Data & Knowledge Engineering 69 (2010) 545-572

Contents lists available at ScienceDirect : 9 e

i Data & Knowledge Engineering
4

s ¥ ooy
ELSEVIE journal homepage: www.elsevier.com/locate/datak

The consistency extractor system: Answer set programs for consistent
query answering in databases

Monica Caniupan®*, Leopoldo Bertossi"

*Universidad del Bio-Bio, Depto. Sistemas de Informacidn, Concepcion, Chile
b Carleton University, School of Computer Science, Ottawa, Canada

ARTICLE INFO ABSTRACT

Am‘d_e history: We describe the Consistency Extractor System (Cons Ex) that computes consistent answers to
Received 9 March 2009 Datalog queries with negation posed to relational databases that may be inconsistent with
i‘“““"; ';?“““5"" r‘;{'}‘:;“ January 2010 respect to certain integrity constraints. In order to solve this task, Cons Ex uses answers set
Geepred 27 January programming. More precisely, Cons Ex uses disjunctive logic programs with stable models
Available online 4 February 2010 4 ; . = 2 . : 5
semantics to specify and reason with the repairs, i.e. with the consistent virtual instances
that minimally depart from the original database. The consistent information is invariant
Botabases under all repairs. Cons Ex achieves efficient query evaluation by implementing magic sets
In.n:gr'il-y .cunvlminls techniques, We describe the general methodology, its optimizations for query answering,
lnml'usistuncy and the architecture of the system. We also present encouragit}g experimental results,
Answer set programs © 2010 Elsevier B.V. All rights reserved,

Keywords:

1. Introduction

Integrity constraints (ICs) capture the semantics of data with respect to the external reality that the database is expected
to model. Databases should satisfy their ICs, but in practice, databases may become inconsistent with respect to them [10].
Nevertheless, in most cases only a small portion of the data is inconsistent (i.e. participates in inconsistency with respect to
the ICs). In consequence, an inconsistent database can still give us useful and semantically correct information. The process
of characterizing and obtaining consistent answers to queries is called Consistent Query Answering (CQA) [12].

Consistent query answering makes sense if, to make thing worse, it becomes impossible, undesirable or too difficult to
restore the consistency of the database by applying some form of materialized data cleaning. Conventional data cleaning
might be a non-deterministic and expensive process, that also leads to a loss of potentially useful information. In some cases,
we might actually have no permission to modify data or a clear way about how to proceed in this direction. This is the case,
for example, when autonomous and independent data sources are virtually integrated.

Enforcing consistency at query time is an alternative to enforcing consistency at the instance level. This idea is applicable
in, among other situations, (a) virtual data integration, (b) in the case of a single database on which, for better performance
purposes, some ICs are not enforced, (c) in the materialization of a database whose content is obtained from other sources. In
the latter case, the ETL process (Extract, Transform, and Load) can be seen, modeled and implemented as the materialization
of a process of CQA.

Before computing consistent answers to queries, they have to be formally characterized, in precise logical terms. This was
first done in [4]: Consistent answers to a query are invariant under all the forms of restoring consistency by minimal changes
on the database. The alternative consistent versions of the original instance are called repairs. So, consistent answers are those
that can be obtained as usual answers from every repair. The notion of consistent answer is related in spirit to the notion of

* Corresponding author,
E-mail addresses: meaniupa@ubiobio.cl (M. Caniupdn), bertossi@scs.carleton.ca (L. Bertossi),

0169-023X/($ - see front matter & 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2010.01.005

546 M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

certain answer as found, for example, in virtual data integration [1): Certain answers are those that are true of all the possible
legal instances for the integration system.

More precisely, given a relational database instance D and a set IC of ICs, a (minimal) repair [4] is an instance D’ of the
same schema, that satisfies IC, and differs from D by a minimal set of whole database tuples under set inclusion, Repairs
do not have to be materialized; actually there may be tco many of them (10}, In principle, they are virtual instances that
are used to give a model-theoretic definition of consistent answer. Mechanism for CQA can and have to be assessed against
this semantic definition.

Example 1. Consider the database schema Student(id. name). The functional dependency (FD) id — name establishes that
each student identifier is associated with a unique name value. The first two tuples of the following database instance D, that
can be the result of the integration of two data sources, violate the FD:

Student

id name
1 smith
1 peter
2 Jones

Consistency can be minimally restored by deleting either tuple Student(1,smith) or tuple Student(1, peter). If we delete
both tuples, the resulting database is not a repair since it does not satisfy the minimality requirement. Therefore, there
are two database repairs:

Student
id name id name
1 smith 1 peter
2 jones 2 jones

We can see that certain information persists in the repairs, e.g. tuple Student(2, jones) is in both of them, reflecting the fact
that it does not participate in the violation of the FD. On the other hand, the “inconsistent tuples” Student(1.smith) and
Student(1, peter) do not persist in all the repairs. If we want to know the id of student jones, we can pose the query
Student(x, jones). The answer to this query is (2) in both repairs, therefore the consistent answer is (2).

Moareover, for the boolean disjunctive query Student(1.smith) v Student(1, peter), the consistent answer is yes, since each
repair satisfies one of the disjuncts in the query. Notice that if we had simultanecusly deleted all the tuples participating in
an inconsistency, we would have lost this kind of information,

Already in [4) some computational mechanisms were presented that do not use or compute the repairs, but pose a new,
rewritten query to the given inconsistent database, The answers to the new query are the consistent answers to the original
query. Cf. [12] for a survey containing more recent results of this kind.

The algorithm for CQA proposed in [4] implemented and slightly extended in [25] is applicable to limited classes of que-
ries and ICs, e.g. projection-free conjunctive queries, functional dependencies, full inclusion dependencies. In these cases, the
first-order (FO) query can be rewritten into a new FO query that posed and answered as usual to given instance, obtains the
consistent answers to the original query. Other FO query rewriting methods for CQA were presented in [27,39,46). However,
they are still limited in their applicability, which is due to the intrinsic higher data complexity of CQA. Cf. [10,12] for surveys
in this direction, and [60] for more recent results about non-FO rewritability of CQA. The on-the-fly, at query time, resolution
of inconsistencies is what makes the FO rewriting for CQA difficult or impossible. This is in contrast to, for example, querying
databases through DL-Lite ontologies by FO query rewriting [20], where the ontology basically extends the underlying data-
base without being in logical conflict with it.

As a consequence, languages for query rewriting than are more expressive than FO Logic became necessary. Actually, they
first and naturally emerged when logic programs were used to specify the repairs, with the idea of query this compact spec-
ification of repairs in order to obtain the consistent answers. In several papers |5,8,9,15,16,32,43), database repairs were
specified as the stable models of disjunctive logic programs with stable model semantics [40] (aka. answer set programs).
The logic programs that specify the repairs are called repair programs.

The logic programs introduced in [16] are most general and take into consideration the possible accurrences of null values
in the databases. Furthermore, they capture the use of null values for restoring consistency with respect to referential ICs
(RICs). Actually, in {9,16] it was shown that there is a one-to-one correspondence between the stable models of the repair
program and the repairs with respect to RIC-acyclic sets of ICs, i.e. sets of constraints that do not present cycles involving
RICs (cf. Section 2).

M. Caniupdn, L. Bertossi{ Data & Knowledge Engineering 69 (2010) 545-572 547

The data complexity of CQA [27] matches the data complexity of query evaluation from disjunctive logic programs with
stable model semantics, which in the general case is /75-complete [30]. However, it is possible to identify classes of ICs and
queries, for which CQA has (provably) lower data complexity. Among them we find those classes that allow for FO query
rewriting, as we mentioned above. For them CQA can be solved in polynomial time in data complexity. Also coNP-complete
cases have been identified {9,27,28.39].

1.1. Problem statement

Consistent answers to a query can be computed by evaluating a (properly modified) query against the repair program.
This can be done, e.g. with the DLV system [47]. However, using repair programs for CQA in a straightforward and naive man-
ner is not very efficient (cf. Section 6). Therefore, it becomes relevant to optimize their evaluation.

Optimizations for CQA have been studied and introduced before in the context of data integration. In [32] techniques to
efficiently compute and store database repairs are described. Basically, database facts participating in violations of universal
ICs are located and extracted from the database (which does not contain null values). This splits the database in two parts:
(a) The affected database, which contains data violating the ICs. (b) The safe database, which stores consistent data. That
operation makes it possible to speed up the computation of repairs. They are computed for the affected part only, and at
a second stage they are combined with the safe part. Even though this methodology reduces the amount of data participating
in the evaluation of repair programs, the focus is still on the computation of database repairs. In this paper we do not con-
centrate on explicit computation of repairs, but on consistent query answering.

1.2. Contributions and outline

In this work we show that only a subset of the program and of the database facts are needed to compute answers to a
specific query. This subset can be captured by using Magic Sets (MS) methodologies which transform the combination of
the query program and the repair program into a new program that-in essence-contains a subset of the ariginal rules in
the repair program, namely those that are relevant to evaluate the query at hand. in particular, with MS only a relevant sub-
set of the database will be used for query evaluation.

Classically, MS optimizes the bottom-up processing of queries in deductive (Datalog) databases by simulating a top-
down, query-directed evaluation [6,7,26]. Recently, the MS techniques have been extended to logic programs with stable
models semantics [35,29.42,44).

In this paper we show how to adopt and adapt those techniques to our repair programs, resultingina sound and complete
MS methodology for CQA from repair programs with program constraints. This MS methodology is the one implemented in
the Cons Ex system. In Section 6, we show that the use of MS in the evaluation of queries considerably improves the execu-
tion time.

In Cons Ex we use, optimize, and implement the repair logic programs introduced in [16}. In consequence, Cons Ex can be
applied to relational databases containing NULL, and used for CQA with respect to arbitrary universal ICs, acyclic sets of ref-
erential ICs, and NOT NULL constraints. The NULL appearing in the database or introduced to restore consistency with respect
to RICs is as used in DBMSs that conform to the SQL standard. In [16] a FO semantics for this kind of NULLs was presented.
The notion of consistency used in [16] is relative to this semantics, and the same applies to the repair semantics.

The queries supported by Cons Ex are Datalog queries with negation, which goes beyond first-order queries. Consistent
answers to queries are computed by evaluating the magic version of the program that consists of the general (query inde-
pendent) repair program plus the particular query. The magic program is automatically generated by Cons Ex, and then it is
internally passed as an input to DLV, which evaluates it. All this is done in interaction with a IBM DB2 relational DBMS.

Cons Ex is the most general implementation of CQA, and the optimizations introduced both on the repair programs and
query answering make it an interesting tool for experimenting with and doing CQA on real databases stored in a commercial
DBMS. In Cons Ex the execution time of query programs is considerably faster than the naive execution of query programs
against repairs programs (cf. Section 6).

In this paper we also describe the methcdologies implemented in Cons Ex, and the features, functionalities and perfor-
mance of the system. We also state in precise terms and prove results mentioned in |211 This paper also provides all the
logical foundations for the MS methodology described in [22], and extends the experimental results presented therein.

The rest of the paper is organized as follows: In Section 2, we recall some concepts and terminology. Section 3 describes
the repair programs. Section 4 presents the MS methcdology for query evaluation against repair programs. Section 5 de-
scribes the architecture and interface of Cons Ex. Section 6 presents the results of the experimental evaluation of CQA. Section
7 presents conclusions and future work.

2. Preliminaries

In this section we introduce some relevant concepts, classes of integrity constraints, database repairs, and consistent
query answering.

548 M. Ceniupdn, L Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572
2.1. Databases and integrity constraints

A relational database schema £ = (#, #, #) consists of a possibly infinite database domain 4, with null € #, a set # of
database predicates on 4, each of them with an ordered finite set of attributes, and a set & of built-in predicates, e.g.
{.}.=.#. R[i] denotes the attribute in position i of predicate R € #. There is a predicate /sNull(-) on %, such that IsNull(c) is
true iff c is null.

A database instance for schema X is a finite set D of ground atoms of the form R(c,.c,), which are called database tu-
ples.Here, R € # and (¢,,...,c,) is a tuple of constants in 4. The extensions for built-in predicates are fixed, and possibly infi-
nite in every database instance.

Queries are formulas over the first-order language #(Z) determined by X. Given a database instance D, a tuple of con-
stants f in # is an answer to a query 2() in D iff D |= #(f) , i.e. 2(X) becomes true in D when the variables in % are replaced
by the corresponding constants in i. Sometimes we will also consider queries that are expressed in other logical languages
based on the predicates in Z, e.g. queries in Datalog or in some of its extensions.

There is also a fixed set IC of integrity constraints, that are sentences in the first-order language (). They are expected
to be satisfied by any database instance of Z, but they may not. More precisely, in this paper an integrity constraint is a sen-
tence ¢ € £(2) of the form [16):

vx(}"\n(xn - ﬁ(\?g@,.zj) v«p))‘ (1)
i=1 |

whereP.Q; € #.% = UT % 2 = U127, G &knZ = 0.2,nZ = @ for if, and m > 1." Here ¢ is a formula containing only dis-
junctions of built-in atoms from #, whose variables appear in the antecedent of the implication.2 We will assume that there
exists a propositional atom false ¢ # that is always false in the database. Domain constants different from nul! may appear in a
constraint of the form (1). Particular cases of this general form are the universal and the referential ICs.

A universal integrity constraint (UIC) is a sentence in «(Z) that is logically equivalent to a sentence of the form:

VR(/\ Pix) - \/ Q) v fp)- 2)
i=1 =1
A referential integrity constraint (RIC) is a sentence of the form:

VE(P(%) — 32Q(7.2)). 3)

with P.Q € #.yG &, and 2 non-empty.}

Notice that our RICs contain at most one database atom in the consequent, For instance, tuple-generati ng joins in the con-
sequent are excluded, and this is due to the fact that RICs will be repaired using null (for the existential variables), whose
participation in joins is problematic. It would be easy to adapt our repair programs and MS methodology by including joins
in the consequents and also the use of arbitrary non-null values in the domain or labeled nulls as used in data exchange [36]
to represent existentially quantified variables. However, these latter alternatives open the ground for undecidability of CQA
[19] due to the potentially infinite number of repairs that appear when violations of RICs are restored. This is avoided in our
case by using the null value null, with its SQL semantics, to restore consistency, as proposed in [16).

The class (1) of ICs includes most of the ICs commonly found in database practice, e.g. adenial constraint can be expressed
as V(A Pi(%;) — false). Functional dependencies can be expressed by several implications of the form (1). each of them
with a single equality in the consequent. Partial inclusion dependencies are RICs, and full inclusion dependencies are UICs,
We can also specify unary constraints, also called check constraints. They allow to express conditions on each row of a table,
and then they can be formulated with one predicate in the antecedent of (1) and only a formula ¢ in the consequent. For
example, ¥xy(P(x,y) — ¥ > 0) is a unary constraint.

Moreover, we consider NOT NULL-constraints (NNC), which are common in commercial DBMSs, They prevent certain
attributes from taking a null value, A NOT NULL-constraint is of the form [16]:

VE(P(X) A IsNull(x,) — false), 4

where x; € X is in the position of the attribute that cannot take the null value. Notice that 2 NNC is not of the form (1), because
it contains the special predicate IsNull.

Example 2. Consider the schema X = {Student(id. name), Grad(id, name). Assistant(id. course)}. The following are ICs:

(a) The functional dependency (FD) Student :id — name, expressed in £(X) by the UIC vidname,name,(Student
(id. name,) A Student(id, name;) — (name, = name,)).

' Note that if z, nz#0 the formula can be rewritten as an equivalent formula such that N2~ 0,
2 The lefe hand side of a implication is called the antecedent, while that the right hand side is called the consequent of the implication.
* For simplification purposes, we assume that the existential variables appear in the last attributes of @, but they may appear anywhere else in Q.

M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572 549

(\a
3200 @0
(@) L]

Fig. 1. Dependency graph %(/C) and contracted dependence graph <(IC).

(b) The full inclusion dependency (IND) Grad|id, name] C Student(id. name), expressed by the UIC Yidname(Grad(id,
name) — Student(id, name)).

(¢) The non-full inclusion dependency Assistant(id) G Student{id] can be expressed as a RIC Vidcourse(Assistant(id,
course) — 3nameStudent(id, name)). Here, X = (id, course), y = (id), and Z = (name).

(d) The NNC Vid, name(Student(id, name) A IsNull(id) — false) specifies that the first attribute of relation Student cannot
take a null value. Notice that the (a) and (d) together specify that id is the primary key of relation Student.

We consider a fixed finite set IC of ICs of the forms (1) and (4). Notice that sets of constraints of these forms are always
logically consistent, in the classical sense, since database instances with empty relations always satisfy them. RiC-acyclic sets
of constraints will be particularly relevant. We need some auxiliary notions before introducing them.

Definition 1 [21]. The directed dependency graph %(IC) for a set IC of ICs of the form (1) and (4) is defined as follows:
Each database predicate P in # is a node. There is a directed edge (P;, P;} from P; to P; iff there exists a constraint ¢ € IC,
such that P; appears in the antecedent of ¢ and P; appears in its consequent. In addition, there is an edge (P, P;) from P,
to P, if P, appears in the antecedent of a constraint y that has only built-in predicates in its consequent or the
IsNull predicate in its antecedent. Finally, a node of %(IC) is called a sink (source) if it has only incoming (outgoing)
edges.

Intuitively, the directed dependency graph shows the interaction between predicates involved in ICs. A connected compo-
nent in a graph is a maximal subgraph such that, for every pair (A, B) of its vertices, there is a path from A to B or from B to A.
For a graph %, %(9) := {c|c isaconnectedcomponentin ¥}; and ¥"(%) is the set of vertices of 4.

Definition 2 [16]. Given a set IC of UICs, RICs, and NNCs, ICy denotes the set of UICs and NNCs in IC. The contracted
dependency graph of IC, #°(IC), is obtained from %(IC) by replacing, for every ¢ € €(4(ICu 1.4 the vertices in ¥7(c) by a single
vertex and deleting all the edges obtained from elements of ICy. Finally, IC is said to be RIC-acyclic if «€(IC) has no cycles.

In other words, the contracted dependency allows us to determine if a set of ICs is RIC-acyclic.

Example 3. Fig. 1a shows the dependency graph %(IC) for the set IC of UICs containing ¢, : Vx(S(x) — Q(x)) and
@7 : YX(Q(X) — R(x)), the RIC @5 : VX(Q(x) — 3yT(x,y)), and the NNC Vx(S(x) A IsNull(x) — false).

Edges 1 and 2 correspond to the UICs ¢, and ¢, resp., edge 3 to the referential IC, and edge 4 to the NNC. Nodes R and T
are sink nodes.,

Fig. 1b shows the contracted dependency graph 9 (IC), which is obtained by replacing in %(IC) the vertices Q,R,S by a
vertex labeled with {Q,R.S}. and deleting edges 1,2, and 4. Since there are no loops in @€(iC), the set IC is RIC-acyclic.
However, if we add a new UIC: Vxy(T(x.y) — R(y)) to IC, all the vertices belong to the same connected component. Fig. 2
shows 9(IC) and 9<(IC), respectively. Since there is a self-lcop in ¥°(IC), the set of ICs is not RIC-acyclic.

A set of UICs is always RIC-acyclic, as expected.
2.2, Constraint satisfaction and null values

A database instance D is consistent if it satisfies the given set IC of 1Cs. Otherwise, it is inconsistent with respect to IC. The
semantics of constraint satisfaction in presence of the null value we consider in this paper was defined in [16]. Now we
briefly recall it.

Definition 3 [16).

(a) For ¢ a term, i.e. a variable or a domain constant, let pos® (¢, t) be the set of positions in predicate R € # where term t
appears in IC y. The set of relevant attributes for an IC ¢ of the form (1) is:
o (¥) = {R[i]]x is variable present at least twice in ¢.5 and i € post(y.x)}

4 Notice that, for every ¢ € 4(9(ICy)), it holds ¢ € 4{4(IC)).
5 If a variable appears at least twice in aIC, then it is invoived in a join, or it is in the antecedent and in the consequence of the IC, or it is in a built-in atom. In
all these cases, the variable (actually, the corresponding attribute) is relevant,

550 M. Ceniupdn, L Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

Fig. 2. Non-RIC-acyclic set of ICs.

U(R[i]ic is a constant in ¥ and i € pos®(y.¢)}.%

(b) For a set .« of attributes and a predicate P ¢ #, P denotes the predicate P restricted to the attributes in .. D denotes
the database D with all its database atoms projected onto the attributes in /. D has the same underlying domain #
as D.

In other words, the set of relevant attributes associated to an IC contains the attributes that have to be considered when
checking the satisfaction of the constraint, e.g. the attributes in joins, in built-ins, etc. Notice that if the built-ins have vari-
ables that are redundant or not needed, this might have the undesirable effect of transforming an attribute in relevant when
it does not need to. For example the constraint Vxy(P(x,y) — ¥y > 3 v X = x) is equivalent to Vxy(P(x, ¥) — y > 3), but the first
has relevant attributes x and y (more precisely, P|1]. P|2]) and the second one, only y (or P(2]). Possibly unnecessary checks
will not produce any logical problem,

Example 4. Consider the UIC y : Vxyz(P(x,y.z) — R(x.y))} and the database instance D = {P(a,b, nulf), P(b, null, a),R(a, b)}.
Here variables x and y appear twice in ¥, thus «(y) = {P[1],R[1], P{2], R{2}}. Since we want to verify if the values in the first
two attributes in P also appear in R, the variable z (or attribute P{3]) is not relevant to check the satisfaction of the constraint.

DW= (PY¥)(a, b, P (b, null), R*"¥)(a,b)} is the database instance restricted to the attributes that are relevant to
check y.

Intuitively, a constraint is satisfied if any of the relevant attributes has a null or the constraint is satisfied in the traditional
way, that is, according to first-order satisfaction and with null values treated as any other constant. In order to indicate that
an attribute takes the null value, we use the special predicate IsNull(-). This predicate is needed since using the built-in com-
parison atom ¢ = null will not work in traditional database management systems, where this equality would be always eval-
uated as unknown (the unique names assumption does not apply to null values [54]).

Definition 4 [16].

(a) A constraint ¢ of the form (1) is satisfied in the database instance D, denoted Di=ny, iff D7 = y¥, where ¥V is:

VX (;I\ P/ (®) — (V IsNull(v) v 32(‘\"/ Q}'I(“’)(J-/j'il) v (,0))) . (5)
1 .

i=) Y/ (v

with X = UL, % and Z = UL, 2. D™ |= ¢ refers to the classical first-order satisfaction with null treated as any other
constant in ¥,

{(b) ANNC ¢ of the form (4) is satisfied in the database instance D iff D |= ¢ in the classical sense, treating null as any other
constant.

That is, an IC of the form (1) is satisfied whenever: (a) there exists a null value in any of the relevant attributes in the
antecedent, or (b) if no null appears in the antecedent, then the second disjunction in the consequent of formula (5) is sat-
isfied, which corresponds to the consequent of the original IC restricted to the relevant attributes. This check can be done as
usual, treating nulls as any other constant.

Example 5. Example 4 cont.To check if D=y with y:Vxyz(P(x.y.z) — R(x.y)), we need to verify if D" v
xy(P7P(x.y) — (IsNull(x) v IsNull(y) v R”® (x,y))).

(a) Forx =aandy = b, D"’ |= P“¥(a,b), since none of them is a null value, i.e. IsNull(a) and IsNull(b) are both false, we
need to check if D™ |= R“®(a, b), which in this case is true.

® Remember that R[i} denotes the attribute in position i of relation R.

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 551

(b) Forx = b and y = null, D“'”’ |= P“*(b, null), since there is a null in a relevant attribute, i.e. IsNull(null) is true, the con-
straint is trivially satisfied.

As a consequence, and since there are no tuples that violate the IC, the database instance D is consistent regarding IC.

The database instance D’ = {P(a, b, null), P(b, b, a), R(a,b)} is inconsistent regarding the UIC ¢ : Vxyz(P(x,y,z) — R(x.y)).
This is because, for x=b and y = b, D" |= P*“)(b,b), but since none of them is a null value, we need to check if
D“®) |= R¥)(b, b), which in this case is false,

2.3. Database repairs

When inconsistency arises in a database instance D, it can be restored by deleting and/or inserting database tuples. This
applies in particular to violations of RICs. Assume, for example, that the RIC is ¢ : VxVy(P(x,y) — 32R(x,2)), and that
D = {P(a,b)}. which is inconsistent with respect to . Consistency can be restored by deleting the database tuple P(a,b)
or inserting a database tuple of the form R(a, d), where d € 4. We will prefer to restore consistency by taking d = null, when-
ever possible (e.g. an NNC could prevent us from making this choice).

As originally defined in [4], a repair is a new database instance with the same schema as D that now satisfies the ICs, and
minimally differs from the D with respect to set inclusion. The notion of repair we will use in this paper departs from the one
in {4), where any (not null) value in the database domain could be chosen to satisfy the RIC. in consequence, now we need
new notions of distance between database instances and of repair that take in account the preference for a null value when
satisfying a RIC.

Definition 5 [4]. Let D, D’ be database instances over the same schema and domain. The distance, 4(D, D), between D and D
is the symmetric difference 4(D,D’) = (D\D)u (D'\ D).

We use this distance to define a partial order between database instances.
Definition 6 [16]. Let D,D’, D" be database instances over the same schema and domain 4. It holds DY <D iff:

1. For every atom P(@) € 4(D,D'), with @ € (# \ {null})" where n is the arity of P it holds that P(a) € 4(D,D").
2. For every atom Q(a,null) A(D,D')? with ae (#\ {null})", there exists a be %, such that Q(a.b) e 4(D,D") and
Q(a,b) ¢ 4(D, D).

This partial order is used to define the repairs of an inconsistent database.

Definition 7 [16]. Given a database instance D and a set IC of ICs of the form (1), and NNCs of the form (4), a repair of D
with respect to IC is a database instance D', such that: (a) it has the same schema as D, (b) D'nlC, and () D' is <p-
minimal in the class of database instances that satisfy (a) and (b). The set of repairs of D with respect to IC is denoted by

Rep(D, IC).

In particular, this definition requires from a repair D’ that there is no database D" with similar properties, such that
D" <pD', where D" <pD’ means D"<pD’ but not D'<pD”. If null is absent from 4, this definition of repair coincides with the
one in (4]

There are good reasons for adopting the repair semantics in (4] when dealing with RICs, First, using the null value of SQL
databases is more natural from the point of view of database practice. Second, DBMSs consider only one null value, and la-
beled nulls cannot be implemented in SQL-complaint DBMSs. Third, under our repair semantics, even with RIC-cyclic ICs,
CQA becomes decidable [16). However, with the repair semantics in {4), either with arbitrary domain elements or arbitrarily
many labeled nulls to restore consistency of RIC-cyclic ICs, CQA is undecidable {19]. Having said that, it is important to
emphasize that the notion of IC satisfaction has to be properly defined in the presence of the single SQL null. This was done
in Definition 4, which is a logical reconstruction of IC satisfaction of ICs under SQL databases (with null). For example, accord-
ing to that semantics (and the practice with SQL databases), the only repair for the database D = {P(a)} with respect to the
set ICs IC = {VX(P(x) — 3yQ(x.y,¥)).Vxy(Q(x,y.¥)) — R(y)} would be Dr = {P(a), Q(a, nuil, null)}, which does satisfy the ICs
under the adopted semantics.

The choice of the SQL null repair semantics is essentially orthogonal to the methodology for query answering being pre-
sented in this paper. Our repair programs could be easily adapted to “theoretical” relational databases (without SQL nulls)
where inconsistencies with respect to RICs are solved by using arbitrary database domain or a set of labeled nulls. Of course,
in this case the repair program would include an domain predicate whose extension is infinite, potentially producing infi-
nitely many repairs. This would lead to the undecidability results mentioned above.

7 That a € (#\ {nuil})" means that each of the elements in tuple a belongs to (#\ {nuiip)".
8 jull is a tuple of null values, that for simplification purposes, are placed in the last actributes of @, but could be anywhere else in Q,

§52 M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572

Table 1

Annotation constants.
Annotation Atom The tuple P(a) is ...
t, Pa.t,) P(a) is advised to be made true
fo P.(a.r,) P(a) is advised to be made false
t* P.(a.1*) P(a) is true or is made true
[344 P(a.t**) P(a) is true in the repair

We will assume that the [Cs in IC are of the form (1) or NNCs of the form (4), but they are non-conflicting, in the sense that
there is no NNC on an attribute of a relation that is existentially quantified in an IC of the form (1).2 Now we can define the
notion of consistent answer to queries.

Definition 8 (4]. A tuple ? of elements of # is a consistent answer to a query () from D with respect to IC If f is an answer to
2(&) in every D' € Rep(D, IC). If the query 2 is a sentence (or boolean query), the consistent answer is yes if 2 is true in every
repair D’ of D; and no, otherwise.

Example 6. Consider the database schema X = {S(id,name),R(id.name), T(id,dept), W(id,dept,since)}, the instance
D = {S(a.c),S(b.c).R(b,c), T(a,null). W(null.b,c)}, and IC = {Vxy(S(x.y) — R(x,y)). Vx¥(T(x,y) — 32W(x,y.2)), Vxyz(W(x,¥.2)
AlsNull(x) — false)}. The instance D is inconsistent with respect to IC, because;

(a) S(a.c) is in D but R(a.c) is not, therefore the IC ¥xy(S(x.y) — R(x.y)) is violated. Consistency can be restored by insert-
ing R(a.c) or deleting S(a.c).

(b) Tuple W(null.b.c) is in D viclating IC Vxyz(W(x.y.z) A IsNull(x) — false). In this case, consistency may be restored by
deleting tuple W(null,b.c).

There are two database repairs. D; = {S(a,c),S(b.c).R(b.c).R(a.c). T(a,null)}, with difference, 4AD,Dy) = {R(a,c),
W(null.b.c)}, in terms of whole tuples, with respect to the original database instance D. D, = {S(b.c).R(b,c).
T(a.null)}, with A(D.D;) = {S(a,c), W(null,b.c)}. The database instance D; = {} is consistent with respect to IC, but it
is not a repair since it does not satisfy minimality. In fact, 4(D.Ds) = {S(a,c).S(b.c). R(b.c), T(a, null), W(null,b,c)}, and
Dy<pDs.

Consider the instance D = {P(a)} and the set of ICs IC : {Vx(P(x) — 3yQ(x.y.¥)). VX¥(Q(X.}.¥) — R(y))}. Instance D is
inconsistent with respect to IC since P(a) is in D but there is no tuple in relation Q with a as a first argument. There is one
repair Dy = {P(a), Q(a, null, null)}, with A(D, Dy} = {Q(a, null, null)}. Note that the new tuple Q(a, null, nufl) does not violate
the second IC since there is a null in a relevant attribute of Q (the attribute representing by variable y). The database instance
D; = {P(a),Q(a,d,d)}, for any d € # different from null, is not a repair: Since 4(D,D;) = {Q(a,d,d)}, we have D;<pD; and,
therefore D; is not <p-minimal. The consistent answer to query 2: Q(x,y.2) is {a. null, null). There are no consistent answers
to query 2: R(x). If RICs where restored by adding arbitrary values from the domain, then repairs for this instance would be of
the form {P(a),Q(a. /i, #),R(f)} where # is a value from the database domain.

3. Repair programs

We can use disjunctive logic programs (DLPs) with a stable models semantics [40] to specify database repairs. The
idea is that, given an inconsistent database instance D and a set IC of RIC-acyclic ICs, a repair program [I1(D,IC) is con-
structed, in such a way that there is a one-to-one correspondence between the stable models of I1(D,IC) and the repairs
of D [9,16].

Repair programs use annotation constants whose role is to enable the definition of atoms that can become true (inserted)
or false (deleted) into/from instances in order to satisfy the ICs. The idea is to use logic programming rules to specify what to
do when a database violates an IC. Actually, each atom of the form P(a) (except for those that refer to the original extensional
database) receives an annotation constant from those shown in Table 1.

Since the original database facts do not receive annotations, we also introduce an expanded version P. of each database
predicate P. The former has an extra argument to accommodate the annotation constant,

Annotations are introduced and used as follows: First, for each IC we introduce a disjunctive program rule whose body
captures the violation of the IC, and whose head describes how to restore the consistency by deleting or inserting tuples
(but not both by the minimality of stable models of the program). The atoms in the disjunctive head use the t,, f, annota-
tions, that have the intended meaning of “advising to make true (false) the atom", i.e. inserting (deleting) it into (from) the
database. That is, the atom P.(d,t,) suggest the insertion of P(@); and P_(a,f.). the deletion of P(a).

® Itis not difficult to treat the more general case where this restriction is not imposed, but the presentation would be more complex.

M. Caniupdn, L Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 553

For example, for the inclusion dependency in Example 6
vxy(S(x.y) — R(x,y)), (6)

the disjunctive program rule (7) specifies that if S(x,y) is in the database, but R(x,y) is not, i.e. there is a violation of the con-
straint that is captured by the rule body, then consistency is restored by either deleting S(x, y), which receives constant f, in
the head of the rule, or by inserting R(x, y). which receives the t, constant

5.(x,y,fa) v R(x.y, ta) = S(x,y), notR(x,y). ' (7

This rule would work well if consistency restoration were only a single step process. However, there might be several,
logically interacting ICs, and the process may take more steps. Insertions and deletions done in between have to be ta-
ken into account since they could produce new inconsistencies, until the whole process stabilizes. In order to keep track
of both original database tuples and also new ones in the database along the repair process, we use the annotation con-
stant t*.

For example, if due to an IC other than (6), S.(c, a,t,) is generated and R(c.a) is not in the database, or R(c,a) has been
made false due to R.(c,a,f.), the constraint (6) is violated once again. However, the rule (7) will not be able to restore con-
sistency, because the violation is not due to original tuples in the database. In consequence, the program rule (7) has to be
changed to

S.(%,y,fa) VR.(X,y,t) — S_(x,y,t"), notR(x,y), (8)

where the atom S_(x,y,t*) has to be specified according to its intended meaning of indicating true atoms along the repair
process, i.e. as S(x,y) or S_(x,y,t,) being true. This has to be specified for each database predicate (cf. item 5. in Definition
9 below).

For similar reasons, the rule (9) has to be added to the program, accompanying rule (8). This rule captures the case when
S.(c,a,t,) has been generated, but R(c,a) has been made false (i.e. R_(c,a,f,) has been generated), which again causes the
violation of (6):

Sx,y.6.) VR(x,y.ta) — S.(x.y.t*).R(x.y.1.). (9)

A stable model of the program is coherent if it does not contain a pair of atoms of the form P.(a.t,).P.(a,f,). That is, a
database atom is never both inserted and deleted.

Finally, we have to be able to read off the atoms that belong to a repair. They are those that were eventually inserted into
the database or were already in the original instance and were never deleted. The annotation constant t** allows to collect
all these atoms, for each database predicate (cf. item 6. in Definition 9). The following general program, introduced, extended
and optimized in a series of papers [9,15,16,21], captures all these ideas.

Definition 9. Given a database instance D, a set IC of UICs, RICs, and NNCs, the repair program /1(D, IC) contains:

—

. P(@), for each atom P(d) € D.
2. For every UIC ¢ of the form (2), the set of rules:
Vi Pa®ifa) v Vi Q05 t) — /\:,-‘-IPJ(XI-t')'AQ,&Q'QJO—'IJ.‘)’

A notQu(e), A x=null, .

QeQ” xeA (1

for every pair of sets Q' and Q" of atoms appearing in formula (2) such that Q'uQ’ = U,"_I {Q;} and Q' nQ" = @, where
/() is the set of relevant attributes for ¢, X = U, % and @ is a conjunction of built-ins that is equivalent to the negation
of .

3. For every RIC of the form (3), the rules:
P_(%,2) v Q(7, null, t;) — P_(,t*), notaux, (¥), y=null.And for every z € Z: auxy(§) — Q.(7.2,t*),notQ _(¥,z.12), y=null, z;
wnuil,

4. For every NNC of the form (4), the rule: P(%,f,) — P_(%,t*),x; = null,

5. For each predicate P € R, the annotation rules:
P_(%,t*) — P(X). PA(%,t*) — P(%,ta).

6. For every predicate P € &, the interpretation rule:P_(x,t**) — P.(%, t*), notP_(x.f,).

7. For every predicate P € # that is not a sink or a source node in 9(IC), the program constraint: — P(x,t.). P.(%.f.).

We can see that our repair programs may have rules whose heads are disjunctions of positive literals, and their bodies
may contain positive or negative literals with weak negation for negative literals.

554 M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

Example 7. Consider the database schema X = {S(id.name),R(id, name).T(id,dept), W(id,dept,since)}, the instance
D = {S(a.c).S(b.c).R(b.c).T(a.null). W(null.b.c)}, and IC = {Vxy(S(x.y) — R(x.y)).Vxy(T(x.y) — 22W(x.y.2)).Vxyz(W(x,y.2)
AlsNull(x) — false)} presented in Example 6. The repair program /7(D.IC) contains the following rules:

1. S(a.c).5(b.c).R(b.c).T(a, null).W(null. b.c).
2. 5.(x.y.f) VR (xy.1.} — S (x.y.t"). R(x.y.f.). x#null, y=null.
S.(x.y. L) VR(xy.1,) — S_(x.y.t*). notR(x.y). x#null, y#nuil,
3. Tx.y.f2) v Wo(x.y, null. t,) — T_(x,y,t*).notaux(x.y). x=<null, y=null.
aux(x,y) — W_(x.y.z.t*)}. notW_(x.y.z.£,). x#null, y=null, z#null.
4. W_(x.y.2,f)) — W_(x,y,2,t*).x = null,
5. S.(x.y.t*) —S(x,¥)
S.(xy.t%) — S.(x,y,ta) } (Similarly for R, T, w)
6. S.(x.y.t**) « S_(x.y,t*),notS_(x,y,fa)
7. — W (xy.2.6) . W(x.y,2.15).

The rules in 2. establish how to repair the database with respect to the first IC: by making S(x, y) false or R(x.y) true, These
rules are constructed by choosing all the possible sets Q' and Q" such that Q' UQ” = {R(x.¥)} and Q' N Q" = . The first rule in
2 considers Q" = {R(x.y)} and Q" = 0. The second corresponds to Q' = ¥ and Q" = {R(x.y)}. Note that conditions of the form
x#null appear for the variables corresponding to relevant attributes only. The rules in 3. specify the form of restoring con-
sistency with respect to the RIC: by deleting T(x.y) or inserting W(x.y. null). Here, only the variables in the antecedent of the
RIC cannot take null values. Rule 4. indicates how to restore consistency with respect to the NNC: by eliminating W(x,y. z).

Finally, the program constraint 7. filters out possible non-coherent stable models of the program, those that have an W-
atom annotated with both ¢, and f,. For the program in this example, given the logical relationship between the ICs, this
phenomenon could happen only for predicate W. This is because in the corresponding dependency graph for the ICs W is not
either a sink or a source node.

The program has two stable models:'?

- = {5(a,c,t*).5(b.c,t*).R.(b,c.t*). T_(a.null,t*), W_(null, b,c,t*), W.(null, b.c.f,), R.(a,c, ta),
S.(a,c.t**).S.(h.c,t*), R.(b.c.t**).R.(a.c.t*),R(a,c,t**), T_(a, null t**)}

My = {5(a.c.t*),S (b.c.t*).R.(b.c.t*), T (a.nuil,t*), W_(null, b.c.t*). W _(null, b.c, £.).5(a.c,f,).
S.(b,c.t**). R (b.c.t**), T_(a. nuilt**)).

Thus, consistency is recovered, according to .#, by inserting atom R(a.c) and deleting atom W(null.b,c)({R(a,c.t,).
W(null.b.c,f,)} € .#1); or, according to ./#, by deleting atoms {S(a.c).W(null.b.c)}({S(a.c.f,). W(null,b, c.f.)} € .#3).
Two repairs can be obtained by concentrating on the underlined atoms in the stable models: {S(a.c).S(b.c).R(b.c).
R(a.c).T(a.null)} and {S(b.c).R(b.c). T(a.null)}. as expected.

The repair program of Definition 9 is a sound and complete specification of database repairs with respect to RiC-acyclic
sets of UICs of the form (2), RICs of the form (3), and NNCs of the form (4) [9,16).""

In order to use repair programs to compute consistent answers, queries have to be expressed as logic programs. For exam-
ple, a first-order query can be translated into a logic program, namely as a program in non-recursive Datalog, possibly with
negation [49]. Alternatively, the query can be expressed directly in Datalog.'? Either way, given a query 2(R), a query program
11(.2) is generated by first expressing 2 as a Datalog program with a query atom Ans(x), and next replacing every database atom
P(3) in the program by P(5,t**).

In consequence, in order to get consistent answers, /() is combined (or run) with the repair program 72(D. IC). The con-
sistent answers to query 2 are the ground atoms in the intersection of all the extensions of the Ans predicate in the different
stable models of the program. We can see that CQA becomes a form of cautious or skeptical reasoning under the stable models
semantics [40).

Example 8 Example 7 cont. For the Datalog query 2 : Ans(x) — 5(b, x), the program 77(2) is Ans(x) — S(b, x.t**). The query
predicate Ans collects the answers to the query. The combined program 11(D.IC, 2) = I{D.IC) U 11(2) has two stable medels:

MY = {S.(a.¢.t*).S(b.c.t*).R(b.c.t*).T_(a.null.t*), W_(null, b.c. t*). W_(null,b.c.f,).R(a,c.t,),
SA(a.c,t*).S.(b.c.t**).R.(b,c.t**).R(a.c.t*).R(a,c,t**). T-(a, null, t**).Ans(c)}.

w0 Stable models are displayed without showing their auxiliary (aux) atoms and facts.
"' For non-RIC-acyclic ICs, the repair program provides a provably complete specification, but may have stable models that do not correspond to repairs [15],
*2 From now cn, when we refer to Datalog. we mean Datalog itself or any of its extensions with weak negation.

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 555

44 = {S(a,c,t*),S.(b.c.t*),R.(b,c.t*), T(a, null,t*), W_(null,b,c,t*),W_(null,b,c.f,).5(a.c.f,).
S.(b,c,t**),R(b,c,t**), T (a,null, t**),Ans(c)}.

in th.em. the atoms that are potentially relevant to answer a query program are underlined. The answers to the query are the
cautious answers, i.e. the ground Ans-atoms in the intersection of all stable models. In this case, the stable models have only
atom Ans(c) in common. Thus, the only consistent answer to 2 is {c}.

3.1. Stratification and repair programs

In this section we analyze repair programs with respect to the property of stratification. The results we obtain are impor-
tant since they allow us to use the results presented in [29,35] to prove soundness and completeness of our magic set meth-
odology for CQA. This will be done in the next section. The following definition was given in [34] for disjunctive programs
with negation but no program constraints.

Definition 10 [34]. A disjunctive program /7 without program denials is stratified if it is possible to decompose the
predicates in /7 into pairwise disjoint sets Sq, 5y, ..., S, such that: if a predicate P € S; occurs inthe headofarulerof I7T and a
predicate Pr occurs in the same rule, then:

(a) P €8, if P’ occurs in the head of r.
(b) P € 5 with j < i, if P’ occurs positively in the body of r.
(c) P ¢ §; with j < i, if P’ occurs negatively in the body of r.

Any such decomposition is a stratification of 1, and it induces a decomposition of the rules of /7 into subsets s, ..., s,
where s; contains all the rules that define a predicate P € S.. In a stratified program we find no cyclic interaction of recursion
and negation.

If we strictly apply this definition of stratification to the repair programs of Definition 9, they turn out to be non-strat-
ified due to the way recursion and negation are used. However, a closer look at the program reveals that this combination
is due to the use of a same expanded database predicate for accommodating different annotation constants. If we used
different predicates for different annotations, this problem would disappear. Actually, we will show now that the repair
programs, without considering their program constraints, can be translated into stratified DLPs that have essentially
the same semantics.

We can also characterize stratification of a disjunctive program by focalizing on its predicate dependency graph.

Definition 11

(a) The predicate dependency graph %(iT) = (V,E) of a disjunctive program without program constraints 17 is a marked
directed graph constructed as follows: For each predicate P there is a node P in V. There is a directed edge
(P,P) € E, from P to P, if there is a rule r in /7 and P and P’ occur both in the head of r; or P occurs in the body of
r, and P in its head. This edged is marked, say with ¥, if P occurs under negation.

(b) An odd cycle in ¥(17) is a cycle comprising an odd number of marked arcs.

The notion of odd cycle intreduced here will be used in Section 4. As for normal programs [3], we obtain the following
simple, alternative characterization of stratified programs that is based in the predicate dependency graph of programs. This
characterization of stratified programs will be useful for the formulation of Lemmas 2, and 3 in Section 4.

Proposition 1. A disjunctive program I1 without program constraints is stratified iff its predicate dependency graph %(I1) has no
cycle with a marked arc.

Proof. The proof is similar to the one in [3) for normal programs. If a disjunctive program /7 without program constraints is
stratified, then the definition of each relation symbol P is contained in some stratum of /7. Let s(P) be a function that returns
the index of the stratum where predicate P is defined. The following holds: (a) If the edge (P, P’} is not marked in the pred-
icate dependency graph ¥(f1), then s(P) < s(P'). (b) If (P,P') is a marked edge, then s(P) < s(P). In consequence, there are no
cycles in the dependency graph trough a marked edge.

In the other direction, decompose the predicate dependency graph into strongly connected components of maximum
cardinality. In each of them, any two nodes are connected in a cycle. We can establish the relation “there is an edge from
component A to component B”, which is finite and contains no cycles. Now, assign numbers 0....,n, for some n = 0, to the
components, in such a way that, if there is an edge from A to B, then the number assigned to A is smaller than the number
assigned to B. Let s; be the subset of program /7 consisting of the definitions of all predicates which belong to component i.
We claim that sg.. ..., is a stratification of 1. Moreover, II =S5, U USa.

556 M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

Fig. 3. Predicate dependency graph «%(IT1,°(D.IC)).

In fact, if a predicate P, € s; is in the head of a rule r and a predicate P; is also in the head of r, then P; is in stratum s,, i.e.,
both predicates have their definitions in s;. If P; is in the body of r, then P, is in stratum s; or in a stratum s; withj < i. In other
words, the definition of P, is in some s; with j < i. If P; occurs under negation, then it lies in a stratum sy withj < i, because by
assumption there is no cycle trough a marked edge, Therefore, its definition is contained in some subset sswithj<i. O

In the following, we will identify a "natural” stratification of a repair program. In order to do this, we need to intreduce a
syntactic modification of the program, one that tells apart occurrences of a same predicate with different annotations.

Definition 12. Let /7 be a program with program constraints PC:

(a) 117 := (T \ PC).
(b) I, is the program obtained from /7 by replacing each atom of the form P_(%, d), with d € {f,, t,,t* . t**}, by the atom
P4(%).

Example 9 Example 7 cont. /1;°(D, IC) has, among others, the rules:
SL(XY) VR, (X.Y) —~ S (X.¥), Re, (X.y), xsnull, y#null.
S, Y) VR, (X.Y) — Spe(X.¥). nOtR(x, y), xsnull, y#nul.

Fig. 3 shows the predicate dependency graph %(I1;<(D, IC)), restricted to predicates S and R. The complete graph would also
contain nodes for predicates T. W, and aux.

The following is a possible stratification for program f1;6(D,IC) : 5, : {S,R.T.W},s,: {St,:St,+S¢e Ry Rey Reo Too Wy, Wie).
s3: {aux}, s4: {Tf‘. We, }.ss: {S,n Ryse. T'-- . W‘.' }.

Proposition 2. For a repair program 11(D.IC), the modified program 11,(D. IC) is stratified.

This proposition follows from the fact that #(/7;(D. IC)) does not contain marked cycles. The proposition tells us that a
repair program without its program denials is essentially stratified. From the point of view of the model computation, it be-
haves as a stratified program. However, if we keep the program denials, 11,(D. IC) can be unstratified. This is because, in order
to verify the notion of stratification, a denial of the form — P(%.t,). P(X.t,) has to be rewritten into p — Py, (X).P,, (X). notp,
which destroys stratification.

Corollary 1. For every repair program 11(D. IC) that does not have program constraints, the program I1,(D. IC) is stratified.

For example, and according to this result, if IC consists only of denial constraints, e.g. functional dependencies,’? then the
repair program has no program denials, and turns out to be essentially stratified. For the next section, the following corollary
will be useful,

Corollary 2. For every repair program [1(D, IC), 4(11;(D,IC)) does not have odd cycles.
The results in this section also hold for sets of ICs that are not RIC-acyclic (cf. Definition 2). The following example shows a
repair program for a non-RIC-acyclic set of ICs, for which 11;5(D.IC) is stratified.

'3 Functional dependencies can be represented as dendal constraints. For instance, the FD vxyz{P(x,y). P(x.z) — (¥ = 2)} is equivalent to the denial constraint
(with built-ins) vayz(P(x.y). P(x.z).y#2 — false).

M. Caniupdn, L. Bertossi/ Deta & Knowledge Engineering 69 (2010) 545-572 557

Example 10. The set IC = {¥x(S(x) — Q(x)), vx(Q(X) — 3yT(x,¥)), Vxy(T(x,¥) — Q(¥))} is non-RIC-acyclic because there is a

cycle involving the RIC Vx(Q(x) — 3yT(x,y)). Consider the inconsistent database instance D = {S(a),Q(a)}, th
11;¢(D,IC) has the rules: 5(a). Q(@). the program

S(a)- Q(a),

S6,(X)V Qg (%) = Sy (), Qq, (x), xnull

Se. (%) V Qg (X) +— S (x), notQ(x), x#null,

Qr, (X} v Te, (%, null) — Qe (%), notaux(x), x#=null,
aux(x) — Ty (x,¥), n0tTg, (X, ¥),x#null, y=null,
Tr,(%Y)V Q) — T (1), Qr,(¥), y#null,
Te,(%.y) V Qq () — T (x,y), n0tQ(y), y=null,

See (%) — S(x),

See (X) — S¢, (%), (similarly for T,Q).
Stas (X) — Seo (X), N0LS¢, (X),

Program 7;(D, IC) does not have recursion via negation, and its predicate dependency graph, %(i1;°(D,IC)), does not have
cycles with a marked arc.

It is worth noticing that the data complexity of cautious query evaluation from disjunctive logic programs with stratified
negation is the same as for disjunctive logic programs with unstratified negation and stable model semantics, that is f15-
complete [31.30,41).

4. Magic sets for CQA

Consistent answers are obtained from stable models of the combination of the repair and query programs. Nevertheless, it
is usually the case that the repair program, as its stable models, contains more information than necessary to answer the
query. This is because repair programs are built considering all database predicates and database facts. However, query pred-
icates are related to a subset of the database predicates. Moreover, when answering a query, we are niot interested in obtain-
ing complete stable models (or repairs), but only in obtaining its (consistent) answers. In consequence, it becomes important
to optimize the evaluation of the repair programs by considering only predicates and facts that are relevant to the query.

The magic set (MS) techniques for logic programs with stable medel semantics take as an input a logic program-a repair
program in our case-and a query expressed as a logic program that has to be evaluated against the repair program. The out-
put is a new logic program, the magic program. This program has its own stable models, which can be used to answer the
original query more efficiently. Given a query and a program, MS process determines and selects the portion of the program
that is relevant to compute the query answers. This is partly achieved by pushing down the constants in the query in order to
restrict the tuples involved in the computation.

The stable models of the magic program are those models that contain extensions for the predicates that are relevant to
compute the query. Also, they are only partially computed with respect to the models of the original combined program. This
means, in essence, each of the stable models of the magic program can be extended to a stable model of the original program
{29.35].

The magic program contains auxiliary rules, the magic rules, that capture the dependency of the query predicates upon
certain predicates and rules of the rest of the program, in this case, of the repair program. This avoids unnecessary instan-
tiation of rules and, achieving a faster computation of stable models. In this way, we may obtain less and smaller stable mod-
els. The stable models of the magic program provide the same answers to the original query as the medels of the program
used as input to MS.

Classic MS techniques for Datalog programs [6,7,55] have been extended to non-disjunctive logic programs with unstrat-
ified negation under stable models semantics [35). and to disjunctive logic programs with stratified negation |42], with an
optimized version being implemented in DLV [29). For this kind of programs, the MS technique is sound and complete, i.e.
the method computes all and only correct answers for the query. In [44] a sound but incomplete methodology is presented
for disjunctive programs with program constraints of the form — C(X), where C() is a conjunction of literals (i.e. positive or
negated atoms). The effect of these program constraints is to discard models of the rest of the program that make true the
existential closure of C(&).

The MS techniques currently implemented in DLV cannot be applied to disjunctive programs with program constraints.
Furthermore, when the program does not contain program constraints, DLV applies MS internally, without giving access to
the magic program. As a consequence, the application of MS with DLV to repair programs (that contain program constraints)
is not straightforward.

Our repair programs are disjunctive, contain non-stratified negation, and have program constraints; the latter with only
positive intensional literals in their bodies. In consequence, none of the MS techniques mentioned above can be directly ap-
plied to optimize a combination of repair and query programs.

558 M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572

However, in this paper we present a sound and complete MS methodology that can be applied to repair programs (with
program constraints). This MS methodology works as follows: First, the program constraints are removed from the repair
program. Next, a combination of the MS techniques in [29,35] is applied to the resulting program. This combination works
for repair programs because in them, roughly speaking, negation does not occur in edd cycles. For this kind of programs,
soundness and completeness of MS can be obtained from results in [29,35] (cf. Theorem 1). Finally, the program constraints
are put back into the magic program obtained in the previous step, enforcing the magic program to have only coherent
models.

4.1. Magic sets: an example

The MS technique sequentially performs three well defined steps on the logic program: adomment, generation, and mod-
ification. They will be illustrated with the repair program in Example 7 together with the query program Ans(x) — S_(b.x.t**)
of Example 8. As announced in the previous section, the MS technique is applied to the program 1-(D.IC, 2):=
1(D.IC. 2) \ PC, where PC contains the program constraint: — W_(x.y,z.t,). W_(x.y.2.f,).

The adomment step produces a new, adorned program, in which each intensional (defined) predicate P takes the form P*,
where A is a string of letters b, f (for bound and free, resp.), whose length is equal to the arity of P. Starting from the query,
adornments are created and propagated as follows. First f1(2) : Ans(x) — S_(b.x.t**) becomes: Ans’ (x) — S*®(b.x.t**), mean-
ing that the first and third arguments of S. are bound, and the second is a free variable. Constants, in particular annotation
constants, are always bound.

The adorned atom S%®(b. x.t**) is used to propagate bindings (adornments) onto the rules defining predicate S, i.e. rules in
2.,5.,and 6. (in Example 7). As an illustration, the rules in 5, become S (x,y.t*) — S(x.y) and S (x.y,t*) — $*®(x,y,t.), resp.
The extensional (base) atoms, as 5(x.y) in the first adorned rule, do not receive any adornments, but they bind variables, As
an illustration, suppose we are adorning a program, we generate the adorned atom P (x.y. z), and we have the following rule
to be adorned: P(x.y.2) — R(z).M(x.z,y). where the only extensional atom is R(z). From atom P (x.y.2) the first and third
variables of P, i.e. variables .z in the head of the rule, are free, while that the second variable y is bound. However, since R(z)
is extensional, the variable z becomes bound when adorning the intensional atom M(x.z.y). The adorned rule is:
P (x.y.2) — R(z), M (x,2.y).

Moreover, returning to our example, the adorned atom $*®(b. x.t**) propagates adornments over the disjunctive rules in
2. The adornments are propagated over the literals in the body of the rule (as for non-disjunctive rules), and also to the head
literal R.(x,y.t,). Therefore, this rule becomes™: $*(x,y,f,) v RP(x.y.t,), — S®(x.y.t*), R®(x.y.[,). Now, the new adorned
atoms R®(x,y,t,), R (x,y.1,) also have to be processed, producing adornments on rules defining predicate R. and so on. The
output of this step is an adorned program that contains only adorned rules.

After all the adornments are properly propagated, the adorned program below is generated:

Program 1

Ans’ (x) — S (b, x.t**),
SP(xy.0) VRP(x.9.6) — SP(x.y.t). RP(x.y.£,),
SPx.y.£2) VRP(x.y.t.) — SP(x,y.t*), notR(x, y),
SPx.y.) ~ SPx),
SP(x.y.6%) — S(x.y),
SPx.y.t**) — SP(x.y,t*), notsP(x,y.£,),
RP(x.y,1*) — RP(x,y.t,),
RP(x,y.t*) — R(x.y),
R (x,y.65%) — R®(x,y.t*), notR®(x, y,f,).
The iterative process of passing bindings is called sideways information passing strategies (SIPS) [6]. There may be different
SIPS strategies, but any SIP strategy has to ensure that all of the body and head atoms are processed. The strategy presented

here is the one described in {29], which is implemented in DLV. In particular, according to it, negative literals (including

extensional) receive adornments by propagation, but do not bind any variable, As an illustration, suppose we are adorning
a program, we have the adorned atom PY (x,y.z), and the rule;

P(x,y,2) — S(y.2),T(z, w), notR(z,w), M(z. w).

where 5(y,2) is the only extensional atom. From atom P (x, y. z) variable y is a bound variable, Following our adopted strat-
egy, the adorned rule becomes:

' To simplify the presentation, conditions of the form x<nuil are omitted from the disjunctive rules,

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 559

PY(x,y,2) — S5(y,2), T (z, w). notRY (z, w), M (z, w). (10)

The extensional atom S(y, z) does not receive adornments, but bounds variable z. Now, variables y, and z are bound. Notice
that the literal notR(z. w) receives the adornment over variable z, but does not bound variable w, which remains free.

The next step is the generation of magic rules from the adorned rules obtained at the previous stage. The former will direct
the computation of the stable models of the program consisting of the latter. The generation of magic rules is different for
disjunctive and non-disjunctive adorned rules. For each adorned literal (not)P*(f) in the bedy of an aderned non-disjunctive
rule r, a magic rule is generated as follows:

(a) The head of the magic rule is the new atom magic_P*(¥), called the magic version of P*(f). The tuple of terms ¥ is
obtained from f by deleting all the variables that are labeled with f according to A.

(b) The atoms in the body of the magic rule are: the atom that is the magic version of the original and adorned head of rule
r, and the body atoms (if any) of r that produce bindings on the atom PA(f).

For instance, for the adorned atom S*®(x. y.t,) in the body of the adorned rule S*®(x.y.t*) — S*®(x.y.t,), the magic rule is:
magic 5% (x,t,) — magic % (x.t*).

As another example, consider the adorned rule (10). The cormresponding magic rule for T™(z.w) is:
magic.T¥ (z) — magic.PY (y),S(y,z). The magic rule contains atom S(y,z) in the body because it bounds variable z. Without
this atom the magic rule would be unsafe. The magic rule for the literal notR” (z, w) is: magic_RY (z) — magic_P¥ (y),S(y.2).
Finally, the magic rule for atom M (z,w) is magic. MY (2) — magic_P™ (y),S(y, 2).

For disjunctive adorned rules, first, intermediate non-disjunctive rules are generated by moving, one at a time, head
atoms into the bodies of rules. Next, magic rules are generated as described for non-disjunctive rules. For example, from
the rule

SP(x,y.£) VR (x,y,6) — SP(x,y,t%),RP(x,y.£,), (1)

we obtain two non-disjunctive rules: (i) S (x,y.f,) — R®(x,y.t,), S2(x.y.t*). RP(x.y,f.): and (ii) R (x,y.t.) — S(x,y.fa).
SP(x.y,t*),R®(x,y.f.). Three magic rules are generated for rule (i) magic.R*®(x.t,) — magic S (x.f.);
magic S (x.t*) — magic S (x.f,); and magic R (x.f,) — magic S®(x.f,).

At this step also the magic seed atom is generated, that is the magic version of the Ans predicate from the adorned query
rule. For example, for the rule: Ans’(x) — S?®(x,y,t**), the magic seed atom is magicAns’, that becomes a propositional
atom. The magic rules for the adorned Program 1 are:

Program 2

magicS"®(b, t**) — magicAns’.
magic.S*(x.t,) — magic S (x.t*),
magic S™(x,t*) — magic S (x,t**),
magic S (x,f,) — magic S (x, t**),
magicR*P (x.t,) — magic SP(x.1,).
magic S*(x,t*) — magic SP(x,f,),
magic R™ (x,f,) — magic SP(x.1,),
magic.S"(x,£.) — magic R (x,t,),
magic S*(x,t*) — magic R®(x.t,),
magic_R®(x.f,) — magic R (x.t,).
magic_R®(x, t,) — magic R (x.t*),
magic_R™(x, t*) — magic R (x, t**),
magic R (x,f,) — magic R (x,t**).

The last step is the modification of the adorned rules: magic atoms constructed at the generation stage are included in the
body of adorned rules, That is, for each adorned rule, the magic version of its head is inserted into the body. For instance, the
magic versions of the head atoms in (11) are magic.S(x.1,) and magic.R*® (x,1,), resp., which are inserted into the body of
the adorned rule, generating the modified rule:

SPx.y,£2) VR®(x.y.t,) — magicSP(x,£,). magic R (x.t,), S (x.y,t*). R (x.y. f,). (12)
From the modified rules all the adornments, except for those of the magic atoms, are now eliminated. Thus, (12) becomes:

S-(x! yv fa) \'4 R-(nyv tl) - magic-stlb (xv fl)v magic-Rb_’b (X, tl)! S-(Xs}'y tt)~ R-(X,.Vv fa)

560 M. Caniupdn, L Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

Therefore, Program 1 is eventually transformed into:

Program 3
Ans(x) — magicAns',S_(b,x,t**),
S.x,y.£2) V RL(X.y, ta) — magic S (x,f,), magic R®(x,t.),S(x.y,t*),R.(x,,[.),
S.(x.y.fa) VRAX, ¥, ta) — magic.S"(x,£,), magic R (x,t.), S.(x, y, t*), notR(x,y),
RA(x.y.&) VS.(x.y.fa) — magic R (x.t,), magic S (x£,),5_(x.y.t*). R(x.y.fa),
R.(x.y.ta) vS.(x.y.fs) — magic R®(x,1,), magic S™(x,f,), 5.(x,y.t*). notR(x,y).
S.(x,y,t*) — magic SP(x,t*),S(x,y.t.),
S(X,y.t*) — magic S (x,t*),5(x,y),
R.(x,y.t*) — magic R® (x,t*),R.(x.y,t.).
R(x.y.t*) — magic R? (x.t*), R(x.y),
S.(X.y.t**) — magic S™(x.t**),5.(x.y.t*). notS_(x.y.f.).
R.(x.y,t**) — magic R®(x,t**), R.(x,y.t*),notR_(x,y,f,).

As expected, in the modified rules only magic atoms keep adornments. The final magic program corresponding to the pro-
gram I7-°(D, IC, 2) of Examples 7 and 8 is the combination of Programs 2 and 3 plus the facts of the original program and the
magic seed atom.

4.2, Properties of magic methods for CQA

In this section we will assume that the query 2 is given directly as a Datalog"* program, so that we do not have to men-
tion the associated program I7(2). This program has a query predicate Ans ,.

Definition 13. (a) For a program 7 without program constraints, . #%(/T) denotes its magic version (as constructed above).
(b) For a program /7 possibly containing a set PC of program constraints, its magic version is .#% (1) = .4~ (I1"*) UPC,

We will apply this definition to programs of the form (D, IC.2).'"® In this case, .7 (I(D,IC 2)) =
AP (I176(D,IC, 2)) U PC. It consists of the magic rules, the modified rules, the magic seed atom, and set PC of program con-
straints, Since in the rewritten program only the magic atoms have adornments, the program constraints can be added with-
out any adornments.

Example 11. Examples 7 and 8 cont.The magic program .#&~(/1(D.IC, 2)) contains the magic rules in Program 2, the
modified rules in Program 3, the magic seed atom magicAns’, and the program constraint — W.(x.y,2,t.). W_(x.y.2.f,) (i.e.
rule 7. in Example 7).

In this case, .#9* (11(D,IC, 2)) contains rules related to predicates S, R, but no rules for predicates T, W, which are not
relevant to the query. Therefore the program constraint is trivially satisfied. ./ (f1(D,IC, 2)) has only one stable model
(displayed here without the magic atoms): .# = {S.(b,c,t*),S_(b,c.t**),Ans(c)}, which indicates through its Ans predicate
that (c) is the consistent answer to the original query, as expected.

We can see that the magic program has only those models that are relevant to compute the query answers. Furthermore,
these are partially computed, i.e. they can be extended to stable models of the program /7(D, IC, 2). More precisely, except for
the magic atoms, model ./ is contained in every stable model of the original repair program in Example 7.

The MS programs of Definition 13 are both sound and complete when applied to (obtained from) programs of the form
I1(D,IC, 2). That is, for any database D, the latter has the exactly the same cautious answers as its magic version
Wy~ (11(D.IC, 2)). Now we make this correspondence precise.

Definition 14. Let 17, and [1; be any two programs without facts that share a predicate P. /1, and 1, are P-equivalent,
denoted I1,=,11 iff, for any set F of facts, NyesmumunP = Niresmurun®” '

Theorem 1. Let D be a database instance, IC a set of UICs, RICs, and NNCs of the forms (2), (3) and (4), respectively, and 2 a query.
It holds: .« 57~ (I(D.IC, 2) \ D)=ans, (11(D,IC, 2)\ D).

'S Actually, in this section we show that this magic sets methodology is corvect for this kind of programs. However, for other programs it may not provide the
expected results (cf. Example 14).
'8 SM(J1) denotes the set of stable models of program {7 and P¥ is the extension of predicate P in model M.

M. Caniupdn, L Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 561

The theorem says that for any database contents, the repair plus query programs return the same cautions answers (and
then consistent answers) to the query as the magic version."?

Now we give a general idea of the proof of Theorem 1. It has two parts: soundness and completeness of MS. The former
requires that each query answer returned by the magic program is also a consistent answer (as returned by the original pro-
gram 71(D, IC, 2)). The latter, that every consistent answer can be recovered using the magic program. For both directions, we
first associate to .#y~(f1(D,IC, 2)) a new program rel(2, [1-°(D,IC, 2)), whose rules are ground versions of those of
17°(D, IC, 2) that are used to compute query 2 (cf. Definition 15 below). In other words, program rel(2, 17¢(D,IC, 2)) is a sub-
program of ground(/1-(D, IC, 2)) (the ground version of f1-(D, IC, 2)) that is sufficient to compute the answers to 2. It is this
program that we will compare with the magic program.

Program rel(2. 117(D, IC, 2)) has to important features: (a) It contains all the rules that are needed to check the program
constraints that are relevant to the query (see Definition 16). We establish this in Lemma 1. (b) Programs rel(2, IT “(D.IC. 2))
plus program constraints, and /7(D, IC, 2} are query equivalent. We prove this in Proposition 3.

After that, we establish completeness by proving that for each stable model . # of program .#.5™~ (I1(D, IC, 2)), there exists
a stable model . #’ of rel(2, 117°(D, IC, 2)) that satisfies the program constraints that are relevant to answer the query (cf. Def-
inition 16), such that.# = .#". Of course, this last equality without considering the magic predicates, that appear only in pro-
gram ./~ (1I(D,IC, #)) (and in its stable models). This is done in Proposition 4.

To prove soundness, we prove that for each stable model . # of program rel(2, [1-(D, IC, 2)) that satisfies the program con-
straints, there exists a stable model .#’ of .#%~({1(D.IC, 2)). such that .# = .« This in done in Proposition 5,

We need some notation and definitions first. For a ground rule r of a Datalog program /7, we denote with H(r) and B(r) the
head and body of r (without built-ins) resp., both as sets of database literals. As an illustration, for the ground rule
Ans(a) — S.(b.a.t**),notR.(b.a.t**), H(r) is {Ans(a)}, and B(r) is {S.(b,a,t**).notR.(b.a.t**}}.

Given two Datalog programs /7, and I1,, it is possible to generate a program rel(/1,, f1;) by collecting the rules from
ground(I12), the ground version of /7, that are useful to compute /7, (if any). This is captured in Definition 15, which is based
on [29]. Typically, /1, will be a query program, and I7,, the base program on top of which the query is computed. So, the
literals in the bodies of the rules of f1; are defined in /7.

Definition 15. Let /7, be a Datalog program without disjunctive heads, possibly with negation, but without program
constraints; and I73, a disjunctive Datalog program possibly with negation and program constraints.

() For S ground(/12),R(S) := {r € ground(IT,)|thereare r’ € S and a predicate P, such that (not)P(t) e B(r) U H(r7) and
P(t) € H(r)}.

(b) rel(i1,,113) is the least fixed point of the following sequence relp(f1,.11;) = {r € ground(I1,)| there is a rule r in
ground(/1,), and a predicate P, such that (not)P(t) € B(r). and P(t) € H(r)}, and rel,,(IT.112) = R(reli(1T,. I1;)), for
iz0.

Example 12, Consider the instance D = {S(a,b),S(b,a),R(b,a), T(a, a), W(b,b,b)},IC = {Yxy(S(x.¥) — R(X,¥)), Yxy(T(X,y) —
2W(x,y,2)), Vxyz(W(x,y,2) A IsNull(x) — false)}, and program /I, : Ans(x) — T_(a,x,t**). Here, ground(fl,) = {Ans(a) —
T.(a,a,t**),Ans(b) — T(a,b.t**)}. Consider /7, the ground version of program f1(D,IC), which contains the facts:
S(a,b).S(b,a).R(b,a).T(a,a). W(b, b, b). It also contains the following rules, among other ground rules for constant b, and com-
binations of constants a, b;

S.(a.a.f;) VR (a.a,t,) — S(a.a.t*).R_(a,a.f,), a=null,

S.(a.a.f,) VR.(a.a.t,) — S_(a.a.t*).notR(a.a). aw»null,

T.(a.,a.f,) vW_(a,a,nullt,) — T_(a,a,t*),notaux(a,a), a#null,

aux(a,a) — W_(a,a,a,t*),notW _(a,a,a,f,), a=null,

W_(a.a,a.f,) — W_(a,a0,a,t*), a=null,

— WJa,a.a,t,),W_(a,a.a.f,),

S.(a,a,t*) — S(a.a),

S.(a,a,t*) —S.(a.a.t,),

S.(a.a.t**) — S(a.a.t*).notS_(a.a.f,).
The disjunctive program /7, has negation and program constraints. /7, : Ans(x) — T.(a.x.t**) contains a unique rule with a

body literal that is defined in 17,.
Program relo (114, 1) is:

V7 A similar result can be obtained for the brave answers, i.c. those that are true in some stable model (or repair). However, for CQA the cautions semantics
should be used.

562 M. Caniupdn, L Bertossi/Data & Knowledge Engineering 69 (2010) 545-572

T(a,a,t**) — T.(a,a,t*),n0tT(a,a.f,),
T.(a,b,t**) — T_(a,b,t*),notT_(a,b,f,),
rely(ITy, I1,) is relo(f1y, I13) plus:
T(a,a,t*) — T(a,a).T(a,a,t*) — T_(a.a,t,),
T-(a,b,t*) — T(a,b).T(a.b,t*) — T(a,b.ta),
T.(a.a.f,) vW_(a,a,null.t,) — T.(a.a,t*), notaux(a.a), a=nuil,
T.(a.b,f,) v W_(a,b,null,t,) — T(a,b,t*), notaux(a, b),a=null, b=null,
rely (114, I13) is rely (i1, I13) plus:
T(a,a) - aux(a,a) — W_(a,a,a,t*),notW_(a,a.a,f,), a=null,
aux(a,a) — W.(a.a,b,t*),notW_(a.a.b.f,), a=null, b#null,
aux(a,b) — W.(a,b,a,t*).notW _(a,b.a.£,). asnull, b=null,
aux(a,b) — W_(a,b,b.t*).notW_(a,b.b.f,). a=null, b=null,
rels(11y, 112) is rely(11y, 113) plus:
W_(a,a,a,t*) — W(a,a,a) - W_(a,a,a,t*) — W_(a,q,a,t,).
W_(a,a,b,t*) — W(a,a,b) - W_(a,a,b.t*) — W_(a,a,b,t,),
W_a,b,a,t*) — W(a,b.a) - W_(a.b.a,t*) — W_(a,b.at,),
W_a,b,b.t*) — W(a.b,a) - W_{a,b,b,t*) — W_a,b,b,t,),
w.a,a.a.f,) — W_(a,a,a,t*), a=null
W_(a,a,b.f,) — W_(a,a,b,t*), a=null, b=null,
W_(a,b,a,f,) — W_(g,b,a,t*), a=null, b=nul,
W_(a,b,b.f,) — W_(a,b,b,t*), a=null, b=null,
rels(11,, I12) = rely(I1y, f1,). Thus, program rel(I1,, /1) contains ground rules defining predicates T and W only.

For our repair programs, the existence of a finite fix point for the sequence reli(2, I7) is guaranteed by the finiteness of the
database domain and the number of rules, and the absence of functions symbols in the programs. Notice that, by definition,
rel(I1,, I12) does not contain the rules of /7. It does not contain program constraints either. If we wanted to run I7,, we would
combine it with rel(f1,, I1;). The idea is that this would give the same extensions for the predicates defined in /7 as running
it on top of I1,.

Now we need to prove that: (a) reli(2, I7) contains all the rules that are needed to check the program constraints of
11(D,IC) that are relevant to 2 (cf. Lemma 1). (b) reli(2, IT) with the relevant program constraints is query equivalent to
(D, IC, ¥) (cf. Proposition 3). For this purpose, we introduce, for the rest of this section, the following simplified notation:
(a) 17 stands for program J/1(D,IC,), (b) I1-¢ for program I1-(D.IC. 2), (c) .# 5 (11°) for the magic version of f7°%, and (d)
(1) for .« (I17°)y U PC. The following concepts are used in Lemma 1.

Definition 16. For the set PC of program constraints of /T: (a) PC, denotes the set of program constraints in PC of the form
— P_(%,1,).P.(%f,), for each predicate P that is connected to a predicate in .2 in the dependency graph %(IC). (b) PC% denotes
the program consisting of the rules of the form incohp(X) — P_(%,t,),P.(%,f2), such that the program constraint
— P_(%,t5),P.(%.[,) belongs to PC,.

PC, contains the program constraints on the predicates that are relevant to query 2. Program PC; contains the program
constraints in PC, rewritten as rules with an auxiliary head predicate, incohp. We proceed as follows: First, we compute pro-
gram rel(PC5 . 117°) that contains rules from ground(/7-°) that are relevant to compute PC}, i.e. rules that allow us to check the
relevant denials. Second, we show that the rules in rel(PC3. [7-°) are all in rel{2, I1-°), All this is first illustrated in the next
example.

Example 13. Example 12 cont.
(a) For query Ans(x) — W_(x,y,2,t**),PC, contains only the program constraint: — W_(x.y,z,t,).W.(x.y.2.1,), and PC}

contains the rule incohw(x,y,2) — W.(x.y,2,t,),W_(x,y,2.f,). Program rel(PC}, 1I™*) contains the facts:
T(a.a), W(b. b, b), and the following rules, among other ground rules for constant b, and combinations of constants a, b:

M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572 563

T(a,a.f,) vW.(a,a.null.t,) — T_(a.a,t*).notaux(a.a), a=null,
aux(a,a) — W_(a,a,a.t*),notW._(0.a.a.f,), a=null,
W_(a,a.a.f,) — W_a,a,a.t*). a=null,

T.(a.a,t*) — T(a,a),

T.(a.a.t*) — T(a,a,t,),

W_(a,0,a,t*) — W(a,a,q),

W_.(a.a,a.t*) — W_(a.a,a.t,).

(b) For query Ans(x) — S_(b.x,t**), the repair program does not contain relevant program constraints, and therefore, PC,
and PC’ are empty,

Lemma 1. For program I1 and query 2, the programs rel(PC* U 2, 11-°) and rel(2, 11-) coincide as sets of rules (including the
facts).

Proof. We can see that rel(PCu 2 1) =rel(PC}, 11y urel(2,/1°). Hence, it is sufficient to prove that
rel(PC*. =) C rel(2, 1),

First, if there are no relevant program constraints to answer the query, then program PC? has no rules, and rel(PC*, 11-) is
empty, and we have that rel(PC} U 2, /1-°) has the same rules as program rel(2, {1-°). Hence, we focalize on the case where
there are program constraints which are relevant to answer the query.

PC,is not empty and program PC’; has at least one rule of the form incohp(%) — P_(%.t3). P_(%.f,). It is easy to see that
relo(PC};, I1-°) is composed by the rules of program {7- whose heads contain atoms of the form P_(¢.t,) or P(E.f,).

There are two cases to analyze: first predicate P is a query predicate and, second P is connected to a query predicate in the
graph %(IC).

First, P is a query predicate. Therefore, relp(2.11°°) is composed by interpretation rules of the form
P(C,t**) — P_(C,t*),notP(¢,fa). Then, rely(2,11°°) is relo(2,11-°) plus rules of /1-¢ with head atoms of the form
P.(¢,t*) or P.(C.f,). Then, rely(2, 11-°) is rely(2, 117} plus rules of /1-¢ with head atoms of the form P_(¢,t,) or database
facts of the form P(¢). Thus, we have that relo(PC%, 11-°) Crely(2, /1), and as a consequence, rel(PC%. 11-°) C rel(2, 1°%)
holds.

Second, P is directly or indirectly connected to a query predicate. Therefore, there exists an i such that reli(2. 117) has
rules with head atoms of the form P(¢,t;) or P.(¢,f,), otherwise P is not connected to a query predicate. Thus,
relo(PC3, 117°) G rel(2, 11°), and therefore rel(PC*%, 11) C rel(2, 11-) holds. O

Proposition 3
rel(2, IT) u ground(PC,) U 2=, IT1(D.IC, 3).

Proof. First of all, each of the two programs involved can be split into the query program - and the “bottom” subprogram
related to the repair program (48). In one case, rel(2, 1) Uground(PC,), and in the other, (D.IC). In consequence, the
extensions for the predicates defined in 2, in particular Ans,, can be computed on top of the extensions of the predicates
defined in the bottom subprograms, in particular, those with annotations t**, which are those used by 2 as “extensional”
predicates.

First notice that, by Lemma 1, after imposing the program denials PC to both rel(2, IT-°) u ground(PC ;) and 11(D,IC), no
incoherent model will be kept, which, otherwise, could influence the answers to 2.

In consequence, it suffices to prove that rel(:2,71-) and f1-°(D,IC) have the same extensions for the predicates that
are relevant to 2 for every database instance D. Program 1-(D,IC) is stratified (cf. Proposition 2) and induces a
stratification on its subprogram rel(2, /1-°) (and also a hierarchical splitting on both programs). This stratification can
be used as the basis for an inductive proof. This is because the stable models can be computed bottom-up from the
extensional database D, as the perfect models of the programs [52,53,31). At level O of the stratification the two
programs coincide since they use the same arbitrary instance D, as required by the notion of query equivalence. Now,
assume that predicate P is relevant to 2, belongs to stratum k, and is defined in terms of predicates R;.....Rn. Actually,
in their predicated-annotation version (cf. Definition 12), the programs are non-recursive. So, we may assume that
Ri....Rm belong all to a lower stratum, say the (k—1)th, at which the two programs coincide for these predicates,
Since rel(2,11°°) contains all the rules to compute P from R,,...Rm. the extensions of P for both programs will
coincide, O

Now, in Propositions 4 and 5 below we establish the relationship between the programs A (1) and rel(2, 11°°). To
prove these propositions we use Lemmas 2 and 3 below, and some auxiliary concepts that we now will define.

564 M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

Definition 17 [29]. For an interpretation M for a program /7 without program constraints,'® a predicate symbol P, and a set of
interpretations I:

(a) M[P] denotes the set of atoms in M whose predicate symbol is P.

(b) f1[P} is the set of rules of /7 whose head contains predicate P.

(c) M[f1] is the set of atoms in M whose predicate symbol appears in the head of some rule in program /7.
(d) f{P) = {MIP)IM € 1}, and I(17) = {M([T]IM € I}.

The following lemmas can be obtained by a combination of results in [29,35). These results hold for disjunctive programs,
possibly with unstratified negation but without program constraints'®:

Lemma 2. Let 17 be a disjunctive, possibly unstratified, Datalog™ program without edd cycles (cf. Definition 11). For every stable
model M’ of .# (11, 2), there exists a stable mode! M of rel(2, IT), such that M = M'[rel(2. IT)).

Lemma 3. Let /1 be a disjunctive, possibly unstratified, Datalog program without odd cycles. For every stable model M of
rel(2, IT), there exists a stable model M’ of ./’ (11, 2), such that M = M'[rel(2, IT)}.

As mentioned earlier, the equalities between models in these lemmas refer to non-magic atoms only. We will use Lemmas
2 and 3 to prove that there exists a correspondence between the stable models of the rewritten program A5~ (IT) and the
stable models of rel(2, 11~} (cf. Propositions 4 and 5). This is possible, because negation in repair programs (without their
program constraints) does not occur in odd cycles (cf. Corollary 2).

Now, we need to prove that the correspondence between models still holds after reintroducing the program constraints,
producing program .#5~(IT) (.« % (I1-°) U PC). We rely on the following: (a) By Lemmas 2 and 3, there is a correspondence
between the stable models of . #.(J1-) and the stable models of rel(2. 1-). (b) By Lemma 1, .#%(11°) contains all the rules
needed to check the relevant program constraints in PC,.

Proposition 4. For every stable model M’ of .« (I1), there exists a stable model M of rel(2, I1-) that satisfies the program
constraints in PC,, and M = M'[rel(2, I1-°)].

Proof. By contradiction, assume that there exists a stable model M" of .#5~ (I7) for which there is no stable mode] M of
rel(2, 1) that simultaneously satisfies the program constraints in PC, and M = M'[rel(2, 1)},

Since M' € SM(.#— (1)), and .4~ = . (I1-) U PC, it holds M’ € SM(.#%(11°°)). Now, by Lemma 2, there is a model
M” of rel(2, 117°) such that M” = M’[rel(2, IT")]. Since there are no stable models of rel(2, I17%) that satisfy the program
constraints in PC,, M” does not satisfy PC, either. We have two cases:

(a) M" does not satisfy a program constraint pc in PC \ PC,. Since M” is a model of rel(2, /1), by Lemma 1. M" is amodel of
rel(PC* v 2, 11°). Since pc is in PC\ PC,, there is no rule in rel(PC5 L 2, 117°) defining atoms that are relevant to pc.
Thus, M” has no atoms relevant to pc and it cannot be violated. We have a contradiction.

(b) M" does not satisfy a program constraint pc in PC,, e.8. pc :— S_(x.ta). S.(x.f.). Since atoms of the form 5.(@, t,),5.(a.f,)
are in M”, and M" = M'[rel(2, IT™)}, it holds that S.(a,t.),S.(d.f.) are in M. But M’ satisfies PC,. We have a
contradiction. O

Proposition 5. For every stable model M of rel(2, I1°) that satisfies the program constraints in PC,, there exists a stable model M’
of .~ (IT), such that M = M'[rel(2. 117°)}.

Proof. By Lemma 3, there exists a stable model M" of .#.°(/1"‘), such that M = M"[rel(2, IT~°)]. Since M satisfies the program
constraints in PC,.M” also satisfies PC,. Thus, since M" satisfies the program constraints in PC,, it is also a model of
MFUTCYUPC,. Now, since .« (1) does not have rules for predicates in PC\PC ,,M" is also a model of
HP(T) = .4F(I1)UPC. O

Proof of Theorem 1. Theorem 1 Soundness with respect to cautious query answering follows from Proposition 5, and complete-
ness follows from Proposition4. D

The MS methodology, based on first leaving the program constraints aside and adding them after the magic rewriting,
always works in the case of repair programs. Basically, because the program constraints are of the form
— P_(&,t,),P.(%,f,), and only when there are rules in f1(D,IC) defining both P_(X,t,) and P.(%,f,). In the program
4P (IT(D,IC, 2)) we will still find all the rules defining P; then it will be possible to check the satisfiability of the program
constraints by its models. Thus, the stable models of the MS program satisfy the program constraints.

18 That is a set of ground atoms in the program's signature (or an extension of it) that can be used to interpret the program. It may not be a model of the

program.
12 personal communication from the authors.

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 565

The MS method does not necessarily work for more general disjunctive logic programs. Sometimes, even if the MS tech-
nique is applied to a disjunctive program with program constraints that does not have stable models, the method can pro-
duce a program with stable models. This might happen if the query is related with a part of the program which is consistent
with respect to the program constraint. The MS method focuses on that part of the program to answer the query [44]. So, the
non-satisfaction of the program constraints will not be detected by the latter. Actually, as the following example shows, the
MS methodology we introduced above might not work for general logic programs (as opposed to repair programs) that do
have stable models.

Example 14. For the database instance {R(a)} and the program [1;

Y(x) « S(x), S(x) — R(x), not P(x),
P(x) « R(x), not 5(x). — Y(x).

there is only one stable model: ./ = {R(a), P(a)}. But for query Ans(x) — P(x), our MS methodology produces a program that
has two stable models (shown here without magic atoms): .#, = {R(a). P(a). Ans(a)}; and . /> = {R(a).5(a)}, and as a conse-
quence there are no cautious answers to the query, even though (a) should be an answer. This is due to the fact that MS does
not select the rule Y(x) — S(x), because predicate Y is not relevant to answer the query. Thus, when the constraint — Y(x) is
put back into the program, it is satisfied even though it should not. In contrast, in the case of a repair program, a rule that is
relevant to check the satisfiability of a program constraint is never left out of the rewritten program obtained via MS.

5. System architecture

In Fig. 4, that describes the general architecture of Cons Ex, the Database Connection module receives the database param-
eters (database name, user and password) and connects to the database instance. We show in Fig. 5a the connection screen:
and in Fig. 5b, the main menu, obtained after connecting to the database,

ConsEx System
—
Ralinvi
Database x "v_""t Repair Program
C Fredicates Construction
sl Identification
Options J’ * Consistent
Answers
(Connection Query lesl Consistancy M3
Query F 4 Checking Rewriting
iCs 4
Dependency 3
Graph RIC-acyclic Answers
Construction Checking Collection

%4 oL
L] »

Fig. 4. Cons Ex architecture.

Connect to Database Menu Please, choose a task
Database Name
IP

User Name

(Enter]

(a) (b)

Fig. 5. Cons Ex: database connection and main menu.

566 M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

O-O O~

Fig. 6. Dependency graph 4(IC) for ICs in Example 7.

Having input the database schema with its ICs, the system can be requested to check if the database instance is consistent.
If not, one can request the generation of the repair program. However, before doing this, the RIC-acyclic Checking module uses
the dependency graph to check if the set of ICs is RIC-acyclic. If it is not, the generation of the repair program is avoided, and a
warning message is sent to the user, Otherwise, the Repair Program Construction module generates the repair program. It is
constructed “on the fly", that is, all the annotations that appear in it are generated by the system, and the database is not
affected. The facts of the program are not imported from the database into Cons Ex. Instead, suitable sentences to import data
are included into the repair program, as facilitated and understood by DLV.

The repair program may contain, for each extensional predicate P, the import sentence #import(dbName,
dbUser, dbPass, SELECT + FROMP, P), retrieving the tuples from relation P that will become the facts for predicate P in the pro-
gram. As a result, when the program is evaluated by DLV, the database facts stored in the database dbName will be imported
directly into the reasoning system. This is how DLV interacts with DBMS.

Of course, since we have not entered a query yet, this repair program will not be optimized with magic sets. The data
import sentences just mentioned are not explicitly required, as shown before, when Cons Ex is run with a query. Whatever
data import statements are required, they are handled implicitly by the system. Most typically we will not be interested in
performing a consistency check or generating the repair program without a concrete query at hand. However, the system
allows us to do so if desired.

The Query Processing module receives the query and ICs; and coordinates the tasks needed to compute consistent an-
swers, First, it checks queries for syntactic correctness. Currently in Cons Ex, Datalog queries with negation can be written
as logic programs in (rather standard) DLV notation or as queries in SQL. The former correspond to non-recursive Datalog
queries with weak negation (nrot) and built-ins, which includes safe first-order queries. SQL queries may have disjunction
(i.e. UNION), built-in literals in the WHERE clause, but neither negation nor recursion, i.e. unions of conjunctive queries with
built-ins.°

After a query passes the syntax check, the query program is generated. For DLV queries, the query program is obtained by
inserting the annotation t** into the literals in the bodies of the rules of the query that do not have a definition in the query
program, but are defined in the repair program. For SQL queries, the query program is obtained by first translating queries
into equivalent Datalog programs, and then by adding the annotation t** to the program rules, as for DLV queries.

Given a query, there might be ICs that are not related to the query. More precisely, their satisfaction or not by the given
instance (and the corresponding portion of the repairs in the second case) does not influence the (standard or consistent)
answers to the query. In order to capture the relevant ICs, the Relevant Predicates Identification module analyzes the interac-
tion between the predicates in the query and those in the ICs by means of a dependency graph, which is generated by the
Dependency Graph Construction module. We will use Example 7 to describe this feature and other system’s components.

Fig. 6 shows the dependency graph %(IC) for the ICs in Example 7. Then, for the query Ans(x) «— S(b, x) the relevant pred-
icates are S and R, because they are in the same component as the predicate S that appears in the query. Thus, the relevant IC
to check is Vxy(S(x,y) — R(x,y)). which contains the relevant predicates.

Next, Cons Ex checks if the database is consistent with respect to the ICs that are relevant to the query. This check is per-
formed by the Consistency Checking module, which generates an SQL query for each relevant IC, to check its satisfaction. For
example, for the relevant IC Vxy(S(x.y) — R(x,y)) identified before, Cons Ex generates the SQL query: SELECT * FROM S WHERE
(NOT EXISTS (SELECT * FROM R WHERE R.ID=S.ID AND R.NAME=S.NAME) AND ID IS NOT NULL AND NAME IS NOT NULL).
This query is asking for violating tuples.

If the answer is empty, Cons Ex proceeds to evaluate the given query directly on the original database instance, i.e, without
computing repairs. For example, if the query is 2 : Ans(x) «— S(b,), the SQL query "SELECT NAME FROM S WHERE ID="b’", is
generated by Cons Ex and posed to D. However, in Example 7 we do have {(a.c)} as the non-empty set of violations of the
relevant IC. In consequence, the database is inconsistent, and, in order to consistently answer the query 2, the repair program
has to be generated. Remember that this program does not depend on these particular violating tuples, and can be used for
any other query to be consistently answered from the inconsistent instance.

The MS Rewriting module generates the magic version of a repair program. It includes at the end appropriate database
import sentences, which are generated by a static inspection of the magic program. This requires identifying first, in the rule
bodies, the extensional database atoms (those not defined in the program, they show no annotation constants), Next, for
each of these extensional atoms, it is checked if the magic atoms will have the effect of bounding their variables during
the program evaluation. That is, it is checked if the constants appearing in the query will be pushed down to the program
before query evaluation. For example, in the magic program .# < (/1.D. 2) for the query Ans(x) — S(b,x) shown in Section
4, the following rules contain extensional database atoms:

20 We left as a future work the adaptation of the algorithms of Cons Ex to include more general SQL queries, such as SQL queries with negation,

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 567

T T e T v
1 Lol

Menu INTEGRITY CONSTRAINTS LIST
(database TEST)

[trReCY) - s U’-El‘l'i]!@&,ﬂ

Log Out

Fig. 7. Cons Ex: integrity constraints in Example 7.

(a) S_(x.y.t*) «— magic_S"®(x. +*).S(x.y).
(b) R.(x.y,t*) — magic_R"™(x. t*),R(x.y).

In (a), the variable x in the extensional atom S(x,y) will be bound during the evaluation due to the magic atom
magic S?®(x, t*) appearing in the same body. This magic atom is defined in the magic program by the rule magic_S""(x, t*) —
magic S? (x. t**). where atom magic S (x. t**) is defined in its turn by the rule magic.s""(b, t**) — magic.Ans'. Since
magic.Ans’ is always true in an MS program, magic 5"" (b, +**) will be true with the variable x in S(x.y) eventually taking value
b. As a consequence, the SQL query in the import sentence for predicate § will be: "SELECT * FROM S WHERE ID= ‘b "

A similar static analysis can be done for rule (b), generating an import sentence for relation R. The generated import sen-
tences will retrieve into DLV only the corresponding subsets of the relations in the database.

The resulting magic program is evaluated in DLV, that is automatically called by Cons Ex, and the query answers are re-
turned to the Answer Collection module, which formats the answers and returns them to the user as the consistent answers.

Moreover, Cons Ex allows to check the satisfiability of the ICs stored in the system. (cf. Fig. 7, option “Integrity Con-
straints”). As an illustration, the button “"Check" besides the IC in Fig. 7 performs the checking of the 1C. This option is useful
if a user wants to check if a specific constraint is satisfied by the database instance.

6. Experimental evaluation

Several experiments on computation of consistent answers to queries were run with Cons Ex. In particular, it was possible
to quantify the gain in execution time by using magic sets instead of the direct evaluation of the repair programs.

6.1. Experimental setup

The experiments were run on an Intel Pentium 4 PC, processor of 3.00 GHz, 512 MB of RAM, and with Linux distribution
UBUNTU 6.0. The database instance was stored in the IBM DB2 Universal Database Server Edition, version 8.2 for Linux. All
the programs were run in the version of DLV for Linux released on January 12, 2006.

We considered a database schema with eight relations, and a set IC of ICs consisting of 10 functional dependencies, and
three RICs. In order to analyze scalability of CQA trough logic programs, we considered two databases instances D, and D,
with 5000 and 10,000 stored tuples, resp. The percentage N of inconsistent tuples, i.e. tuples participating in an IC violation
varied between 1% and 10% of the data.?!

Now, we report the execution time for three conjunctive queries, in both instances, The set IC contains the following FDs
and RICs:

. Wxyzsw(Passenger(x.y.z) A Passenger(x.s.w) — y = s).

. Wxyzsw(Passenger(x.y.z) A Passenger(x.s,w) — z = w),

. Wxyzwsmu(Plane Type(x.y.z.w)A Plane Type(x.s,m,u) — y = s).

. Vxyzwsmu(Plane Type(x.y.z.w)A Plane Type(x.s.m,u) — z = m).

. Wxyzwsmu(Plane Type(x.y.z.w)n Plane Type(x,s.m.u) — w = u).

. Wxyz(Plane(x,y) n Plane(x.z) — y - z).

. Wxg - -X|(',(Fﬁ_l_.{-'l'f(Xn.X| X, X3 Xq. X5, X X7, X) A Flli"ghr(Xu.Xg.Xm‘Xu X X3 Xg, X, Xe) — X X).

S OWU AW =

2! The files containing the database schema, ICs, the queries, and the instances used in the experiments are available in http://www.face.ubiobio.clf
-meaniupa/ConsEx.

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572

568

8. vzx(Plane(z,x) — 3yuwPlane Type(x,y.u,w)).

9. vxyzws(Inspection(x,y,z,w,s) — 3uPlane(w, u)).
10. Vxp -- -Xs(nl'ght(Xo,Xl ,X2,X3,X4,X5,Xg, X7, X8} — 3zPlane(xs, 2)).

The three conjunctive queries are:

1. Ans(x,y,z) — Plane(x.y), Plane Type(y,w,z2.s).
2. Ans(x,w) — Passenger(z.w, 1), Flying(z.y.x).
3. Ans — Passenger(18.smith.18).

The first query is open, i.e. with free variables and contains a join, and no constants, The second query is open, contains
joins, and also constants, like the query in Section 4, The third query is boolean, i.e. it does not have free variables. All these
queries fall in the class of Tree-queries for which CQA is tractable under key constraints [39]. However, since we are also
considering RICs, which are repaired by inserting tuples with null values, it is not possible to use the polynomial time algo-

rithm for CQA presented in [39).

6.2. Experimental results
In the charts, RQ indicates the straightforward evaluation of the repair program combined with the query program,

whereas its magic sets optimization is indicated with MS. Fig. 8 shows the running time for the first query in the two in-
stances. We can see that MS is faster than the straightforward evaluation of programs in both database instances. Indeed,
for every percentage of inconsistency, the MS methodology returns answers in less than 20's (in both database instances),
while the straightforward evaluation returns answers after 50 s when the database presents 3% of inconsistent tuples, in
database instance D,, and after 50 s when the level of inconsistencies is higher than 1% in the second instance. Moreover,
the execution time of the MS methodology is almost invariant with respect to percentage of inconsistency. Despite the ab-
sence of constants in the query, MS offers a substantial improvement because the magic program essentially keeps only the

rules and relations that are relevant to the query, which reduces the ground instantiation of the program by DLV.

Fig. 9 shows the execution time for the second, partially-ground query in both database instances. Again, MS computes

answers much faster than the straightforward evaluation. In the first instance, for percentages smaller than 5% (and equal) of

400 T —TT T 40 — T T
! MS§ ——tp— ! MS —+—
kLT { RQ --%-- - 50 ! RQ ~~3¢--
H [l
w0 | : g wf .
-] - N
I - N - H L. ’ -y
g 250 :: g 250 i
g2 | : g guwof E
g i £ ;
S0 ; 1 2w | .
00 - ; - w o} .
H [}
s F X . wh g J
" i L . ; o 1 1 i i
1 k] H 10 1 3 s 10
Inconsistencies (%) Inconsistencies (%)
D)\ D!
Fig. 8. Running time for the conjunctive query with free variables.
450 450 T T T
! M§ —+—
400 e 400 |- : RQ --46--]
0 - 380 - ! .
[]
bl 1] - ‘g 300 b ! E
£ 250 1 % wo ! 4
r
g 200 - 3 00 ';' -
€ 150 E 1soF ! E
10 L wl !
[
0 . sof 4
0 0 L 1 1
3 s 10 1 3 b 10
Inconsistencios (%) Inconsistencics (%)
D,

D)

Fig. 9. Running time for the partially-ground conjunctive query with free variables

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 569

m T T L) L] ‘m L) L) L T
MS =t M§ —t— X
350 FRQ ~=¥-- - 350 [RQ --9¢-- S
300 |- N 300 | -
g wof - E 25 | .
;& 200 |- 1 Ewof -
g 1 210 4
100 - 1 100 -1
50 I S L of -
ol LS e | . I
[} 3 5 10 1
Inconsistencies (%) Inconsistencics (%)
D| ‘ DZ

Fig. 10. Running time for the boolean conjunctive query.

inconsistent tuples, MS returns answers in less than 25 s. When the level of inconsistencies is 10%, MS starts returning an-
swers in 6 minutes, In the second instance, MS has a good performance for percentages of inconsistencies smaller than 5%
(and equal). With a higher percentage, MS becomes slower, but it is still better than the straightforward evaluation. In par-
ticular, when the level of inconsistency is 10% of 10,000 tuples, MS returns answers after 1 h. However, a direct evaluation of
the programs produces answers after 6000 min (100 h approx.). The better performance of MS is due to the cccurrence of
constants in the query, which the magic rules push down to the database relations. This causes less tuples to be imported
into DLV, and the ground instantiation of the magic program is reduced (with respect to the original program).

Fig. 10 shows the execution time for the third, boolean conjunctive query in both database instances. This query asks for a
tuple that is involved in inconsistencies of a functional dependency, and therefore, the consistent answer to this query is no.
In this case, the direct evaluation of the repair and query program, and the evaluation with magic sets show an excellent
performance, but again, MS computes answers much faster than the straightforward evaluation. This good performance
can be due to the fact that the atom Passenger(18, smith, 18), in the query, is involved in inconsistencies, and then, the
Ans atom is not true in every stable model of the programs, Then, DLV stops the computation of the query when it finds
a stable model that does not contain Ans.

Furthermore, MS shows an excellent scalability for databases that present less than 5% of inconsistent tuples. For in-
stance, MS computes answers to conjunctive queries with free variables, and to boolean queries from database instances
D, and D; in less than thirty seconds, even with a database D; that contains twice as many tuples as D,.

7. Conclusions

We have seen that the Cons Ex system computes database repairs and consistent answers to first-order queries (and be-
yond) by evaluation of logic programs with stable model semantics that specify both the repairs and the query. In order to
make query answering more efficient in practice, Cons Ex implements a sound and complete magic set technique for disjunc-
tive repair programs with program constraints. Moreover, Cons Ex takes advantage of the smooth interaction between the
logic programming environment and the database management systems (DBMS), as enabled by DLV. In this way, it is pos-
sible to exploit capabilities of the DBMS, such as storing and indexing, and the capabilities of DLV to compute stable models.
Furthermore, bringing the whole database into DLV, to compute repairs and consistent answers, is quite inefficient, In our
case, it is possible to keep the instance in the database, while only the relevant data is imported into the logic programming
system.

The excellent performance exhibited by the magic sets techniques makes us think that CQA is viable and can be used in
practical cases. Most likely, real databases do not contain such a high percentage of inconsistent data as those used in our
experiments. However, we should notice that CQA has a high intrinsic data complexity [12,27.56]. In consequence, there are
intrinsic limits on what a system like Cons Ex (and others for CQA) can achieve in terms of performance.

The methodology for CQA based on repair logic programs as implemented in Cons Ex is more general than those that have
been proposed and implemented so far. It covers all the queries and ICs found in usual database practice and more. Imple-
mentations of other systems for CQA have been reported before. The Queca system [25] implements the query rewriting
methodology presented in (4), and can be used with universal ICs with at most two database atoms (plus built-ins) and pro-
jection-free conjunctive queries. The system Hippo [27] implements first-order query rewriting based on graph-theoretic
methods, It works for denial constraints and inclusion dependencies under a tuple deletion repair semantics, and projec-
tion-free conjunctive queries. The system ConQuer [38] implements CQA for key constraints and a non-trivial class of con-
Jjunctive queries with projections. Comparisons in terms of performance between Cons Ex and these more specialized and
optimized systems, for the specific classes of ICs and queries they can handle, still have to be made. Since these systems

570 M. Ceniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

are specialized (actually, implemented) for certain classes of queries and ICs, they are likely to exhibit a better performance
than Cons Ex for their classes.

In Cons Ex, consistency checking of databases with SQL null values and repairs that appeal to SQL null values both follow
the precise and general semantics introduced in [16]. However, when queries are answered in Cons Ex, after the repair and
MS programs have been generated, the query answer semantics is the usual logic programming semantics that treats nulls as
any other constant. A semantics for query answering in the presence of SQL nulls that is compatible with null-based SQL IC
satisfaction and repair semantics used in Cons Ex is proposed in [17]. Its implementation in Cons Ex corresponds to ongoing
and future work. We also leave for future work the extension of CQA to broader classes of queries, in particular, to aggregate
queries by means of logic programs as done in [23].

Surveys of CQA can be found in (10,12,28). There are different repair semantics in the literature. Some comparisons be-
tween them can be found in [2,50). Cons Ex implements the “classic” repair semantics based on minimality under set inclu-
sion of sets of inserted or deleted tuples, namely the one introduced and investigated in (4], and the most studied in the CQA
literature. A different repair semantics emerges if these sets of tuples is minimized under cardinality. In [5], although de-
voted mainly to the classic repair semantics, it is indicated how answer set programs with weak program constraints [47]
can be used to specify repairs.

In [27]), the database instance is assumed to be possibly incorrect but complete, then repairs are obtained by deletion of
tuples only, i.e. the insertion of new tuples is not considered as an option to restore consistency. It is straightforward to write
down repair programs to capture these repairs. The same applies to the repair semantics in [19], where the database instance
is assumed to be possibly incorrect and incomplete, then functional dependencies are repaired by deletion, and referential
ICs by adding arbitrary elements of the domain.

In [11,14,37,45,58,59], minimality associated to repairs is based on the cardinality of the set of updates, i.e. changes of
attributes values (as opposed to whole tuples). In [37] answer set programs are used to specify repairs of this kind for census
databases.

Other repair policies have been proposed in the recent literature. For example, specifying founded repairs |24} by means of
repairs programs as used by Cons Ex seems to be easy to do, It should be possible to specify the preferred repairs introduced in
[57] by adding to repair programs global preference criteria on the intended models. Preferences in answer programs have
been investigated, e.g. in {33,18).

In [51]. the repairs of a database with respect to denial constraints are represented by a disjunctive database, which are
finite sets of disjunctions of database facts. This approach is different from a specification via answer set programs. The latter
is much more general since it can handle a broader class on ICs. Also a program layer for CQA can be easily added to the
specification of repairs. However, doing CQA on top of a specification of repairs via a disjunctive database requires additional
investigation.

It is important to mention that in the case of Data Warehouses (DWs), where efficiency in query answering is vital, it is
almost impossible to compute consistent answers to queries based on database repairs. This is because DWs store terabytes
of data; and, therefore, the computation of repairs may be unfeasible. For this kind of databases a minimal repair should be
chosen to be materialized. In [13] CQA over inconsistent DWs with respect to a special class of constraints, called strictness
constraints, is analyzed. Also, in this paper a canonical consistent instance is proposed, which is a new instance that consol-
idates information from all the repairs. In some cases, this new instance may be a geod candidate to be materialized and used
to compute approximate answers to queries.

Acknowledgements

This project is partially funded by FONDECYT, Chile, grant number 11070186, Part of this research was done during visits
of L. Bertossi to the Universities of Concepcion and Bio-Bfo (UBB). He has also supported by an NSERC Discovery Grant
(#315682). L. Bertossi is a Faculty Fellow of IBM Center for Advanced Studies (Toronto Lab.), and Adjunct Full Professor at
the University of Concepcion (Chile). We are grateful to Claudio Gutiérrez and Pedro Campos, both from UBB, for their help
with the implementation of algorithms and the interface of Cons Ex. Conversations with Wolfgang Faber and Nicola Leone are
very much appreciated.

References

(1] S. Abiteboul, O. Duschka, Complexity of answering queries using materialized views, in: Proceedings of the ACM Symposium on Principles of Database
Systems (PODS'98), 1998, pp. 254-263.

12) F. Afrati, P. Kolaitis, Repair checking in inconsistent databases: algorithms and complexity, in: Proceedings of the International Conference on Database
Theory (ICOT'09), 2009, pp. 31-41,

131 K.R. Apt, H.A. Blair, A. Walker, Towards a theory of declarative knowledge, 1988, Ch. Foundations of Deductive Databases and Logic Programming, pp.
89-148.

[4] M. Arenas, L. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proceedings of the ACM Symposium on Principles of
Database Systems (PODS'99), 1999, pp. 68-79.

|5] M. Arenas, L. Bertossi,). Chomicki, Answer sets for consistent query answering in inconsistent databases, Theory and Practice of Logic Programming 3
(4-5) (2003) 393-424.

|6) F.Bancilkon, D. Maier, Y. Sagiv. J.D. Ullman, Magic sets and other strange ways to implement logic programs (extended abstract), in: Proceedings of the
ACM Symposium on Principles of Database Systems (PODS'86), 1986, pp. 1-15.

M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572 571

|7] €. Beeri, R, Ramakrishnan, On the power of magic, in: Proccedings of the ACM Symposium on Principles of Database Systems (PODS'87), 1987, pp. 269-
284,

[8) P. Barcel6, L Bertossi. Logic Programs for Querying Inconsistent Databases, Proceedings of the International Symposium on Practical Aspects of
Declarative Languages (PADL'03), vol. 2562, Springer LNCS, 2003, pp. 208-222,
[9] P. Barcel6, L. Bertossi, L. Bravo, Characterizing and Computing Semantically Correct Answers from Databases with Annotated Logic and Answer Sets,

Semantics in Databases, vol. 2582, Springer LNCS, 2003, pp. 1-27.

[10] L. Bertossi,). Chomicki, Logics for Emerging Applications of Databases, Springer, 2603, Ch, Query Answering in Inconsistent Databascs, pp. 43-83.

[11] L Bertossi, L. Bravo, E. Franconi, A. Lopatenko, Complexity and approximation of fixing numerical attributes in databases under integrity constraints,
Proceedings of the International Symposium on Database Programming Languages (DBPL'05), val. 3774, Springer LNCS, 2005, pp. 262-278.

[12] L. Bertossi, Consistent query answering in databases, ACM Sigmod Record (database principles column) 2 (35) (2006) 68-76.

[13] L. Bertossi, L. Bravo, M. Caniupan, Consistent Query Answering in Data Warehouses, in: Proccedings of the HI Alberto Mendelzon Internaticnal
Workshop on Foundations of Data Management (AMW'09), val, 450, 2009, Arequipa, Peru.

[14] P. Bohannron, W. Fan, M. Flaster, R. Rastogi, A cost-based model and effective heuristic for repairing constraints by value modification, in: Proceedings
of the ACM SIGMOD International Conference on Management of Data (SIGMOD'05), 2005, pp. 143-154,

|15] L Bravo, L Bertossi, Consistent query answering under inclusion dependencies, in: H. Lutfiyya, J. Singer, D.A. Stewart (Eds,), 14th Annual IBM Centers
for Advanced Studies Conference (CASCON'04), IBM, 2004, pp. 202-216,

[16] L. Bravo, L. Bertossi, Semantically correct query answers in the presence of null values, Praceedings of the EDBT WS on Inconsistency and
Incompleteness in Databases (1IDB'06), vol. 4254, Springer LNCS, 2006, pp. 336-357.

[17] L. Bravo, Handling Inconsistency in Databases and Data Integration Systems, Ph.D. thesis, Carleton University (2007). <http://homepages.inf.cd.ac.uk/
Ibravo/Publications.htm>.

|18] G. Brewka, Preferences in answer set programming, Current Topics in Artificial Intelligence, vol. 4177, Springer LNCS, 2006, pp. 1-10.

[19] A. Cali, D. Lembo, R. Rosati, On the decidability and complexity of query answering over inconsistent and incomplete databases, in: Proceedings of the
ACM Symposium on Principles of Database Systems (PODS'03), 2003, pp. 260-271.

120 A. Cali, G. Gottlob, T. Lukasiewicz, A general datalog-based framework for tractable query answering over ontologies. in: Proceedings of the ACM
Symposium on Principles of Database Systems (PODS'09), 2609, pp. 77-86.

|21) M. Caniupan, L. Bertossi, Optimizing repair programs for consistent query answering, in: Proceedings of the XXV International Conference on The
Chilean Computer Science Society (SCCC'05), JEEE Computer Society. 2005, pp. 3-12.

{22) M. Caniupan, L. Bertossi, The consistency extractor system: querying inconsistent databases using answer set programs, Proceedings af the
International Conference on Scalable Uncertainty Management (SUM'07), vol. 4774, Springer LNCS, 2007, pp. 74-88.

[23] M. Caniupan, Optimizing And Implementing Repair Programs for Consistent Query Answering In Databases, Ph.D. thesis, School of Computer Science,
Carleton University, 2007. <http://www.face.ubiobio.cl/-mcaniupa/publications.htm>.

[24} L. Caroprese, S. Greco, E. Zumpano, Ester, Active integrity constraints for database consistency maintenance, IEEE Transactions on Knowledge and Data
Engineering 21 (7) (2009) 1042-1058,

[25] A. Celle, L. Bertossi. Querying inconsistent databases: algorithms and implementation, Proceedings of the International Conference on Computational
Logic {CL'00), vol. 1861, Springer, LNAI, 2000, pp. 942-956.

{26] S. Ceri, G. Gottlab, L. Tanca, Logic Programming and Databases, Springer-Verlag New York, Inc., New York, NY, USA, 1950,

{27] J. Chomicki,). Marcinkowski, Minimal-change integrity maintenance using tuple deletions, Information and Computation 197 (1-2) (2005) 90-121.

{28] J. Chomicki. Consistent query answering: five easy pieces, Proceedings of the International Conference on Database Theory (ICDT°07), vol. 4353,
Springer LNCS, 2007, pp. 1-17.

(29] C. Cumbo, W. Faber, G. Greco, N. Leone, Enhancing the magic-set method for disjunctive datalog programs, Proceedings of the 20th International
Conference on Logic Programming (ICLP'04), vol. 3132, Springer LNCS, 2004, pp. 371-385.

[30] E. Dantsin, T. Eiter, G. Gottlob, A, Voronkov, Complexity and expressive power of logic programming, ACM Computing Surveys 33 (3) (2001) 374-425.

[31] T. Eiter. G. Gottlob, On the computational cost of disjunctive logic programming: propositional case, journal Annals of Mathematics and Artificial
Intelligence 15 (3-4) (1995) 257-456.

[32] T. Eiter, M. Fink, G. Greco, D. Lembo, Efficient evaluation of logic programs for querying data integration systems, Proceedings of the International
Conference cn Logic Programming (ICLP'03), vol. 2916, Springer LNCS, 2003, pp. 163-177.

[33] T. Eiter, W. Faber, N. Leone, G. Pfeifer, Computing preferred answer sets by meta-interpretatien in answer set programming, Theory and Practice of
Logic Programs 3 (4-5) (2003) 463-498.

[34] T. Eiter. G. Gottlob, H. Mannila, Disjunctive datalog. ACM Transactions on Database Systems 22 (3) (1997) 364-418.

[35] W. Faber, G. Greco, N. Leone, Magic sets and their application to data integration, Journal of Cemputer and System Sciences 73 (4) (2007) 584-609.

[36) R. Fagin, P. Kolaitis, R. Miller, L. Popa, Data exchange: semantics and query answering, Theoretical Computer Science Volume 336 (1) (2005) 89-124.

[37) E Franconi, A. Laureti-Palma, N. Leone, S. Perri, F. Scarcello, Census data repair: a challenging application of disjunctive logic programming,
Proceedings of the International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR'01), vol, 2250, Springer LNCS, 2001,
pp. 561-578.

[38] A. Fuxman, E. Fazli, R). Miller, ConQuer: efficient management of inconsistent databases, in: Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD'05), 2005, pp. 155-166.

[39] A. Fuxman, R}. Miller, First-order query rewriting for inconsistent databases, Journal of Computer and System Sciences 73 (4) (20607) 610-635.

[40] M. Gellond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Generation Cemputing 9 (3/4) (1991) 365-386.

[41] M. Gelfond, N, Leone, Logic programming and knowledge representation: the a-prolog perspective, Artificial Intelligence 138 (1-2) (2002) 3-38,

[42] S. Greco, Binding propagation techniques for the optimization of bound disjunctive querics, IEEE Transacticns on Knowledge and Data Engineering 15
{2) (2003) 368-385,

[43] G. Greco, S. Greco, E. Zumpano, A logical framework for querying and repairing inconsistent databases, IEEE Transactions on Knowledge and Data
Engineering 15 (6) (2003) 1389-1408.

[44] G.Greco, S. Greco, |. Trubitsyna, E. Zumpano, Optimization of bound disjunctive queries with constraints, Theory Pract. Log. Program. 5 (6)(2005) 713~
745.

[45] S. Kolahi, LV.S. Lakshmanan, On approximating optimum repairs for functional dependency viclations, in: Proceedings of the International Conference
on Database Theory (ICDT09), 2009, pp. 53-62.

[46] D. Lembo, R. Rosati, M. Ruzzi, On the first-order reducibility of unions of conjunctive queries over inconsistent databases, Proceedings of Current
Trends in Database Technology (EDBT'06), vol. 4254, Springer LNCS, 2006, pp. 358-374.

[47] N. Leone, C. Pfeifer, W. Faber, T. Eiter, G. Gottlob, C. Koch, C. Mateis, S. Perri, F. Scarcello, The DLV system for knowledge representation and reasoning,
ACM Transactions on Computational Logic 7 (3) (2006) 459-562.

[48] V. Lifschitz, H. Turner, Splitting a logic program, in: Proceedings of the International Cenference on Logic Programming (ICLP'94), 1994, pp. 23-37.

[49] J.W. Lloyd, Foundations of Logic Programming, Springer Verlag, 1987,

[SO] A. Lopatenko, L. Bertossi, Complexity of consistent query answering in databases under cardinality-based and incremental repair semantics,
Proceedings of the International Conference of Database Theory (ICDT'07), vol. 4353, Springer LNCS, 2007, pp. 179-193.

[S1] C. Molinaro,). Chomicki,). Marcinkowski, Disjunctive databases for representing repairs, Annals of Mathematics and Artificial Intelligence, preprint
0811.2117v1, in press.

[52] T.C. Przymusinski, On the declarative semantics of deductive databases and logic programs, 1988, pp. 193-216.

[53] T.C. Przymusinski, Stable semantics for disjunctive programs, New Generation Computing 9 (1991) 401-424,

572 M. Caniupdn, L. Bertossi/ Data & Knowledge Engineering 69 (2010) 545-572

154] R. Reiter, Towards a logical reconstruction of relational database theory, in: ML Brodie, J. Mylopoulos, J.W. Schmidt (Eds.), On Conceptual Modelling,
Springer-Verlag, 1984, pp, 191-233,

[55] K.A. Ross, Modular stratification and magic sets for datalog programs with negation, Journal of the ACM 41 (6) (1994) 1216-1266.

|56] S. Staworko, J. Chomicki, Consistent query answers in the presence of universal constraints, Information Systems 35 (1) (2010) 1-22,

[57] S. Staworko, J. Chomicki, J. Marcinkowski, Prioritized repairing and consistent query answering in relational databases, Annals of Mathematics and
Artificial Intelligence, preprint arXiv:0908.0464v1, in press,

58] J. Wijsen, Condensed representation of database repairs for consistent query answering, Proceedings of the International Conference on Database
Theory (ICDT'03). vol. 2572, Springer LNCS, 2003, pp. 378-393.

159] J. Wijsen, Database repairing using updates, ACM Transactions on Database Systems 30 (3) (2005) 722-768.

|60] J. Wijsen, On the consistent rewriting of conjunctive queries under primary key constraints, Informartion Systems 34 (7) (2009) 578-601.

Monica Caniupdn received the Engineering degree from the Universidad del Bio-Bio (Concepcitn, Chile) in 2000, and the Ph.D.
degree in Computer Science from the School of Computer Science at Carleton University (Ottawa, Canada) in 2007. She is
currently assistant professor at Department of Information Systems, Universidad del Bio-Bio. In 2007 she was a visiting
researcher at the Data Management group of the Computer Architecture Department, Universitat Politécnica de Catalunya
(DAMA-UPC). In 2008 she was a visiting professor at the Computer Science Institute, Universidad de la Repiblica (Montevideo,
Uruguay). Her primary rescarch interest include database theory, database integrity, database management systems, data
quality for business intelligence, knowledge representation and logic programming.

Leopoldo Bertossi has been Full Professor at the School of Computer Science, Carleton University (Ottawa, Canada) since 2001,
He is Faculty Fellow of the IBM Center for Advanced Studies (IBM Toronto Lab). Between 2002-2004 he was a Member of the
NSERC Computing and Information Sciences Grant Selection Committee (GSC 330). He abtained a P'h.D. in Mathematics from the
Pontifical Catholic University of Chile (PUC) in 1988,

Currently, he is the theme leader for “Data Quality and Data Cleaning” of the "NSERC Strategic Network for Data Man-
agement for Business Intelligence” (BIN), a project that involves more than 15 academic researchers across Canada plus several
industrial partners,

Until 2001 he was professor and departmental chair (1993-1995) at the Department of Computer Science, PUC; and also the
President of the Chilean Computer Science Society (SCCC) in 1996 and 1999-2000. He was also Director of the Program on
Information Science and Data Analysis of the PUC, Chile between 2000 and 2001.

He has been visiting professor at the computer science departments of the universities of Toronto (1989/1990), Wisconsin-
Milwaukee (1990/1991), Marseille-Luminy (1997) and visiting researcher at the Technical University Berlin (1997/1998), vis-
iting rcscnrclwr and professor at the Free University of Bolzano-Bozen (Italy). In 2006 he was a visiting researcher at the Technical University of Vienna as a
Pauli Fellow of the "Wollgang Pauli Institute (WD) Vienna®,

Prof, Bertossi's research interests include database theory, data integration, peer data management, semantic web, intelligent information systems, data
quality for business intelligence, knowledge representation, logic programming, and computational logic.

In the international database research community, he has pioneered the area of consistent query answering in databases that deals with the problem of
characterizing and obtaining the semantically correct answers to queries posed to a possibly inconsistent database. Solutions to this problem have found
interesting applications in data integration, data exchange and peer data management,

RO0185995_DATAK _1248

