplishes our goals. However, as long
as the user does not have other kind of information.

Example 14. Consider the instance D = {P(1,1)}, and the
secrecy view V,(z) — P(z,y),x = 1. D has only one SI D,:

P A B
null | 1

For the query Q(z) : y(P(x,y) A« = 1) associated to the
secrecy view, the secrecy answer to Q(x) on D is . Now,
the secrecy answer to Q'(x) : 3yP(x,y) is {{(null)}. A user
who receives this answer will not know if the null value
was introduced to protect data.

However, if the user knows from somewhere else that
there is an SQL's NOT NULL constraint or a key constraint on
the first attribute, and that it is satisfied by D, then he will
know that the received null was not originally in D.
Furthermore, that it is replacing a non-null value. If he also
knows that there is exactly one tuple in the relation (a
COUNT query), and also the secrecy view definition, he will
infer that (1) € VN(D).

In summary, for our approach to work, we rely on the
following assumptions:

1. The user interacts via conjunctive query answering
with a possibly incomplete database, meaning that
the latter may contain null values, and this is
something the former is aware of, and can count
on (as with databases used in common practice). In
this way, if a query returns answers with null values,
the user will not know if they were originally in the
database or were introduced for protection at query
answering time.

2. The queries request data, as opposed to schema
elements, like ICs and view definitions. Knowing the
ICs (and about their satisfaction) in combination
with query answers could easily expose the data
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protection policy. The most clear example is the one
of a NOT NULL SQL constraint, when we see nulls
where there should not be any.

3. In particular, the user does not know the secrecy
view definitions. Knowing them would basically
reveal the data that is being protected and how.

These assumptions are realistic and make sense in many
scenarios, for example, when the database is being
accessed through the web, without direct interaction with
the DBMS via complex SQL queries, or through an
ontology that offers a limited interaction layer. After all,
protecting data may require additional measures, like
withholding from certain users certain information that
is, most likely, not crucial for many applications. From
these assumptions and Proposition 2, we can conclude that
the user cannot obtain information about the secrecy views
through a combination of SAs to conjunctive queries.
Therefore, there is not leakage of sensitive information.

5 Sils and LoGIic PROGRAMS

The updates leading to the SIs should not physically change
the database. Also, different users may be restricted by
different secrecy views. Rather, the possibly several Sls
have to be virtual, and used mainly as an auxiliary notion
for the SA semantics. We expect be able to avoid computing
all the SIs, materializing them, and then cautiously
querying the class they form. We would rather stick to the
original instance, and use it as it is to obtain the SAs.

One way to approach this problem is via query
rewriting. Ideally, a query Q posed to D and expecting
SAs should be rewritten into another query Q. This new
query would be posed to D, and the usual answers returned
by D to Q' should be the SAs to Q. We would like Q' to be
still a simple query, that can be easily evaluated. For
example, if @ is FO, it can be evaluated in polynomial time
in data. However, this possibility is restricted by the
intrinsic complexity of the problem of computing or
deciding SAs, which is likely to be higher than polynomial
time in data (cf., Section 6). In consequence, @ may not
even be an FO query, let alone conjunctive.

An alternative approach is to specify the SIs in a compact
manner, by means of a logical theory, and do reasoning
from that theory, which is in line with skeptical query
answering. This will not decrease a possibly high intrinsic
complexity, but can be much more efficient than computing
all the SIs and querying them in turns. With respect to the
kind of logical specification needed, we can see that secret
query answering (SQA) is a nonmonelonic process.

Example 15. Consider D = {P(a)}, the secrecy view
V(z) — P(z), R(z), and the query Q: Ans(z) — P(z).
Here, V(D)=0, and then, D itself is its only SL
Therefore, SA(Q, D,{V}) = {{a)}.

Let us update D to D, = {P(a), R(a)}. Now, V(D) =
{{a)}. The SIs for D, are D;={P(null),R(a)} and
D{ = {P(a), R(null)}. It holds, Q(D})= {{null)} and
(DY) = {{a}}. Then, SA(Q, Dy, {V}) = 0. The previous
SA is lost.

The nonmonotonicity of SQA requires a nonmonotonic
formalism to logically specify the SIs of a given instance.
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Actually, they can be specified as the stable models of a
disjunctive logic program, a so-called secrecy progrant.

Secrecy programs use annotation constants with the
intended, informal semantics shown in the table below.
More precisely, for each database predicate Re R, we
introduce a copy of it with an extra, final attribute (or
argument) that contains an annotation constant. So, a tuple
of the form R(#) would become an annotated atom of the
form R(t, a)." The annotation constants are used to keep
track of virtual updates, i.e., of old and new tuples:

Annotation | Atom The tuple R(@) ...
u R(a@',u) | is being updated
bu R(di,bu) | has been updated
t R(a,t) is new or old
] R(a,s) stays in the secrecy instance

In R(a, bu), annotation bu means that the atom R(a) has
already been updated, and u should appear in the new,
updated atom, say R(@’,u). For example, consider a tuple
R(a,b) € D. A new tuple R(a, null) is obtained by updating
b into null. Therefore, R(a,b,bu) denotes the old atom
before updating, while P(a,null,u) denotes the new atom
after the update.

The logic program uses these annotations to go through
different steps, until its stable models are computed. Finally,
the atoms needed to build an SI are read off by restricting a
model of the program to atoms with the annotation s. As
expected, the official semantics of the annotations is captured
through the logic program; the table above is just for
motivation. In Section 5.1, we provide the general form of
(D, V*), the secrecy logic program that specifies the Sls for an
instance D subject to set of secrecy views V*. The following
example illustrates the main ideas and issues.

Example 16 (Example 10 Continued). Consider R =
{P(A,B), R(B,C)}, D={P(1,2), R(2,1)} and the
secrecy view V.(z,z) — P(x,y), R(y, z),y < 3.

The SI program II(D, {V,}) is as follows:

1. P(1,2). R(2,1). (initial database)

2. P(null,y,n) V P(z,null,n) v R(null, z,u)
— P(z,y,t), R(y, 2, t), ¥ < 3,y # null, auz(z, 2).
R(y,null,u) v P(z,null,u) V R(null, z,u)
— P(z,y,t), R(y, 2, t),y < 3,y # null, auz(z, 2)
aux(x, z) — Pz, y,t), R(y, 2, t),y < 3,z # null.

auz(z, z) — P(z,y,t), R(y, 2,t),y < 3,2 # null.
3. P(z,y,bu) — P(z,y,t), R(y,2,t),y < 3,y # null,
auz(z, z), P(null, y,u),x # null.
R(y$ z,bu) — P(.’B,][,t), R(y, 2, t),y < 3,y # null,
auz(x, z), R(y, null,u), z # null.
P(z,y,bu) — P(z,y,t), R(y, 2,t),y < 3,y # null,
auzx(z, 2), P(x, null, u).
R(ya 2, bu) - P(II!, #t), R(y, 2, t)v ¥ <3,y # null,
aux(z, z), R(null, z, u).
4. P(z,y,t) — P(z,y).P(z,y,t) — P(z,y,u).
R(z,y,t) — R(z,y).R(z,y,t) — R(z,y,u).
5. P(z,y,8) — P(z,y,t),not P(z,y, bu).
R(z,y,8) — R(z,y,t),nolR(z,y,bu).

11. We should use a new predicate, for example, #, but to keep the
notation simple, we will reuse the predicate. We alse omit tuple ids.
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The facts in “1.” belong to the initial instance D, and
become annotated right away with t by rules “4.” The
most important rules of the program are those in “2.”
and “3.” They enforce the update semantics of secrecy
in the presence of null and using nuil. Rules in “2.”
capture in the body the violation of secrecy (i.e., a non-
null view contents); and in the head, the intended way
of restoring secrecy: We can either update a combina-
tion of (combination) attributes or single secrecy
attributes with null. In this example, we need to
update, with null, values in attribute B or in attributes
A and C, simultaneously.

Since disjunctive programs do not allow conjunctions
in the head, the intended head (P(null, z) A P(y, null)) v
P(z,null) v Q(null, z) ~— Body is represented by means
of two rules, as in “2.” above: P(null,z) Vv P(x,null) v
Q(null, z) — Body and

Py, null) v P(z, null) v Q(null, z) — Body.

Furthermore, we need to restore secrecy only if the
given database is not already an SI, which happens when
the combination attribute B is not null, the secrecy
attributes A and C are not null, and formula ¢ is true.
Predicate aux(z, 2) defined in “2.” captures the condition
not(x # null A z # null).

The rules in “3.” collect the tuples in the database that
have already been updated and (virtually) no longer
exist in the database. Rules in “4.” annotate the original
the atoms and also the new version of updated atoms.
Rules in “5.” collect the tuples that stay in the final state
of the updated database: They are original or new, but
have never been updated. In this program, nul! is treated
as any other constant.

The Sls are in one-to-one correspondence with the
restrictions to s-annotated atoms of the stable models of
(D, )."?

Example 17 (Example 16 Continued). The program has
three stable models (the facts in “1.” are omitted):

M, = {P(1,2,t), R(2,1,t),aux(1,1), P(1,2,s)
R(2,1,bu), R(null, 1, u), R(nuil, 1,t), R(nuil, 1,s)}.

My = {P(1,2,t), R(2,1,t),aux(1,1), P(1,2,bu),
R(2,1,s), P(1, nuil,u), P(1,null, t), P(1, nuil,s)}.

Mz = {P(1,2,t), R(2,1,t),auz(1,1), P(1,2, bu),
R(2,1,bu), P(null,2,u), R(2, null, v}, P(null, 2, t),
R(2, null, t), aux(1, null), aux(null, 1), P(null, 2, s),
R(2,null,s)}.

The SIs are built by selecting the underlined atoms,
obtaining: Dy = {P(1,2), R(null,1)}, D= {P(1,null),
R(2,1)}, and D3 = {P(nuil,2), R(2,null)}. They coincide
with those in Example 10.

12. The proof of this claim is rather long, and is similar in spirit to the
proof of the fact that database repairs w.r.t. ICs [3| can be specified by
means of disjunctive logic programs with stable model semantics {(cf.,

(o}, (2.
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To compute SAs to a query, it is not necessary to
explicitly compute all the stable models. Instead, the query
can be posed directly on top of the program and answered
according to the skeptical semantics. This will return the
SAs to the query. The query has to be formulated as a top-
layer program, with s-annotated atoms, that are those that
affect the query. A system like DLV can be used. It
computes the disjunctive stable-model semantics, with an
interface to commercial DBMSs [22].

Example 18 (Example 17 Continued). We want the SAs to
the conjunctive query

Qx,z) : 3y(P(z,y) A By, 2) Ay < 3).

This requires first rewriting it, as in (6), into Q™' (z, y):
Jy(P(z,y) A R(y, z) Ay < 3Ay # null). This new query
can be evaluated against instances with null treated as
any other constant. In its turn, @™ is transformed into a
query program with all the database atoms using
annotation s:

Ans(z, z) — P(z,y,s), R(y, 2,8), y <3, y # null.

This one is evaluated in combination with the secrecy
program in Example 16, under the skeptical semantics. In
this evaluation, null is treated as an ordinary constant.

5.1 The General Secrecy Logic Program

To provide the general form of secrecy logic program, we
need to introduce some notation first. We recall that our
view definitions are of the form

‘/s(j) — Rl("il)i"'vRﬂ(j")Y p. (8)

Some of the variables” in atoms in the body of the
definitions are relevant, as in Definition 8, and their values
will be replaced by null. As expected, and illustrated in
Example 10, those atoms and variables play a crucial role in
the program.

For an atom of the form R(Z) and variables § C &,
R(z) ;,”m denotes R(£) with all the variables in j replaced by
null. In reference to (8), with this notation, we define

CP(V,) = {Ri(@) | Ru(&) is in body of (8),
g={y,...,yn} C & and y; € C(VJ))}.

SP(V,) = {Ri(%:) ;%um,-(a-;,.) is in body of (8),
?._/ = {yla e f.'/n} g T, and € S("/B))}

For the sets of predicate positions, C(V;) and S(V.), see
Definition 8. The atom sets CP(V,) and SP(V;) will be used
in the head of the disjunctive rules that change some
relevant attribute values into nulls (rules 2. in Example 10).

Example 19. For the secrecy view Vi(z,z,w) — P(x,y),
Q(y, 2z,w), it holds: C(V,) = {P[2),Qf1]} and S(V;) =
{P[1},Q(2],Q[3]}- Thus, CP(V.) = {P(x,null),Q(null, z,
w)}, and SP(V,) = {P(null,y), Q(y, null, null) }.

13. To be more precise, we should talk about variables in relevant
positions or arguments, as we did before, for example, in Section 3, but the
description would be less intuitive.
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Given a database instance D, a set V" of secrecy views
V,s, each of them of the form (8), the secrecy program
TI{D, V*) contains the following rules:

1. Facts: R(é,t) for each atom R{¢) € D.

2. Forevery V, of the form (8), if SP(V;) = {R'(&1), ...,
R*(Z,)}, and CP(V,) = {R'(Z1), ..., R%(Zs)}, then the
program contains the rules:

a. If S(V.)NC(V,) # 0, the rule:

V  E@ow — \R(E,¢), ¢,
i=1

HeCP(VL)

/\ v # null.

weC(V,)

b. If S(V.)NC(V,) =0, for each Rt e SP(V,), 1<
d < a, the rule:

RiEsu)v \/ R(Zu)
ReeCP(V,)

/\ w # null, auxy,(I).

ned(V,)

A &(i.‘, t)? (")
i=1

Plus rules defining the auxiliary predicates: If
S(V,) = {z!,...,2*} and Z = {2',...,2%), then
for each 1 < i < k, the rule

auzy,(z) — \ R(@i,t) Ap Az’ # null.
i-1
3. The old tuple collecting rules:
a. Foreach RFeSP(V,),1<j<a:
R (25, bu) — J\ Ri(zi,b), o, ausy(3),
i=1

A v #null, Ri(E0), A

neC(V.) wesS(V)nr,

v # null.

b. Foreach RReCP(V,),1<c<i

R(&,,bu) — /\ Ri(Z;, t), o, auzy,(T),
i=1

/\ u # null, R(Z.,u).

wnel(V.)

4. For each R € R, the rule: R(Z,t) — R(Z,u).
5. For each R € R, the rule:

R(%,8) — R(&,t),notR(E,bu).

Rules in “1.” create program facts from the initial
instance. Rules in “2.” are the most important and express
how to impose secrecy by changing attribute values into
nulls. Notice that, by definition, CP(V;) and SP(V,) already
include those changes. The body of the rule becomes true
when the database instance does not nullify the view, and
the head captures the intended ways of imposing secrecy.
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Rules in “3.” collect the tuples in the database that have
already been updated and (virtually) no longer exist in the
database. Rules in “4.” capture the atoms that are part of
the database or updated atoms in the process of imposing
secrecy. Rules in “5.” collect the tuples in the SI, as those
that did not become old.

The same secrecy program can be used with different
queries. However, available optimization techniques can be
used to specialize the program for a given query (cf., [11],
[5] for this kind of optimizations for repair logic programs).

6 THE CQA CONNECTION

Consider a database instance D that fails to satisfy a given
set of ICs IC. It still contains useful and some semantically
correct information. The area of CQA (3], [5] has to do with:
1) characterizing the information in D that is still
semantically correct w.r.t. IC, and 2) characterizing, and
computing, in particular, the semantically correct, i.e.,
consistent, answers to a query @ from D w.r.t. IC. The
first goal is achieved by proposing a repair semantics, i.e., a
class of alternative instances to D that are consistent w.r.t.
IC and minimally depart from D. The consistent informa-
tion in D is the one that is invariant under all the repairs in
the class. This applies in particular to the consistent
answers: They should hold in every minimally repaired
instance.

There are some connections between CQA and our
treatment of privacy preserving query answering. Notice
that every view definition of the form (2) can be seen as an
IC expressed in the FO language L(Z U {V,}):

V.’I_I(Va(.l_:) — 3ﬂ(R| (.E’l) FARERIVAN Rn(fu) A (P)), (9)

with § = (JZi) \ Z. From this perspective, the problem of
view maintenance, i.e., of maintaining the view defined by (9)
synchronized with the base relations [17] becomes a
problem of database maintenance, i.e., maintenance of the
consistency of the database w.r.t. (9) seen as an IC. This also
works in the other direction since every IC can be associated
to a violation view, which has to stay empty for the IC to
stay satisfied.

Actually, we want more than maintaining the view
defined in (9). We want it to be empty or return only tuples
with null values. In consequence, we have to impose the
following ICs on D, which are obtained from the RHS of (9):
If zisz',...,2% then for | <i <,

VEJ~(RI(Z)A-- AR, Ap AL #null). (10

That is, from each view definition (8) we obtain k denial
constraints (DCs), i.e., prohibited conjunctions of (positive)
database atoms and built-ins. DCs have been investigated in
CQA under several repair semantics [14], [5].

In our case, the SIs correspond to the repairs of D w.r.t.
the set DCs in (10). These repairs are defined according to
the null-based (and attribute based [5]) repair semantics of
Section 3, i.e,, <p -minimality (cf., Example 10). Through
this correspondence we can benefit from concepts and
techniques developed for CQA.

Example 20. The secrecy view defined by
Vi(z, 2) — P(z,y), R(y.2),y < 3,
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gives rise to the following denial constraints:

~3ryz(P{z,y) A R(y,2) Ay < 3 Az # nuil) and
~Ieyz(P(x, y) A R(y, 2) Ay < 3A z # null)

A instance D has to be minimally repaired to satisfy them.

7 RELATED WORK

Other researchers have investigated the problem of data
privacy and access control in relational databases. We
described in Section 1 the approach based on authorization
views [27], [33]). In [19], the privacy is specified through
values in cells within tables that can be accessed by a user. To
answer a query Q without violating privacy, they propose
the table and query semantics models, which generate
masked versions of the tables by replacing all the cells that
are not allowed to be accessed with NULL. When the user
issues @, the latter is posed to the masked versions of the
tables, and answered as usual. The table semantics is
independent of any queries, and views. However, the query
semantics takes queries into account. LeFevre et al. [19] show
the implementation of two models based on query rewriting.

Recent work [30] has presented a labeling approach for
masking unauthorized information by using two types of
special variables. They propose a secure and sound query
evaluation algorithm in the case of cell-level disclosure
policies, which determine for each cell whether the cell is
allowed to be accessed or not. The algorithm is based on
query modification, into one that returns less information
than the original one. Those approaches propose query
rewiring to enforce fine-grained access control in databases.
Their approach is mainly algorithmic.

Data privacy and access control in incomplete proposi-
tional databases has been studied in [6), [7], and [31]. They
take a different approach, control query evaluation (CQE), to
fine-grained access control. It is policy-driven, and aims to
ensure confidentiality on the basis of a logical framework. A
security policy specifies the facts that a certain user is not
allowed to access. Each query posed to the database by that
user is checked, as to whether the answers to it would allow
the user to infer any sensitive information. If that is the case,
the answer is distorted by either lying or refusal or combined
lying and refusal. In [8], they extend CQE to restricted
incomplete FO logic databases via a transformation into a
propositional language. This approach seems to be incom-
parable to ours. They do not use null values, and the issue
of maximality of answers that do not compromise privacy is
not explicitly addressed.

Our approach is based on producing virtual updates on
the database, by forcing the secrecy views to become null.
This is clearly reminiscent of the older, but still challenging
database problem of updating a database through views
[13]. Here we confront new difficulties, namely the
occurrence of SQL nulls with a special semantics, and the
minimality of null-based changes on the base relations.

In [9], a null-based repair semantics was introduced, but
it differs from the one introduced in Section 3. The former
was proposed for enforcing satisfaction of sets of ICs that
include referential ICs, which require the possible insertion
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of new tuples with nulls. The comparison between instances
is based onsets of full tuples and also on the occurrence of
nulls in them. Here, we enforce secrecy by changes of
attributes values only.

A representation of null values in logic programs with
stable model semantics is proposed in [28], whose aim is to
capture the intended semantics of null values d la Reiter,
i.e, as found in his logical reconstruction of relational
databases [26]. Two remarks have to be made here. First,
Reiter reconstructs “logical” nulls, but not SQL nulls. In our
work we use the latter, as done in database practice. Second,
we take care of nulls by proposing a new query answering
semantics that can be captured in classic logical terms via
query rewriting. The rewritten queries are the input to a
logic program, which then treats them as ordinary constants
(without having to give a logical account of them).

8 CONCLUSIONS

In this work, we have developed a logical framework and a
methodology for answering conjunctive queries that do not
reveal secret information as specified by secrecy views. Our
work is of a foundational nature, and attempts to provide a
theoretical basis, or at least part of that basis, for possible
technological developments. Implementation efforts and
experiments, beyond the proof-of-concept examples we
have run with DLV, are left for future work.

We have concentrated on conjunctive secrecy views and
conjunctive queries. We have assumed that the databases
may contain nulls, and also nulls are used to protect secret
information, by virtually updating with nulls some of the
attribute values. In each of the resulting alternative virtual
instances, the secrecy views either become empty or contain
a tuple showing only null values. The queries can be posed
against any of these virtual instances or cautiously against
all of them, simultaneously. The latter guarantees privacy.

The update semantics enforces (or captures) two natural
requirements. That the updates are based on null values,
and that the updated instances stay close to the given
instance. In this way, the query answers become implicitly
maximally informative, while not revealing the original
contents of the secrecy views.

The null values are treated as in the SQL standard, which
in our case, and for conjunctive query answering, is
reconstructed in classical logic. This reconstruction captures
well the “semantics” of SQL nulls (which in not clear or
complete in the standard), at least for the case of conjunctive
query answering, and some extensions thereof. This is the
main reason for concentrating on conjunctive queries and
views. In this case, queries and views can be syntactically
transformed into conjunctive queries and views for which
the evaluation or verification can be done by treating nulls
as any other constant.

The SAs are based on a skeptical semantics. In principle,
we could consider instead the more relaxed possible or brave
semantics: an answer would be returned if it holds in some
of the Sls. The possibly SAs would provide more information
about the original database than the (certainly) SAs.
However, they are not suitable for our the privacy problem.
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Example 21 (Example 10 Continued). A possibly SA to the
query Qi(z,y): P(z,y) is (1,2), obtained from Ds.
Similarly, (2,1} is a possibly SA to Q:(z,y): R(z,y)
From these possibly SAs, the user can obtain the contents
of the secrecy view.

We introduced disjunctive logic programs with stable
model semantics to specify the Sls. This is a single program
that can be used to compute SAs to any conjunctive query.
This provides a general mechanism, but may not be the
most efficient way to go for some classes of secrecy views
and queries. Ad hoc methods could be proposed for them,
as has been the case in CQA [4], [5].

Our work leaves several open problems, and they are
matter of ongoing and future research. Complexity issues
have to be explored. For example, of deciding whether or
not a particular instance is an SI of an original instance.
Also, of deciding if a tuple is an SA to a query. The
connection with CQA, where similar problems have been
investigated, looks very promising in this regard.

Another problem is about query rewriting, i.e., about the
possibility of rewriting the original query into a new FO
query, in such a way that the new query, when answered by
the given instance, returns the SAs. From the connection
with CQA we can predict that this approach has limited
applicability, but whenever possible, it should be used, for
its simplicity and lower complexity.

For future work, it would be interesting to investigate the
connections with view determinacy {25], that has to do with
the possible determination of extensions of query answers
by a set of views with a fixed contents. The occurrence of
SQL nulls and their semantics introduces a completely new
dimension into this problem.

A natural extension of this work would go in the
direction of freeing ourselves from the assumptions listed
at the end of Section 4. Their relaxation would create a
challenging new scenario, and most likely, would require a
nonstraightforward modification of our approach. One of
these possible relaxations consists in the addition of ICs to
the schema. If they are known to the user, and, most
importantly, that they are satisfied by the database, then
privacy could be compromised. Also the updates leading to
the virtual updates should take these ICs into account, to
produce consistent Sls.

It would also be interesting to investigate more
expressive queries and secrecy views, going beyond the
conjunctive case. However, if we allow negation, the
challenges become intrinsically more difficult. On one
side, in the case of secrecy views, negation becomes a
fundamental complication for privacy [27], [33]. On the
other, the query rewriting methodology that captures nulls
as ordinary constants (cf.,, Section 2.2) that we have used in
our work does not include the combination of nulls and
negation. The extension of our privacy approach to queries
or secrecy views with negation would make it necessary to
first attempt an extension of this kind of query rewriting.
However, this requires to agree on a sensible semantics for
SQL nulls in the context of such more expressive queries,
something that is definitely worth investigating.
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