
Consistent Query Answering under Inclusion

Dependencies

Loreto Bravo and Leopoldo Bertossi

Carleton University

School of Computer Science

Ottawa, Canada.

{lbravo,bertossi}@scs.carleton.ca

Abstract

For several reasons a database may not satisfy
certain integrity constraints (ICs), for example,
when it is the result of integrating several in-
dependent data sources. However, most likely
most of the information in it is still consis-
tent with the ICs; and could be retrieved when
queries are answered. Consistent answers with
respect to a set of ICs have been character-
ized as answers that can be obtained from every
possible minimal repair of the database. In this
paper we show and analyze how specify those
repairs using disjunctive logic program with a
stable model semantics in the presence of ref-
erential ICs. In this case, repairs are obtained
by introduction of null values that do not prop-
agate through other constraints, which makes
the problem of consistent query answering de-
cidable. We also present results about cases
where the implementation of consistent query
answering can be made more efficient due to
the fact that the program can be simplified into
a non-disjunctive program. Finally, we discuss
several research issues around the implementa-
tion of system for retrieving consistent answers
to queries from a DBMS.

1 Introduction

In databases, integrity constraints (ICs) cap-
ture the semantics of the application domain
and help maintain the correspondence between

Copyright c© 2004 Loreto Bravo and Leopoldo
Bertossi. Permission to copy is hereby granted provided
the original copyright notice is reproduced in copies
made.

this domain and its model provided by the
database when updates on the database are
performed. However, commercial database
management systems (DBMSs) provide lim-
ited autonomic support to database mainte-
nance, that is, to the process of keeping the
database contents consistent with respect to
certain ICs. Except for very restricted classes
of integrity constraints that can be internally
handled if the user has declared them together
with the database schema; in general integrity
constraints are maintained by means of user-
defined triggers or mechanisms specified at the
application level.

There are several reasons for a database to be
or become inconsistent with respect to a given
set of integrity constraints [9]. This could hap-
pen in several situations:

• The most common case is a DBMS that
does not have a mechanism to maintain
the satisfaction of certain ICs. The avail-
able DBMSs are able to maintain by them-
selves important classes of ICs, but not,
e.g., the full class of first-order ICs.

• When data of different sources are being
integrated, either virtually or under a ma-
terialized approach. In this case, even if
the independent data sources are consis-
tent with respect to certain ICs, the global
integrated system might be inconsistent
with respect to other global ICs [11, 12].

• If new constraints are to be imposed on a
pre existing database, i.e., legacy data.

• Soft or user constraints that might be con-
sidered only when queries are answered,
but without being enforced by the system.

In several cases it can be difficult, impossible
or undesirable to repair the database in order
to restore consistency [9]. The process may be
too expensive; useful data may be lost; or it
is not clear how to restore the consistency, for
example, if extra information is needed. Fur-
thermore, a user who wants to impose new
constraints may have no permission to make
changes on the data. In the case of data in-
tegration, the access to the sources might be
restricted.

In those situations, possibly most of the data
is still consistent and can be retrieved when
queries are posed to the database. In [2] con-
sistent data is characterized as the data that
is invariant under all minimal restorations of
consistency; i.e., as data that is present in all
minimally repaired versions of the original in-
stance (the repairs). In particular, an answer
to a query is defined as consistent when it can
be obtained as a standard answer to the query
from every possible repair.

We envision the next DBMSs providing much
more flexible and user friendly mechanisms for
dealing with semantic constraints. In this di-
rection, the system should allow the user to
provide a set of ICs as another input to the
query answering process, in such a way that
those ICs are taken into account as answers to
the query are computed. Those ICs could be
entered as a another clause in a query expressed
in an enhanced version of SQL, something like

SELECT Name, Salary (?)
FROM Employee
WHERE Position = ’manager’
CONSIST/W FD: Name -> Salary;

where, for some reasons, the specified func-
tional dependency (FD), which requests
that attribute Name functionally determines
attribute Salary, is not been maintained by
the DBMS. The returned answers from the
database should be only those that are consis-
tent with FD. For example, if the underlying
database is

Employee Name Salary Position
John 55,000 manager
Peter 50,000 manager
John 60,000 manager
Ken 40,000 secretary

the only (consistent) answer returned by the
system would be the tuple (Peter, 50,000).

This is because the only minimal repairs of the
database are the instances

Employee1 Name Salary Position
John 55,000 manager
Peter 50,000 manager
Ken 40,000 secretary

and

Employee2 Name Salary Position
Peter 50,000 manager
John 60,000 manager
Ken 40,000 secretary

which are obtained by deleting each time only
one of the conflicting tuples; and the only tu-
ple that is an (usual) answer to the query (?)
above (but without the consistency clause in
the last line) in both repaired instances is (Pe-
ter, 50,000).

With the same original database, if now the
query is

SELECT Name
From Employee
WHERE Position = ’manager’
CONSIST/W FD: Name -> Salary;

the (consistent) answers are (John), (Peter),
because these two names are returned as usual
answers in both repairs.

We can see in this example that computing
consistent query answers is different from data
cleaning. We do not get rid of the tuples in the
original database that participate in a violation
of integrity constraints. In particular, in this
case we do not lose the information about the
existence of an employee named John. We can
see that in consistent query answering (CQA),
we could see (some of) the ICs as constraints
on the query answers rather than on states of
the database.

In [2, 14, 25, 3, 5], some mechanisms have
been developed for CQA, that is, for retriev-
ing consistent answer when queries are posed
to an inconsistent database. All those mecha-
nisms, in different degrees, work only with the
original, inconsistent database, without restor-
ing its consistency. Ideally, inconsistencies are
solved at query time and the query is posed to
the original database. For example, the (con-
sistent) answers to the query (?) can be ob-
tained posing as a standard SQL query the fol-
lowing rewriting of (?)

SELECT Name, Salary
FROM Employee
WHERE Position = ’manager’

AND NOT EXISTS (
SELECT *
FROM Employee E
WHERE E.Name = Name AND

E.Salary <> Salary);

which retrieves those employees, with their
salaries, for which there is not other employee
with the same name, but different salary. The
usual answers to this query from the origi-
nal database will be the consistent answers to
query (?). No repair is needed to answer this
query. Unfortunately, such first-order query
rewriting based methodology provably works
only for restricted classes of queries and con-
straints [6].

Since mechanisms that compute the consis-
tent answers at query time without calculating
the repairs [2, 14, 16] are restricted to some
very limited classes of queries and constraints,
more general methodologies, like the one we
present in this paper, require more expressive
languages to formulate the rewritings of the
original queries [6]. Sometimes it is neces-
sary to use Datalog extended with non strat-
ified negation and disjunctive heads [1, 20]. In
those cases, although the above mentioned re-
pairs are intended to be an auxiliary concept to
define the right semantics for consistent query
answers, they become also an auxiliary inter-
mediate computational step that, for complex-
ity reasons, has to be reduced to a minimum.

In [5, 6] an algorithm is presented that deals
with more general class of queries and con-
straints, e.g., all universal ICs and first-order
queries. It is based on specifying the repairs
of the database by using disjunctive logic pro-
grams with stable model semantics [20]. The
complexity of this approach is higher than the
complexity of the restricted ones, but the rea-
son is that it matches the intrinsic complex-
ity of the problem of computing consistent an-
swers, which is provably a hard computational
problem [15, 13].

In this paper we extend the methodology
presented in [5, 6] in order to handle refer-
ential integrity constraints via introduction of
null values that do not propagate through other
ICs. The extended methodology is investigated
and optimized, which allows to obtain lower
complexity for some classes of ICs.

2 Repairs and Consistent

Answers

We will consider a fixed relational schema Σ =
(U ,R ∪ B) where U is the possibly infinite
database domain, R is a fixed set of database
predicates, and B is a fixed set of built-in pred-
icates.

A database instance can be seen as a fi-
nite collection D of ground atoms of the form
P (c1, ..., cn), where P is a predicate in R and
c1, ..., cn are constants in U . Built-in predi-
cates have a fixed and same extension in every
database instance, not subject to changes.

In the following we will express integrity con-
straints and queries in the first-order language
of relational calculus, and the latter sometimes
as Datalog rules [1]. Database relations will be
represented as sets of ground atoms, and not
as tables as above.

A universal integrity constraint is a any first-
order sentence that is logically equivalent to a
sentence of the form

∀(
m∨

i=1

¬Pi(x̄i) ∨
n∨

j=1

Qj(ȳj) ∨ ϕ), (1)

where ∀̄ is a prefix of universal quantifiers,
Pi, Qj ∈ R, and ϕ is a formula containing built-
in atoms from B only. Notice that (1) is logi-
cally equivalent to

∀̄(
m∧

i=1

Pi(x̄i) →
n∨

j=1

Qj(ȳj) ∨ ϕ). (2)

Example 1 For a database schema
{Emp(id, dept), P eople(id)} some universal
ICs can be defined, for example, the functional
dependency (FD) Emp: id → dept can be ex-
pressed by ∀id dept1 dept2 (Emp(id, dept1) ∧
Emp(id, dept2) → dept1 = dept2); and
the full inclusion dependency (IND)
Emp[id] ⊆ People[id], by ∀ id dept (Emp(
id, dept) → People(id)). We can see that
the common universal ICs found in database
praxis do not need the disjunction in the RHS
of (2). 2

A referential integrity constraint (RIC) is a sen-
tence of the form

∀x̄ (P (x̄)→ ∃ȳ Q(x̄′, ȳ)), (3)

where x̄′ ⊆ x̄ and P,Q ∈ R.

P

S R

(a)

P Q

 R

(b)

Figure 1: Directed graphs for Example 3.

Example 2 For a database schema
{Emp(id, dept), P eople(id, name)}, in or-
der to represent the IND Emp[id] ⊆ People[id]
that states that employees are people, we
use the RIC: ∀id dept (Emp(id, dept) →
∃name People(id, name)). Here
x̄ = (id , dept), x̄′ = (id), and ȳ = (name). 2

These classes of ICs include those most com-
mon in the database praxis. We assume we
have a fixed set IC of ICs that is logically con-
sistent in the sense that is it is possible to find
a database that satisfies them.

A set of RICs is said to be acyclic if there are
no cycles in the directed graph whose vertices
correspond to the relations in R, and an edge
from P to R corresponds to a RIC of the form
(3).

Example 3 The RICs ∀x(P (x) → ∃yR(x, y))
and ∀x(S(x) → ∃yR(x, y)) are acyclic since
there are no cycles in the directed graph as
shown in Figure 1(a). On the other hand,
the set of RICs: {∀xz(P (x, z) → ∃yQ(x, y)),
∀xy(Q(x, y) → ∃zR(z, x)), ∀xy(R(x, y) →
∃zP (x, z))} is cyclic, as shown in Figure 1(b).
2

A database instance D is inconsistent if it does
not satisfy a given set IC of ICs. In the absence
of null values it is clear when this happens, but
if they are present or allowed in D, they should
be treated as a special constant. Their presence
in a tuple means that there are unknown values
for the corresponding attributes; i.e., we have
incomplete information. Since we do not have
precise information about them, we will con-
sider that no inconsistencies arise due to their
presence. This leads to the following definition
of consistency in the presence of the null value
null:

Definition 1 [6] For a database instance D,
whose domain U may contain the constant
null, and a set of integrity constraints IC =

ICU ∪ ICR, where ICU is a set of universal
integrity constraints and ICR is a set of refer-
ential integrity constraints, we say that D sat-
isfies IC iff:

1. For each sentence in ICU of the form ∀ϕ,
where ∀̄ is a prefix of universal quanti-
fiers and ϕ is a a quantifier-free formula,
ϕ[ā] ∈ D for every ground tuple ā of ele-
ments in (U − {null}), and

2. For each sentence in ICR of the form (3),
if P (ā) ∈ D, with ā a ground tuple of ele-
ments in (U −{null}), there exists a tuple
b̄ of constants in U for which Q(ā′, b̄) ∈ D.
2

Intuitively, this means that a universal IC holds
if it is satisfied by non-null values, and a RIC
is satisfied considering only non-null values for
universally quantified variables and any value
for existentially quantified variables.

Example 4 Given a universal IC
∀xy(P (x, y) → R(x, y)) and a RIC
∀x(T (x) → ∃yP (x, y)), the database in-
stance D1 = {P (a, d), R(a, d), T (a), T (b),
P (b, null)} is consistent. The universal con-
straint is satisfied even in the presence of
P (b, null) since the incomplete information
does not generate inconsistencies. 2

If a database D is inconsistent with respect
to a set of constraints IC , a repair of D is
a new database with the same schema as D,
that satisfies IC , and minimally differs from
the original database under set inclusion of tu-
ples. These repairs can be obtained from the
original repair by adding or deleting tuples [2].

Example 5 Given a database with two ta-
bles and one tuple each: {P (a, b), R(c, e)},
and the universal IC ∀xy(P (x, y) → R(x, y));
there are two ways of minimally repairing
the database: add the tuple (a, b) to table
R or delete (a, b) from table P , i.e., the re-
pairs are D1 = {P (a, b), R(c, e)R(a, b)} and
D2 = {R(c, e)}. The database instance
D3 = {P (a, b), R(c, e), R(a, b), P (e, d)} satisfies
the ICs, but is not a repair because it unneces-
sarily adds the tuple P (e, d). 2

Example 5 shows how the repairs for universal
ICs can be obtained. For RICs the process is
different because of the presence of existential
variables.

Example 6 Given a database {T (a)} and the
ICs ∀x(T (x)→ ∃yP (x, y)). One way of repair-
ing the database is by deleting the tuple T (a),
corresponding to repair D1 = {}. Another way
would be to add a tuple P (a, d) where d is
any value in the database universe. In latter
case, we would have as many repairs as ele-
ments in the domain. Instead of this second
alternative, we will consider only one possible
insertion based repair: D2 = {T (a), P (a, null}.
The null value in the second repair represents
the fact that we know that there is a tuple in
P with first argument a, but the second value
is unknown. 2

In order to formalize the concept of minimal re-
pair, the distance between databases is defined
as follows:

Definition 2 [2] Let D,D′ be database in-
stances over the same schema and domain. The
distance, ∆(D,D′), between D and D′ is the
symmetric difference ∆(D,D′) = (D \ D′) ∪
(D′ \D). 2

Example 7 Consider the databases D1, D2

and D3 in example 5. The distances between
each of them and the original database are
∆(D,D1) = {R(a, b)}, ∆(D,D2) = {P (a, b)}
and ∆(D,D3) = {R(a, b), P (e, d)}. The ele-
ments in each ∆ correspond to the elements
added into or deleted from D to obtain Di. 2

In order to determine which databases are
closer to the original one when repairing it, we
define a partial order:

Definition 3 [6] Let D,D′, D′′ be database
instances over the same schema and domain U .
It holds that D′ ≤D D′′ iff:

1. For every atom P (ā) ∈ ∆(D,D′), with
ā ∈ (U − {null}),1 it holds that P (ā) ∈
∆(D,D′′), and

2. For every atom Q(ā′, null) ∈ ∆(D,D′),
it holds that Q(ā′, null) ∈ ∆(D, D′′) or
Q(ā, b) ∈ ∆(D,D′′), for some b̄ ∈ (U −
{null}). 2

Example 8 (example 7 continued) From the
distances we confirm that the instances that
minimally differ from D are D1 and D2. In-
stance D3 is not minimal, because D1 ≤D D3,
with D1 6= D3. 2

1That ā ∈ (U − {null}) means that each of the ele-
ments in tuple ā belongs to (U − {null}).

Using this partial order, we are now in position
of formally define the repairs of an inconsistent
database:

Definition 4 Given a database instance D

and a set of universal and referential ICs, IC ,
a repair of D with respect to IC is a database
instance D′ over the same schema and domain
(plus possibly null if it was not in the domain
of D), such that D′ satisfies IC and D′ is ≤D-
minimal in the class of database instances that
satisfy IC . We denote by Rep(D) the set of
repairs of D. 2

In the absence of null-value based repairs, def-
initions 3 and 4 coincide with those given in
[2], where RICs were not considered. The re-
pairs of violations of universal ICs are obtained
by either deleting or adding an atom with-
out null. The repairs of violations of refer-
ential ICs are obtained by either deleting the
atom that is generating the inconsistency or
by adding an atom with a null value. In
particular, if the instance is {P (ā)} and IC
contains only ∀x̄(P (x̄) → ∃yQ(x̄, y)), then
{P (ā), Q(ā, null)} will be a repair, but not
{P (ā), Q(ā, b)} for any b ∈ U , b 6= null . In
[3, 5, 13] repairs with values other than null
have been considered.

Example 9 Consider the universal IC
∀xy(P (x, y) → R(x, y)), together with the
RIC ∀x(T (x) → ∃yP (x, y)), and an incon-
sistent database D = {P (a, b), T (c)} with
domain U = {a, b, c, u}. The repairs of D are:

i Di ∆(D, Di)

1 {P (a, b), R(a, b), T (c),
P (c, null)}

{R(a, b), P (c, null)}

2 {P (a, b), R(a, b)} {T (c), R(a, b)}
3 {T (c), P (c, null)} {P (a, b), P (c, null)}
4 ∅ {P (a, b), T (c)}

We can see that in the first repair the atom
P (c, null) does not propagate through the uni-
versal constraint to R(c, null). The instance
D5 = {P (a, b), R(a, b), T (c), P (c, a)}, where
P (c, a) has been introduced in order to sat-
isfy the referential IC, does satisfy IC , but is
not a repair because ∆(D,D1) ≤D ∆(D,D5) =
{R(a, b), P (c, a)}. 2

If a database D is consistent with respect to a
set of ICs, then it is its only repair.

Definition 5 [2] Given a database instance D ,
a set of universal and referential ICs IC, and
a first-order query Q(x̄), we say that a ground
tuple t̄ is a consistent answer to Q with respect
to IC iff for every D′ ∈ Rep(D), D′ satisfies Q

with variables x̄ replaced by t̄ (denoted D′ |=
Q[t̄]). 2

Example 10 Given the IC ∀x(T (x) →
∃yP (x, y)), the inconsistent database D =
{P (a, d), R(a, d), T (a), T (b), R(b, e)}, and the
queries Q1 : P (x, y) and Q2 : ∀xy (P (x, y) →
∃zR(x, z)) . Rep(D) = { {P (a, d), R(a, d),
T (a), R(b, e)}, {P (a, d), R(a, d), T (a), T (b),
R(b, e), P (b, null)}}. The consistent answer for
Q1 is P (a, d) since that is the only element of P

in both repairs. For Q2 the consistent answer
is Yes since the formula is satisfied in both re-
pairs. 2

3 Repair Logic Programs

The repairs of a relational database can be
specified as stable models of disjunctive logic
programs [24]. Once the specification has been
given, in order to obtain consistent answers to
a, say, first-order query Q, the latter is trans-
formed into a query written as a logic program,
which is a standard process [29, 1]. Next, this
query program is “run” together with the pro-
gram that specifies the repairs. This evaluation
can be implemented on top of, e.g., DLV, a logic
programming system that computes according
to the stable models semantics [21, 28].

The repair programs introduced in [5, 6] use
annotation constants with the intended seman-
tics shown in the table below.

Annot. Atom Tuple P (ā) is...
td P (ā, td) a database fact
fd P (ā, fd) not a database fact
ta P (ā, ta) advised to be true
fa P (ā, fa) advised to be false
t? P (ā, t?) true or becomes true
f? P (ā, f?) false or becomes false
t?? P (ā, t??) true in the repair

The intuitive idea behind these annotations
is simple. We can think of each ground atom,
say P (c̄), in the database as annotated with
the constant td in an extra argument. In con-
sequence, we have the atom P (c̄, td) as a fact
of the program. On the other side, if an atom
P (c̄) does not belong to the database, we have

the fact P (c̄, fd) in the program2. Now, when
a violation of an IC happens, which can be
expressed as the condition in the body of a
program rule, then the disjunctive head of the
same rule tells us how to restore consistency
by deleting or inserting tuples. These recom-
mendations are captured by means of the con-
stants ta, fa, for making an atom true or false
(or inserting or deleting it), resp. For exam-
ple, if the IC is the full inclusion dependency
∀x(P (x)→ Q(x)), then we could have the pro-
gram rule

P (x, fa) ∨Q(x, ta) ← P (x, td), Q(x, fd), (4)

which in its body detects a violation of the IC
(the tuple P (x) is in the database, but not the
tuple Q(x)). Its head advises then to either
delete P (x) or insert Q(x) in order to restore
consistency.

The problem is that there might be another
IC, whose satisfaction is being restored by in-
serting, say P (e), which is obtained by deriving
the atom P (e, ta). If we repair in this way, but
the tuple Q(e) is not in the database, then there
will be a new violation. The rule (4), with its
body written in terms of the tuples in (outside)
the original database, cannot be used to keep
repairing. That is why we need to pass to in-
termediate notations t?, f?, that can be used to
detect violations due to the original database
values or to those obtained by the local repair
steps. Then, instead of the program rule (4)
we use the program rule

P (x, fa) ∨Q(x, ta) ← P (x, t?), Q(x, f?). (5)

The tuples with annotations t? are those ob-
tained collecting those annotated with td or
ta, which can be expressed by means of a new
program rule. Similarly for annotation f ?. Fi-
nally, the atoms that can be found in a repair
are those that became annotated with ta or
were originally annotated with td, but did not
become annotated with fa. Again, this can be
expressed by program rules.

Definition 6 [6] The repair program,
Π(D, IC), of D with respect to IC con-
tains the following clauses:

2Actually, these atoms can be defined by rules of
the form P (x̄, fd)← dom(x̄), not P (x̄, td), where a do-
main predicate stores the admissible values for the tu-
ples involved. This materialization of the closed world
assumption [31] can be avoided, getting rid of annota-
tion fd. Actually, the program in Definition 6 does not
use it.

1. dom(a) for each constant a ∈ (U −{null})3.
2. Fact P (ā, td) for every P (ā) ∈ D.
3. For every predicate P ∈ R, the clauses

P (x̄, t?)← P (x̄, td), dom(x̄).4

P (x̄, t?)← P (x̄, ta), dom(x̄).
P (x̄, f?)← P (x̄, fa), dom(x̄).
P (x̄, f?)← dom(x̄), not P (x̄, td).

5

4. For every global universal IC of form (1)
the clause:∨n

i=1
Pi(x̄i, fa)∨

∨m

j=1
Qj(ȳj , ta) ←

∧n

i=1
Pi(x̄i, t

?),∧m

j=1
Qj(ȳj , f

?), dom(x̄), ϕ̄;
where x̄ is the tuple of all variables appearing
in database atoms in the rule, and ϕ̄ is a
conjunction of built-ins equivalent to the
negation of ϕ.
5. For every referential IC of form (3) the
clauses:
P (x̄, fa) ∨Q(x̄′,null , ta)← P (x̄, t?),not aux(x̄′),

not Q(x̄′,null , td), dom(x̄).

aux(x̄′)← Q(x̄′, y, td), not Q(x̄′, y, fa), dom(x̄′, y).

aux(x̄′)← Q(x̄′, y, ta), dom(x̄′, y).

6. For every predicate P ∈ R, the interpreta-
tion clauses:

P (x̄, t??) ← P (x̄, ta).
P (x̄, t??) ← P (x̄, td), not P (x̄, fa).

7. For every predicate P ∈ R, the program
denial constraint: ← P (ā, fa), P (ā, ta). 2

A logic program like this, that contains non
stratified negation [1], has a stable model se-
mantics [24]. The stable models of the pro-
gram are the intended models of the program,
and they sanction what is true with respect to
the program. In general, a program like this
will have several stable models.

Rules in 4. and 5. are the most important
ones; they specify how the database is to be
repaired when a violation of the IC is detected
(in the body, i.e., the RHS, of the rule). The
disjunction in the head (LHS) of a rule specifies
the alternative ways to repair. An atom anno-
tated with ta indicates that there is an advice
(what the a stands for) to make it true, i.e.,
to insert it into the database; whereas an atom
annotated with fa indicates an advice to make
it false, i.e., to delete it from the database. The
annotation constant t? is used in the bodies to

3Since we want that atoms with null values do not
generate inconsistencies we would need to add the lit-
eral x 6= null to every rule with the predicate dom(x).
To avoid this dom(null) is not included in the program.

4If x̄ = (x1, . . . , xn), we abbreviate dom(x1) ∧ · · · ∧
dom(xn) with dom(x̄).

5Actually, as illustrated by Example 11, we can al-
ways get rid of annotation f?.

give feedback to the repair rules in case there
are interacting ICs. At the end, we are only in-
terested in the atoms annotated with t?? in the
stable models of the repair program, since they
correspond to the data elements in the repairs.

Definition 7 LetM be a stable model of pro-
gram Π(D , IC).
(a) The database associated to M is
DM = {P (ā) | P (ā, t??) ∈M}.
(b) SM (D) is the set of databases associated
to (the stable models of) Π(D , IC). 2

Example 11 (example 9 continued) The re-
pair program Π(D , IC) is the following:
1. dom(a). dom(b). dom(c). dom(u).
2. P (a, b, td). T (c, td).
3. P (x, y, t?)← P (x, y, ta), dom(x), dom(y).

P (x, y, t?)← P (x, y, td), dom(x), dom(y).
(similarly for R and T)

4. P (x, y, fa)∨R(x, y, ta)← P (x, y, t?), R(x, y, fa),

dom(x), dom(y).

P (x, y, fa) ∨R(x, y, ta) ← P (x, y, t?), not

R(x, y, td), dom(x), dom(y).

5. T (x, fa)∨P (x,null , ta)← T (x, t?),not aux(x),

not P (x,null , td), dom(x).

aux(x)← P (x, y, td), not P (x, y, fa),
dom(x, y).

aux(x)← P (x, y, ta), dom(x, y).
6. P (x, y, t??)← P (x, y, ta).

P (x, y, t??)← P (x, y, td), not P (x, y, fa).
(similarly for R and T)

7. ← P (x, y, ta), P (x, y, fa). (also for R, T)

Only rules 4. and 5. depend on the ICs. Rules
4. corresponds to the universal ICs. They are
obtained by unfolding the annotation f ? used
in 4. in Definition 6 into its definition given
in 3. in the same program. The rules in 5.
correspond to the referential IC. These rules
say how to repair the inconsistencies. Rules
2. contain the database atoms. Rules 7. are
denial program constraints to discard models
that contain an atom annotated with both ta
and fa. The program has four stable models:
M1 = {dom(a), dom(b), dom(c), dom(u), P (a, b,

td), P (a, b, t?), T (c, td), T (c, t?), aux(a), T (c, fa),
P (a, b, t??), R(a, b, ta), R(a, b, t

?), R(a, b, t??)}
M2 ={dom(a), dom(b), dom(c), dom(u), P (a, b,

td), P (a, b, t
?), T (c, td), T (c, t

?), aux(a),
T (c, t??), P (c, null, ta), P (c, null, t??), P (a, b, t??),
R(a, b, ta), R(a, b, t

?), R(a, b, t??)}
M3 = {dom(a), dom(b), dom(c), dom(u), P (a,

b, td), P (a, b, t
?), T (c, td), T (c, t

?), aux(a),
T (c, t??), P (c, null, ta), P (c, null, t??), P (a, b, fa)}

M4 = {dom(a), dom(b), dom(c), dom(u), P (a, b,

td), P (a, b, t?), T (c, td), T (c, t?), aux(a), T (c, fa),

P (a, b, fa)}

The databases associated to the program
are obtained from the models by selecting
the atoms annotated with t?? (the under-
lined atoms): D1 = {P (a, b), R(a, b)}, D2 =
{T (c), P (c, null), P (a, b), R(a, b)} and D3 =
{T (c), P (c, null)}, D4 = ∅. These repairs coin-
cide with those obtained in example 9. 2

When we have the general class of universal
and referential ICs, it holds that for every re-
pair of a database with respect to a set of ICs,
there exists a modelM of Π(D , IC) such that
its database associated is the repair, that is, all
the repairs can be obtained from the repair pro-
gram. In example 11 every stable model of the
repair program corresponds to a repair. How-
ever, there are cases, c.f. example 12, where the
database instance corresponding to a model is
not a repair of the original database.

Example 12 The database instance
{Emp(bill, ann), Emp(paul, john), Emp(john,

john)} stores the name of an employee
with the one of his/her boss. The cyclic
RIC: ∀xy(Emp(x, y) → ∃zEmp(y, z))
states that each is boss is also an em-
ployee. The repairs are: D1 = {Emp(paul,

john), Emp(john, john)} and D2 =
{Emp(bill, ann), Emp(ann, null), Emp(paul,

john), Emp(john, john)}.
The repair program Π(D , IC) is:

dom(bill). dom(ann). dom(paul). dom(john).

Emp(bill, ann, td). Emp(paul, john, td).

Emp(john, john, td).

Emp(x, y, t?)← Emp(x, y, td), dom(x), dom(y).

Emp(x, y, t?)← Emp(x, y, ta), dom(x), dom(y).

Emp(x, y, fa) ∨ Emp(y, null, ta)← Emp(x, y, t?),

not Emp(y, null, td), not aux(y),

dom(x), dom(y).

aux(y)← Emp(y, z, td), not Emp(y, z, fa),

dom(y), dom(z).

aux(y)← Emp(y, z, ta), dom(y), dom(z).

Emp(x, y, t??)← Emp(x, y, td),not Emp(x, y, fa).

Emp(x, y, t??)← Emp(x, y, ta).

← Emp(x, y, ta), Emp(x, y, fa).

The stable models of the program are:
M1 = {dom(bill), dom(ann), dom(paul),

dom(john), Emp(bill, ann, td), Emp(bill, ann,

t
?), Emp(paul, john, td), Emp(paul, john,

t
?), Emp(john, john, td), Emp(john, john,

t
?), Emp(bill, ann, t??), Emp(paul, john, t??),

Emp(john, john, t??), Emp(ann, null, ta),

aux(john), Emp(ann, null, t??), aux(bill),

aux(paul)}.

M2 = {dom(bill), dom(ann), dom(paul),

dom(john), Emp(bill, ann, td), Emp(bill, ann,

t
?), Emp(paul, john, td), Emp(paul, john,

t
?), Emp(john, john, td), Emp(john, john,

t
?), Emp(bill, ann, fa), Emp(paul, john, t??),

Emp(john, john, t??), aux(john), aux(paul)}.

M3 = {dom(bill), dom(ann), dom(paul),

dom(john), Emp(bill, ann, td), Emp(bill, ann,

t
?), Emp(paul, john, td), Emp(paul, john,

t
?), Emp(john, john, td), Emp(john, john,

t
?), Emp(bill, ann, t??), Emp(paul, john, fa),

Emp(john, john, fa), Emp(ann, null, ta),

Emp(ann, null, t??), aux(bill)}.

M4 = {dom(bill), dom(ann), dom(paul),

dom(john), Emp(bill, ann, td), Emp(bill, ann,

t
?), Emp(paul, john, td), Emp(paul, john,

t
?), Emp(john, john, td), Emp(john, john,

t
?), Emp(bill, ann, fa), Emp(paul, john, fa),

Emp(john, john, fa)}.

The databases associated to the first
two models correspond to the repairs,
but not the last two, which are consis-
tent with the IC, but have unnecessarily
deleted Emp(john, john). This happens
because this deletion, corresponding to the
presence of the atom Emp(john, john, fa)
in the models, stably satisfies the rules
Emp(john, john, fa) ∨ Emp(john, null, ta)←

Emp(john, john, t?) not aux(john),

not Emp(john, null, td), dom(john).

aux(john)← Emp(john, john, td),

not Emp(john, john, fa), dom(john).

aux(john)← Emp(john, john, ta), dom(john).

This happens because there is a cycle that
involves Emp(john, john), without this tuple
participating in the violation of an IC. These
rules are satisfied if Emp(john, john, fa) be-
long to the model or not. 2

In general, SM (D) ⊇ Rep(D). If (and only
if) the RICs are cyclic, the inclusion may be
proper. However, all the elements of SM (D)
satisfy the ICs.

The repair program computes exactly the re-
pairs for universal and acyclic referential ICs;
i.e., we have a one-to-one correspondence be-
tween the repairs and the databases associ-
ated to the models of the repair program, i.e.,
SM (D) = Rep(D).

Example 13 Consider a database in-
stance {P (a, b, b), Q(b, c), Q(a, a)}, and
the cyclic set of RICs: {∀xyz(P (x, y, z) →
∃vQ(y, v)),∀xy(Q(x, y) → ∃uwP (u,w, x))}.
We would expect two ways to restore the
consistency of the database, by deleting
Q(b, c) or adding the tuple P (null, null, a),
but the databases associated to the stable
models of the repair program Π(D , IC)
are DM1

= {P (a, b, b), Q(a, a), Q(b, c),
P (null, null, a)}, DM2

= {P (a, b, b), Q(b, c)},
DM3

= {Q(a, a), P (null, null, a)} and
DM4

= ∅. Only the first two are repairs. 2

In summary, we have the following:

• D satisfies the ICs for every D ∈ SM (D).

• Rep(D) ⊆ SM (D).

• For universal and acyclic referential ICs,
Rep(D) = SM (D).

4 Consistent Query An-

swering

The repair program Π(D , IC) computes ex-
actly the repairs of the database for universal
and acyclic RICs, and a superset when univer-
sal and cyclic RICs are considered. We want
to use this specification in order to compute
the consistent answers from a database with
respect to a set of ICs.

We will first concentrate in the case of uni-
versal and acyclic RICs. In this case, in or-
der to compute the consistent answers to a
query Q, we need to collect the answers that
we receive simultaneously from all the stable
models of the program Π(D , IC). This can be
done by first replacing every atom P (x̄) of the
query by P (x̄, t??). This will force to apply the
query over the atoms that belong to every re-
pair. This new query can be transformed into
a query program Π(Q) by a standard transfor-
mation [29, 1]. If this query program is run
in combination with Π(D , IC), the consistent
answers to the query will be obtained.

Example 14 (example 10 continued) Queries
Q1 and Q2 transformed into query programs
are:
Π(Q1) : Ans(x, y)← P (x, y, t??).
Π(Q2) : Ans← not aux2.

aux2 ← P (x, y, t??), not aux1(x).
aux1(x)← R(x, z, t??).

If we run Π(D , IC) ∪ Π(Q1) we get
(only the relevant part is shown): M1 =
{. . . , P (a, d, t??), R(a, d, t??), T (a, t??),
R(b, e, t??), Ans(a, d)}, and M2 = {. . . ,
P (a, d, t??), R(a, d, t??), T (a, t??), T (b, t??),
R(b, e, t??), P (b, null, t??), Ans(a, d),
Ans(b, null)}. The only Ans tuple in
both repairs is (a, d), and therefore it is the
only consistent answer to the query.

If we do the same for query Q2, we get the
following: M1 = {. . . , P (a, d, t??), R(a, d, t??),
T (a, t??), R(b, e, t??), aux1(a), aux1(b), Ans},
and M2 = {. . . , P (a, d, t??), R(a, d, t??),
T (a, t??), T (b, t??), R(b, e, t??), P (b, null, t??),
aux1(a), aux1(b), Ans}. Since Ans is in both
repairs the answer to the boolean query is Yes.
2

Summarizing, in order to compute consistent
answers under universal and acyclic RICs, the
repair program has to be run with a query pro-
gram, which will allow us to extract the answers
that are true in all the stable models. We have
successfully experimented with CQA based on
specification of database repairs using the DLV
system [21].

For cyclic constraints things are more com-
plex. If repairs of RICs are obtained by adding
arbitrary elements of the domain, the problem
of consistent query answering becomes unde-
cidable [13]. It is possible to prove that under
our null values based repairs, the same prob-
lem is decidable. We still have the problem
of obtaining undesirable models for the pro-
grams, those that do not correspond to repairs.
We are currently extending the logic program
based specification of repairs with local tests
for minimality [30]. Using logic programs with
priorities [10, 19] is an alternative, due to the
fact that, even though all stable models are
minimal, the minimality of those that do not
correspond to repairs is related to the auxil-
iary predicates and not to the database pred-
icates (c.f. example 12). In consequence, giv-
ing higher priorities to the latter seems to be
the right approach. In [15] repairs of RICs by
only tuple deletions are investigated. In this
case, the problem becomes decidable, but as
complex as the evaluation of disjunctive logic
programs under the skeptical stable model se-
mantics [20, 18].

5 Optimizations

Sometimes, the repair programs may be trans-
formed into equivalent non-disjunctive pro-
grams, i.e., having the same stable models,
and then, also specifying the same repairs.
This is the case when the disjunctive pro-
grams are head-cycle-free [7] (see below). Non-
disjunctive logic programs have lower computa-
tional complexity than general disjunctive pro-
grams [18, 27].

The dependency graph of a ground (or fully
instantiated) disjunctive program Π is defined
as a directed graph where each literal L in the
program (i.e., atom or negation of atom) is a
node; and there is an arch from L to L′ iff there
is a rule in which L appears positive in the
body and L′ appears in the head. Π is head-
cycle-free (HCF) iff its dependency graph does
not contain directed cycles that go through two
literals that belong to the head of the same rule.

A disjunctive program Π is HCF if its ground
version is HCF. If this is the case, Π can
be transformed into a non-disjunctive normal
program sh(Π) with the same stable models
[7]. The non-disjunctive version is obtained
by replacing every disjunctive rule of the form:∨n

i=1
Pi(x̄i) ←

∧m

j=1
Qj(ȳj) by the n rules

Pi(x̄i)←
∧m

j=1
Qj(ȳj) ∧

∧
k 6=i not Pk(x̄k), i =

1, ..., n.

Transformations of this kind can be justified
or discarded on the basis of a careful analysis
of the intrinsic complexity of consistent query
answering [15]. If the original program can be
transformed into a non-disjunctive normal pro-
gram, then also other efficient implementations
could be used for query evaluation, e.g., XSB
[32], that has been applied in interaction with
an IBMDB2 DBMS in the context of consistent
query answering via first-order query transfor-
mation, but only for non-existentially quanti-
fied conjunctive queries and limited classes of
universal ICs [14].

In [6] it was proved that for the class of
universal ICs, the repair programs are HCF,
but there no results were reported on refer-
ential ICs. Now, we have been able to iden-
tify, on the basis of a general test to be ap-
plied to a set of ICs containing acyclic RICs,
some useful classes of ICs for which the spec-
ification program becomes HCF. For example
this is the case when IC only contains denial
constraints; i.e., formulas of the form (1) with-

out positive literals (e.g., FDs and range con-
straints fall in this class); plus acyclic referen-
tial integrity constraints. In consequence, for
acyclic foreign key constraints the repair pro-
gram becomes HCF.

Example 15 (example 11 continued) The
program is HCF and therefore it can be
transformed into a normal program by shifting
one by one the literals in the disjunctive head
to the body in negated form. In this case,
the program sh(Π(D , IC)) is obtained from
Π(D , IC) by replacing rules in 4. and 5. by:
4. P (x, y, fa)← P (x, y, t?), R(x, y, fa), dom(x),

not R(x, y, ta), dom(y).

R(x, y, ta)← P (x, y, t?), R(x, y, fa) dom(x),

not P (x, y, fa), dom(y).

R(x, y, ta)← P (x, y, t?), not R(x, y, td),

not P (x, y, fa) dom(x), dom(y).

P (x, y, fa)← P (x, y, t?), not R(x, y, td),

not R(x, y, ta) dom(x), dom(y).

5. P (x,null , ta)← T (x, t?),not aux(x), dom(x),

not T (x, fa), not P (x,null , td).

T (x, fa)← T (x, t?),not aux(x), dom(x),

not P (x,null , ta), not P (x,null , td).

aux(x)← P (x, y, td), not P (x, y, fa).

aux(x)← P (x, y, ta).

The stable models of this program coincide
with those of the original program Π(D , IC).
2

6 Implementation Issues

We are currently working on the implementa-
tion of a system for computing consistent query
answers on the basis of the repair programs.
The details will be presented somewhere else;
however we can discuss here a few general is-
sues.

It is clear that any implementation must op-
timize several processes that participate in con-
sistent query answering. This is because, query
answering from disjunctive logic programs has
a rather high complexity [18, 20]. However,
by using logic programs we are not exceeding
the intrinsic complexity of the problem of con-
sistent query answering. In other words, in
the general case, the program evaluation and
consistent query answering have the same com-
plexity (actually, they are ΠP

2
-complete in data

complexity) [15, 13]. What is important is
to be able to both identify those cases where
the complexity of CQA is lower, and optimize

the program in order to match this lower com-
plexity (as the class identified in section 5,
for which the complexity of both consistent
query answering and the evaluation of the non-
disjunctive program can be brought down to
the class NP). In a similar spirit, determining
classes of ICs and queries for which the lower
complexity well-founded semantics of logic pro-
grams [33] can be used is also interesting.

The interaction of a logic programming sys-
tem and a DBMS is another and important
source of complexity. Evaluation of stable mod-
els should be avoided whenever possible, trying
to obtain as much direct information from the
original database as possible. A first step in
this direction would be to detect, when a query
is to be consistently answered, if the inconsis-
tencies in the data (if any) are relevant to the
query at hand. A consistency check could de-
termine if the query can be answered directly
from the database or the repair program has to
be used.

Building a component which decides if the
database is consistent or not is simple: The
queries

C(x)← P1(x1), . . . , Pm(xm),not Q1(y1
),

· · · , not Qn(yn), ϕ̄,

for each universal integrity constraint of the
form (1), and

C ′(x) ← P1(x) ∧ not aux(x)
aux(x)← Q(x′, y),

for each referential integrity constraint of the
form (3), will detect the tuples participating in
violations of the ICs. Predicates C and C ′ can
be defined, stored and updated as SQL views
in the the database, which would reduce the
overhead of recomputing them.

If violations that are relevant to the query
are detected (actually detecting the relevant
ones is another interesting issue), a generator
of the repair program, or the programs them-
selves, should be called. Notice that the repair
programs depend on the ICs and not on the
query, so, they can be reutilized. Next, a sta-
ble model generator, such as DLV, has to be
used. Finally, the query can be evaluated by
running it with the repair program in the logic
programming environment.

Since the logic programming environment
has to interact with the DBMS, which stores
the facts of the program, it is important to
avoid unnecessary data extraction. In this
sense, it becomes relevant to determine those

tables and portions of them which are involved
in violation of ICs and relevant to the query.
Some interesting ideas in this direction can be
found in [22].

It is important to emphasize that we are not
interested in the repairs per se. In principle,
they are used as auxiliary means to charac-
terize the consistent answers. In [2], for re-
stricted classes of queries and ICs, it was pos-
sible to compute consistent answers by query
the original database alone. However appealing
to, complete or partial, computation of repairs,
becomes necessary in other cases. In these cir-
cumstances, we must minimize their computa-
tions or the amount of data involved in the pro-
cess. The emphasis should be on query answer-
ing and not on the computation of the repairs.

It is a problem that the state of art research
and implementations of stable model seman-
tics of logic programs are strong at computing
(some) stable models, but not at query answer-
ing. Full instantiation of the program should
be avoided as much as possible; and the sys-
tem should allow to pose open queries. In this
direction, recent research on magic sets tech-
niques for disjunctive logic programs under sta-
ble model semantics is encouraging [17, 26].
They would allow to reduce the amount of data
participating in query processing.

Another direction worth being explored con-
sists in caching previous results of consistent
query answering, trying to reuse them when
new queries for consistent answers are received;
this would avoid running more than desired a
stable model generator/evaluator.

7 Conclusions

In this paper we have presented research results
that go in the direction of providing mecha-
nisms, to be implemented as as part of the core
of a DBMS, that would allow a user to specify,
together with a query, a set of integrity con-
straints -that are not necessarilly maintained
by the DBMS- in such a way that the answers
to the queries obtained from the system are
consistent with the given semantic constraints.

Our approach uses some techniques from the
area knowledge representation. At the current
state of this line of research, the methodology
provably works for any class of first-order ICs
that contains universal constraints and acyclic
referential constraints.

The current approach considers null-value
based repairs under referential integrity con-
straints. Null values have a special treatment
with respect to satisfaction of ICs, and as a con-
sequence, they do not propagate in the repair
process. In [3, 5, 13], repairs of RICs using nor-
mal domain values are considered. This, under
cyclic sets of RICs, may lead to undecidability
of consistent query answering. It would be in-
teresting to study some sort of mixed approach,
and also the possibility of limited propagation
of null values. This is a direction that requires
further investigation.

The general complexity of our approach does
not exceed the intrinsic complexity of the prob-
lem of obtaining consistent query answers;
however, as previously discussed, still much ex-
citing research has to be done in terms of op-
timizing many aspects of the mechanisms, and
implementing them in real DBMSs.

Some of the concepts and techniques de-
veloped for consistently querying single rela-
tional databases, like those presented here,
have found applications in the context of vir-
tual data integration. There, global integrity
constraints are not maintained, and answers to
global queries that are consistent with those
constrains are expected to be returned by the
mediator [11, 12].

Connections between consistent query an-
swering, virtual data integration and query an-
swering in peer-to-peer data exchange systems
are established in [8]. Query answering from
a peer has to consider the data exchange con-
straints and trust relationships with the other
peers in the system.

Consistent query answering seem to have
natural connections with the area of data ex-
change, where the main problem is to transfer
data from a source database to a target schema
that may be different from the schema of the
source. In consequence, mappings have to be
specified in order to establish the relationship
between the data at the source and the data at
the target [23], and the process of data transfer
has to respect the formulas that express those
mappings. However, there are some differences
with CQA that deserve further investigation.
For example, it is usually the case that for
a given source instance, and in contrast with
CQA, there are infinite instances at the target
that are “solutions” to the problem. The typ-
ical syntactic form of the exchange constraints

used to express the mappings causes that any
superset of a solution is also a solution, whereas
database repairs are always minimal.

On the other side, in data exchange some
techniques have have been developed to show
that some queries over the target schema are
not rewritable as a queries that, over a ma-
terialized target instance, give a result that is
semantically equivalent with the source [4]. It
is possible that some of those techniques could
be used to show that the consistent answers
to some queries cannot be expressed as a first-
order views over the underlying instance.

Acknowledgements: Research supported
by NSERC Grant 250279-02, and IBM CAS
(Toronto Lab.) and CITO awards. We are
grateful to Mauricio Vines for his support with
the implementation efforts of consistent query
answering, and to Marcelo Arenas and Pablo
Barcelo for some useful remarks. We also ap-
preciate technical and stylistic comments by
anonymous referees.

About the Authors: Loreto Bravo is a
Bachelor in Sciences of Engineering and a Civil
Transportation Engineer from the Catholic
University of Chile (PUC). She is a graduate
student and PhD candidate in Computer Sci-
ence at Carleton University. She participates in
a CITO/IBM-CAS (Toronto) Student Intern-
ship Program. Leopoldo Bertossi is a full pro-
fessor of computer science at Carleton Univer-
sity. Before he was a professor at the Catholic
University of Chile (PUC). He has held visit-
ing academic positions at the universities of
Toronto, Wisconsin-Milwaukee and Marseille
(Luminy), and Technical of Berlin. He is a Fac-
ulty Fellow of the IBM Center for Advanced
Studies, Toronto Lab.; and a member of the
NSERC Computing and Information Sciences
Grant Selection Committee (GSC 330), 2002
-2005.

References

[1] Abiteboul, S., Hull, R. and Vianu, V.
Foundations of Databases. Addison-Wesley,
1995.

[2] Arenas, M., Bertossi, L. and Chomicki, J.
Consistent Query Answers in Inconsistent

Databases. In Proc. Symposium on Princi-
ples of Database Systems (PODS 99), ACM
Press, 1999, pp. 68–79.

[3] Arenas, M., Bertossi, L. and Chomicki,
J. Answer Sets for Consistent Query An-
swers. Theory and Practice of Logic Pro-
gramming, 2003, 3(4-5), pp. 393-424.

[4] Arenas, M., Barcelo, P., Fagin, R. and
Libkin, L. Locally Consistent Transforma-
tions and Query Answering in Data Ex-
change. In Proc. Symposium on Princi-
ples of Database Systems (PODS 04), ACM
Press, 2004, pp. 229-240.

[5] Barcelo, P. and Bertossi, L. Logic Pro-
grams for Querying Inconsistent Databases.
In Proc. Fifth International Symposium on
Practical Aspects of Declarative Languages
(PADL 03). Springer LNCS 2562, 2003, pp.
208–222.

[6] Barcelo, P., Bertossi, L. and Bravo, L.
Characterizing and Computing Semanti-
cally Correct Answers from Databases with
Annotated Logic and Answer Sets. In
‘Semantics of Databases’, Springer LNCS
2582, 2003, pp. 1–27.

[7] Ben-Eliyahu, R. and Dechter, R. Proposi-
tional Semantics for Disjunctive Logic Pro-
grams. Annals of Mathematics and Artifi-
cial Intelligence, 1994, 12:53-87.

[8] Bertossi, L. and Bravo, L. Query An-
swering in Peer-to-Peer Data Exchange
Systems. In Proc. International Workshop
on Peer-to-Peer Computing & DataBases
(P2P&DB 04). To appear in Springer
LNCS. Also in CORR repository under
cs.DB/0401015.

[9] Bertossi, L. and Chomicki, J. Query
Answering in Inconsistent Databases. In
‘Logics for Emerging Applications of
Databases’, J. Chomicki, G. Saake and R.
van der Meyden (eds.), Springer, 2003.

[10] Brewka, G. and Eiter, T. Preferred An-
swer Sets for Extended Logic Programs. Ar-
tificial Intelligence, 1999, 109(1-2):297-356.

[11] Bravo, L. and Bertossi, L. Logic Pro-
grams for Consistently Querying Data In-
tegration Systems. In Proc. International
Joint Conference on Artificial Intelligence

(IJCAI 03), Morgan Kaufmann, 2003, pp.
10–15.

[12] Bravo, L. and Bertossi, L. Disjunctive De-
ductive Databases for Computing Certain
and Consistent Answers to Queries from
Mediated Data Integration Systems. To ap-
pear in Journal of Applied Logic.

[13] Cali, A., Lembo, D. and Rosati, R. On the
Decidability and Complexity of Query An-
swering over Inconsistent and Incomplete
Databases. In Proc. Symposium on Princi-
ples of Database Systems (PODS 03), ACM
Press, 2003, pp. 260-271.

[14] Celle, A. and Bertossi, L. Querying Incon-
sistent Databases: Algorithms and Imple-
mentation. In ‘Computational Logic - CL
2000’, J. Lloyd et al. (eds.). Stream: 6th
International Conference on Rules and Ob-
jects in Databases (DOOD 00). Springer
LNAI 1861, 2000, pp. 942–956.

[15] Chomicki, J. and Marcinkowski, J.
Minimal-Change Integrity Maintenance Us-
ing Tuple Deletions. arXiv.org paper
cs.DB/0212004. To appear in Information
and Computation.

[16] Chomicki, J., Marcinkowski, J. and Sta-
worko, S. Hippo: A System for Comput-
ing Consistent Answers to a Class of SQL
Queries. In Advances in Database Technol-
ogy - EDBT 2004, Springer LNCS 2992,
2004, pp. 841-844.

[17] Cumbo, C., Faber, W., Greco, G.
and Leone, N. Enhancing the Magic-
Set Method for Disjunctive Datalog Pro-
grams. In Proceedings of the 20th Inter-
national Conference on Logic Programming
(ICLP 04), 2004. To appear.

[18] Dantsin, E., Eiter, T., Gottlob, G. and
Voronkov, A. Complexity and Expressive
Power of Logic Programming. ACM Com-
puting Surveys, 2001, 33(3): 374–425.

[19] Delgrande, J., Schaub, T. and Tompits,
H. A Framework for Compiling Preferences
in Logic Programs. Theory and Practice of
Logic Programming, 2003, 3(2):129-187.

[20] Eiter, T., Gottlob, G. Complexity As-
pects of Various Semantics for Disjunctive

Databases. In Proc. Symposium on Princi-
ples of Database Systems (PODS 93), ACM
Press, 1993, pp. 158-167.

[21] Eiter, T., Faber, W.; Leone, N. and
Pfeifer, G. Declarative Problem-Solving in
DLV. In Logic-Based Artificial Intelligence,
J. Minker (ed.), Kluwer, 2000, pp. 79-103.

[22] Eiter, T., Fink, M., Greco, G. and Lembo,
D. Efficient Efficient Evaluation of Logic
Programs for Querying Data Integration
Systems. In Proc. 19th International Con-
ference on Logic Programming (ICLP 03),
Springer LNCS 2916, 2003, pp. 163-177.

[23] Fagin, R., Kolaitis, P., Miller, R.J. and
Popa, L. Data Exchange: Semantics
and Query Answering. In Proc. Inter-
national Conference on Database Theory
(ICDT 03), Springer LNCS 2572, 2003, pp.
207–224..

[24] Gelfond, M. and Lifschitz, V. Classical
Negation in Logic Programs and Disjunc-
tive Databases. New Generation Comput-
ing, 1991, 9:365–385.

[25] Greco, G., Greco, S. and Zumpano, E. A
Logic Programming Approach to the In-
tegration, Repairing and Querying of In-
consistent Databases. In Proc. Interna-
tional Conference on Logic Programming
(ICLP 01), Springer LNCS 2237, 2001, pp.
348–364.

[26] Greco, G., Greco, S., Trubtsyna, I.
and Zumpano, E. Optimization of
Bound Disjunctive Queries with Con-
straints. arXiv.org paper cs.LO/0406013.
To appear in Theory and Practice of Logic
Programming.

[27] Leone, N., Rullo, P. and Scarcello, F.
Disjunctive Stable Models: Unfounded
Sets, Fixpoint Semantics, and Computa-
tion. Information and Computation, 1997,
135(2):69-112.

[28] Leone, N. et al. The DLV System for
Konwledge Representation and Reasoning.
arXiv.org paper cs.LO/0211004. To appear
in ACM Transactions on Computational
Logic.

[29] Lloyd, J.W. Foundations of Logic Pro-
gramming. Second ed., Springer-Verlag,
1987.

[30] Niemela, I. Implementing Circumscription
Using a Tableau Method. In Proc. Euro-
pean Conference on Artificial Intelligence
(ECAI 96), 1996, pp. 80–84.

[31] Reiter, R. On Closed World Databases.
In Logic and Databases, H. Gallaire and J.
Minker (eds.), Plenum Press, 1978, pp. 55-
76.

[32] Sagonas, K.F., Swift, T. and Warren, D.S.
XSB as an Efficient Deductive Database
Engine. In Proc. International Conference
on Management of Data (SIGMOD 94),
ACM Press, 1994, pp. 442-453.

[33] Van Gelder, A., Ross, K.A., Schlipf, J.S.
Unfounded Sets and Well-Founded Seman-
tics for General Logic Programs. In Proc.
Symposium on Principles of Database Sys-
tems (PODS 88), ACM Press, 1988, pp.
221-230.

