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ABSTRACT
Matching dependencies (MDs) have been recently introduced
as declarative rules for entity resolution (ER), i.e. for iden-
tifying and resolving duplicates in relational instance D. A
set of MDs can be used as the basis for a possibly non-
deterministic mechanism that computes a duplicate-free in-
stance from D. The possible results of this process are the
clean, minimally resolved instances (MRIs). There might be
several MRIs for D, and the resolved answers to a query are
those that are shared by all the MRIs. We investigate the
problem of computing resolved answers. We look at various
sets of MDs, developing syntactic criteria for determining
(in)tractability of the resolved answer problem, including a
dichotomy result. For some tractable classes of MDs and
conjunctive queries, we present a query rewriting methodol-
ogy that can be used to retrieve the resolved answers. We
also investigate connections with consistent query answer-
ing, deriving further tractability results for MD-based ER.

1. INTRODUCTION
For different reasons, databases may contain different co-

existing representations of the same external, real world en-
tity. Those duplicates can be entire tuples or values within
them. Ideally, those tuples or values should be merged into
a single representation. Identifying and merging duplicates
is a process called entity resolution (ER) [11, 14]. Matching
dependencies (MDs) are a recent proposal for declarative
duplicate resolution [15, 16]. An MD expresses, in the form
of a rule, that if the values of certain attributes in a pair
of tuples are similar, then the values of other attributes in
those tuples should be matched (or merged) into a common
value.
For example, the MD R1[X1] ≈ R2[X2] → R1[Y1]

.
=

R2[Y2] says that if anR1-tuple andR2-tuple have similar val-
ues for attributes X1,X2, then their values for Y1, Y2 should
be made equal. This is a dynamic dependency, in the sense
that its satisfaction is checked against a pair of instances:
the first where the antecedent holds and the second where
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the identification of values takes place. This semantics of
MDs was sketched in [16].

The original semantics was refined in [10], including the
use of matching functions to do the matching of two at-
tribute values. Furthermore, the minimality of changes (due
to the matchings) is guaranteed by means of a chase-like pro-
cedure that changes values only when strictly needed.

An alternative refinement of the original semantics was
proposed in [21], which is the basis for this work. In this
case, arbitrary values can be used for the matching. The
semantics is also based on a chase-like procedure. However,
the minimality of the number of changes is explicitly im-
posed. In more detail, in order to obtain a clean instance,
an iterative procedure is applied, in which the MDs are ap-
plied repeatedly. At each step, merging of duplicates can
generate additional similarities between values, which forces
the MDs to be applied again and again, until a clean instance
is reached. Although MDs indicate values to be merged, the
clean instance obtained by applying this iterative process to
a dirty instance will in general depend on how the merging
is done, and MDs do not specify this. As expected, MDs can
be applied in different orders. As a consequence, alternative
clean instances can be obtained. They are defined in [21] as
the minimally resolved instances (MRIs).

Since there might be large portions of data that are not
affected by the occurrence of duplicates or by the entity
resolution process, no matter how it is applied, it becomes
relevant to characterize and obtain those pieces of data that
are invariant under the cleaning process. They could be,
in particular, answers to queries. The resolved answers [21]
to a query posed to the original, dirty database are those
answers to the query that are invariant under the entity res-
olution process. In principle, the resolved answers could be
obtained by computing all the MRIs, and posing the query
to all of them, identifying later the shared answers. This
may be too costly, and more efficient alternatives should be
used whenever possible, e.g. a mechanism that uses only the
original, dirty instance.

In [21], the problem of computing resolved answers to a
query was introduced, and some preliminary and isolated
complexity results were given. In this work we largely extend
those results on resolved query answering, providing new
complexity results, in Sections 3 and 5. For tractable cases,
and for the first time, a query rewriting methodology for
efficiently retrieving the resolved answers is presented, in
Section 4.

Summarizing, in this paper, we undertake the first system-
atic investigation of the complexity of the problems of com-



puting and deciding resolved answers to conjunctive queries.
More, precisely, the contributions of this paper are as fol-
lows:

1. Starting with the simplest cases of MDs and queries,
we consider the complexity of computing the resolved
answers. We provide syntactic characterizations of
easy and hard cases of MDs.

2. For certain sets of two MDs, we establish a dichotomy
result, proving that deciding the resolved answers is in
PTIME or NP-hard in data.

3. We then move on to larger sets of MDs, establishing, in
particular, tractability for some interesting cyclic sets
of MDs.

4. We consider the problem of retrieving the resolved an-
swers to a query by querying the original dirty database
instance. For tractable classes of MDs, and a class of
first-order conjunctive queries, we show that a query
can be rewritten into a new query that, posed to the
original dirty instance, returns the resolved answers to
the original query. Although the rewritten query is
not necessarily first-order, it can be expressed in pos-
itive Datalog with recursion and counting, which can
be evaluated in polynomial time.

5. We establish a connection between MRIs and database
repairs under key constraints as found in consistent
query answering (CQA) [3, 7, 12]. In CQA, the repair
semantics is usually based on deletion of whole tuples,
and minimality on comparison under set inclusion. Re-
ductions from/to CQA allow us to profit from results
for CQA, obtaining additional (in)tractability results
for resolved query computation under MDs.

These intractability results are important in that they
show that our query rewriting methodology in 4. does
not apply to all conjunctive queries. On the other
hand, the tractable cases identified via CQA differ
from those in item 4.: The class of MDs is more re-
strictive, but the class of conjunctive queries is larger.

Our complexity analysis sheds some initial light on the in-
trinsic computational limitations of retrieving the informa-
tion from a dirty database that is invariant under entity
resolution processes, as captured by MDs.
The structure of the paper is as follows. Section 2 in-

troduces notation used in the paper and reviews necessary
material from previous publications. Section 3 investigates
the complexity of the problem of computing resolved an-
swers, identifying various tractable and intractable cases. In
Section 4, an efficient query rewriting methodology for ob-
taining the resolved answers (in tractable cases) is described.
Section 5 establishes the connection with CQA. In Section
6 we draw some final conclusions.

2. PRELIMINARIES
We consider a relational schema S that includes an enu-

merable, possibly infinite domain U , and a setR of database
predicates. S determines a first-order (FO) language L(S).
An instance D of S is a finite set of ground atoms of the form
R(t̄), with R ∈ R, say of arity n, and t̄ ∈ Un. R(D) denotes
the extension of R in D. The set of all attributes of R is

denoted by attr(R). We sometimes refer to attribute A of R
by R[A]. We assume that all the attributes are different, and
that we can identify attributes with positions in predicates,
e.g. R[i], with 1 ≤ i ≤ n. If the ith attribute of predicate
R is A, for a tuple t = (c1, . . . , cn) ∈ R(D), tDR [A] (usually,
simply tR[A] or t[A] if the instance is understood) denotes
the value ci. The symbol t[Ā] denotes the tuple whose en-
tries are the values of the attributes in Ā. Attributes have
and may share subdomains that are contained in U .

In order to compare instances, obtained from the same
instance through changes of attribute values, we use tuple
identifiers: Each database tuple R(c1, . . . , cn) ∈ D has an
identifier, say t, making the tuple implicitly become R(t, c1,
. . . , cn). The t value is taken by an additional attribute,
say T , that acts as a key. Identifiers are not subject to
updates, and are usually left implicit. Sometimes we do not
distinguish between a tuple and its tuple identifier. That is,
with now t a tuple identifier (value), tDR denotes the tuple
R(c1, . . . , cn) above; and tDR [Ai], the value for attribute Ai,
i.e. ci above.1 Two instances over the same schema that
share the same tuple identifiers are said to be correlated.
In this case it is possible to unambiguously compare their
tuples.

A matching dependency (MD) [15], involving predicates
R(A1, . . . , An), S(B1, . . . , Bm), is a rule, m, of the form

m :
∧

i∈I,j∈J

R[Ai] ≈ij S[Bj ] →
∧

i∈I′,j∈J′
R[Ai]

.
= S[Bj ]. (1)

The set of attributes on the left-hand-side (LHS) of m (wrt
the arrow) is denoted with LHS(m). Similarly for the right-
hand-side. The domain-dependent binary relations ≈ij de-
note similarity of attribute values from a shared domain.
The symbol

.
= means that the values of the pair of attributes

in t1 and t2 should be updated to the same value. In con-
sequence, the intended semantics of the MD is that if any
pair of tuples, t1 ∈ R(D) and t2 ∈ S(D), satisfy the simi-
larity conditions on the LHS, then for the same tuples the
attributes indicated on the RHS have to take the same val-
ues [16].2 The similarity relations, generically denoted with
≈, are symmetric, and reflexive. We assume that all sets M
of MDs are in standard form, i.e. for no two different MDs
m1,m2 ∈ M , LHS(m1) = LHS(m2). All sets of MDs can
be put in this form.

For abbreviation, we will sometimes write MDs as

R[Ā] ≈ S[B̄]→ R[C̄]
.
= S[Ē], (2)

with Ā = (A1, ..., Ak), B̄ = (B1, ..., Bk), C̄ = (C1, ..., Ck′),
and Ē = (E1, ..., Ek′) lists of attributes. The pairs (Ai, Bi)
and (Ci, Ei) are called corresponding pairs of attributes in
(Ā, B̄) and (C̄, Ē), resp. For an instance D and a pair of
tuples t1 ∈ R(D) and t2 ∈ S(D), t1[Ā] ≈ t2[B̄] indicates
that the similarities of the values for all corresponding pairs
of attributes of (Ā, B̄) hold. The notation t1[C̄]

.
= t2[Ē] is

used similarly.

Definition 1. [21] For a set M of MDs, the MD-graph,
MDG(M), is a directed graph with a vertex m for each
m ∈ M , and with an edge from m1 to m2 iff RHS(m1) ∩
LHS(m2) ̸= ∅. 2

1If there there is not danger of confusion, we sometimes omit
D or R from tDR , tDR [A].
2We assume that instances and MDs share the same schema.



MD-graphs can have self-loops. If the MD-graph of a set of
MDs contains edges it is called interacting. Otherwise, it is
called non-interacting.
Updates as prescribed by an MD are not arbitrary. The

allowed updates are the matching of values when the precon-
ditions are met, which is captured by the set of modifiable
values.

Definition 2. Let D be an instance, R ∈ R, tR ∈ R(D),
C an attribute of R, and M a set of MDs. Value tDR [C] is
modifiable if there exist S ∈ R, tS ∈ S(D), an m ∈ M of
the form R[Ā] ≈ S[B̄]→ R[C̄]

.
= S[Ē], and a corresponding

pair (C,E) of (C̄, Ē), such that one of the following holds:
1. tR[Ā] ≈ tS [B̄], but tR[C] ̸= tS [E].
2. tR[Ā] ≈ tS [B̄] and tS [E] is modifiable. Value tR[C] is
potentially modifiable if tR[Ā] ≈ tS [B̄] holds. For a list of
attributes C̄, tR[C̄] is (potentially) modifiable iff there is a
C in C̄ such that tR[C] is (potentially) modifiable. 2

Definition 3. [21] Let D, D′ be correlated instances, and
M a set of MDs. (D,D′) satisfies M , denoted (D,D′) � M ,
iff: 1. For any pair of tuples tR ∈ R(D), tS ∈ S(D), if
there exists an m ∈ M of the form R[Ā] ≈ S[B̄] → R[C̄]

.
=

S[Ē] and tR[Ā] ≈ tS [B̄], then for the corresponding tuples
t′R ∈ R(D′) and t′S ∈ S(D′), it holds t′R[C̄] = t′S [Ē].
2. For any tuple tR ∈ R(D) and any attribute G of R, if
tR[G] is non-modifiable, then t′R[G] = tR[G]. 2

This definition of MD satisfaction departs from [16], which
requires that updates preserve similarities. Similarity preser-
vation may force undesirable changes [21]. The existence of
the updated instance D′ for D is guaranteed [21]. Further-
more, wrt [16], our definition does not allow unnecessary
changes from D to D′. Definitions 2 and 3 require that
only values of attributes that appear on RHS of the arrow
in some MD are subject to updates. This motivates the
following definition.

Definition 4. For a set M of MDs defined on schema S,
the changeable attributes of S are those that appear to the
right of the arrow in some m ∈ M . The other attributes of
S are called unchangeable. 2

Definition 3 allows us to define a clean instance wrt M as the
result of a sequence of updates, each step being satisfaction
preserving, leading to a stable instance [16].

Definition 5. [21] A resolved instance for D wrt M is
an instance D′, such that there is sequence of instances
D1, D2, ...Dn with: (D,D1) � M , (D1, D2) � M ,..., (Dn−1,
Dn) � M , (Dn, D

′) � M , and (D′, D′) � M . (D′ is stable.)
2

Example 1. Consider the MD R[A] ≈ R[A] → R[B]
.
=

R[B] on predicate R, and an instance D:

R(D) A B
t1 a1 c1
t2 a1 c2
t3 b1 c3
t4 b1 c4

It has several resolved in-
stances, among them, four
that minimize the number
of changes. One of them is
D1 below. A resolved in-

stance that is not minimal in this sense is D2.

R(D1) A B
t1 a1 c1
t2 a1 c1
t3 b1 c3
t4 b1 c3

R(D2) A B
t1 a1 c1
t2 a1 c1
t3 b1 c1
t4 b1 c1 2

As suggested by the previous example, we will require that
the number of changes wrt instance D are minimized.

Definition 6. For an instance D of schema S,
(a) TD := {(t, A) | t is the id of a tuple in D and A is an
attribute of the tuple}.
(b) fD : TD → U is given by: fD(t, A) := the value for A
in the tuple in D with id t.
(c) For an instance D′ with the same tuple ids as D,

SD,D′ := {(t, A) ∈ TD | fD(t, A) ̸= fD′(t, A)}. 2

Definition 7. [21] A minimally resolved instance (MRI)
of D wrt M is a resolved instance D′ such that |SD,D′ |
is minimum, i.e. there is no resolved instance D′′ with
|SD,D′′ | < |SD,D′ |. 2

Example 2. (Example 1 continued) It holds SD,D1 = {
(t2, B), (t4, B)}; and SD,D2 = {(t2, B), (t3, B), (t4, B)}. Fur-
thermore, |SD,D1 | < |SD,D2 |. 2

The MRIs are the intended clean instances obtained after
the application of a set of MDs to an initial instance D.
There is always an MRI for an instance D wrt M [21]. The
clean or resolved answers to a query are certain for the class
of MRIs for D wrt M . They are the intrinsically clean an-
swers to the query.

Definition 8. [21] Let Q(x̄) be a query expressed in the
first-order language L(S) associated to schema S of an in-
stance D. A tuple of constants ā from U is a resolved an-
swer to Q(x̄) wrt the set M of MDs, denoted D |=M Q[ā],
iff D′ |= Q[ā], for every MRI D′ of D wrt M . We denote
with ResAn(D,Q,M) the set of resolved answers to Q from
D wrt M . 2

3. ON THE COMPLEXITY OF RAP
Notice that the number of MRIs can be exponential in the

size of the instance, as the next example shows.

Example 3. (example 1 continued) The example can be
generalized with the following instance:

R(Dn) A B
t1 a1 c1
t2 a1 c2
· · · · · · · · ·

t2n−1 an c2n−1

t2n an c2n

This instance with 2n tuples has 2n MRIs. 2

Checking the possibly exponentially many MRIs for an in-
stance to obtain resolved answers is inefficient. We need
more efficient algorithms. However, this aspiration will be
limited by the intrinsic complexity of the problem. In this
work we investigate the complexity of computing resolved
answers to queries. We concentrate on the resolved answer
problem (RAP), about deciding if a tuple is a resolved an-
swer.

Definition 9. For a query Q(x̄) ∈ L(S), and M , the re-
solved answer problem is deciding membership of the set:

RAQ,M := {(D, ā) | ā ∈ ResAn(D,Q,M)}. 2



A different decision problem, closely related to RAP, was
shown to be intractable when there is more than one MD
[21]. This is because new similarities can arise between val-
ues as a result of a particular choice of update values (rather
than because the values were identified as duplicates and
merged). Such similarities are called accidental similarities
[21]. As we will see, this dependence of updates on the
choice of update values for previous updates may make RAP
intractable.

Example 4. (Example 1 continued) For instance D2, a
similarity for attribute B is “accidentally” created for tuples
t2, t3. 2

Since duplicate resolution involves modifying individual val-
ues, an important problem is to decide which of these values
are the same in all MRIs. It is obviously related to the RAP
problem, and sheds light on its complexity. More precisely,
for a fixed predicate R, and A an attribute of R in position
i, we consider the unary query QR.A(xi) :

∃x1 · · ·xi−1xi+1 · · ·xnR(x1, . . . , xi−1, xi, xi+1, . . . , xn), (3)

i.e. the projection of R on A; and a special case of RAP:

RAR.A
M = {(D, a) | a ∈ ResAn(D,QR.A(xi),M)}. (4)

Intractability of simple single-projected atomic queries like
(3), i.e. of RAR.A

M , restricts the general efficient applica-
bility of duplicate resolution. On the other hand, we will
show (cf. Sections 4, 5) that, for important classes of con-
junctive queries and for sets of MDs such that RAR.A

M can
be efficiently solved for all R and A, the resolved answers to
queries in the class can be efficiently computed. For this rea-
son, we concentrate on the following classification of MDs.

Definition 10. A set M of MDs is hard if, for some pred-
icate R and some attribute A of R, RAR.A

M is NP-hard (in
data). M is easy if, for each R and A, RAR.A

M can be solved
in polynomial time.3 2

In the next subsections, we develop syntactic criteria on
MDs for easiness/hardness (cf. Theorems 1, 2, and Defi-
nition 16). Some of these complexity results will be gener-
alized in Section 4 to larger classes of conjunctive queries.

3.1 Acyclic MDs and a dichotomy result
Non-interacting (NI) sets of MDs (cf. Section 2) are easy,

due to the simple form of the MRIs, each of which can be
obtained with a single update. So, sets of duplicate values
can be identified simply by comparing pairs of tuples in the
given instance, to see if they satisfy the similarity relations.
The minimality condition implies that each such set of dupli-
cate values must be updated to (one of) the most frequently
occurring value(s) among them. The simplest non-trivial
case is a linear pair of two MDs.

Definition 11. A linear pair M of MDs is such that
MDG(M) consists of the vertices m1 and m2 with an edge
from m1 to m2. The linear pair is denoted by (m1,m2). 2

The case of linear pairs is non-trivial in the sense that it
can be hard (cf. Theorem 2). In this section, we show that

3The problem used here to define hard/easy is slightly dif-
ferent from, and more appropriate than, the one used in [21].
Here hardness refers to Turing reductions.

tractability for linear pairs occurs when the form of the MDs
is such that it prevents accidental similarities generated in
one update from affecting subsequent updates (cf. Theorem
1). Deciding whether or not a linear pair has this form
is straightforward. Although all results of this section are
stated for MDs involving two distinct predicates, they can
easily be extended to the case of single relation.4

Example 5. Consider the following linear pair (m1,m2) of
MDs and instance:

m1 : R[A] = S[E]→ R[B]
.
= S[F ],

m2 : R[B] = S[F ]→ R[C]
.
= S[G].

R A B C
t1 a c g
t3 b c e

S E F G
t2 a d h
t4 b f k

Different instances can be produced with a single update,
depending on the choice of common value. Two of those
instances are:

R′ A B C
t1 a d g
t3 b c e

S′ E F G
t2 a d h
t4 b c k

R′′ A B C
t1 a c g
t3 b c e

S′′ E F G
t2 a c h
t4 b c k

These two updates lead to different sets of tuples with dupli-
cate values for the R[C] and S[G] attributes to be matched,
{t1, t2} and {t3, t4} in the case of R′, and {t1, t2, t3, t4} in
the case of R′′. In general, the effect of the choice of update
values for the R[B] and S[F ] attributes on subsequent up-
dates for the R[C] and S[G] attributes leads to intractability.
Actually, this linear pair will turn out to be hard (cf. below).

However, an easy set of MDs can be obtained by intro-
ducing the similarity condition of m1 into m2:

m1 : R[A] = S[E]→ R[B]
.
= S[F ],

m′
2 : R[A] = S[E] ∧R[B] = S[F ]→ R[C]

.
= S[G].

The accidental similarity between, for example, t2[F ] in S′′

and t3[B] in R′′ cannot affect the update on the R[C] and
S[G] attribute values of these tuples, because the S[E] at-
tribute value of t2 and the R[A] attribute value of t3 are
dissimilar. In effect, the conjunct R[A] = S[E] “filters out”
the accidental similarities generated by application of m1,
preventing them from affecting the update on the R[C] and
S[G] attribute values. 2

In general, any linear pair (m1,m2) for which the similarity
condition of m1 is included in that of m2 is easy [21]. Al-
though linear pairs (m1,m2) are, in general, hard, the pre-
vious example shows that they can be easy if all attributes
in LHS(m1) also occur in LHS(m2). We now generalize this
result showing that, when all similarity operators are tran-
sitive, a linear pair can be easy iff a subset of the attributes
of LHS(m1) are in LHS(m2).

Transitivity is not necessarily assumed for a similarity re-
lation. In consequence, it deserves a discussion. Transitiv-
ity in this case requires that two dissimilar values cannot be

4This is done by treating the relation as two different rela-
tions with identical tuples and attributes. For example, the
condition S[A] ≈ S[B] is interpreted as SL[AL] ≈ SR[BR].
All complexity results go through with minor modifications.



similar to the same value. This imposes a restriction on ac-
cidental similarities, as the next example shows, extending
the set of tractable cases.

Example 6. Consider the pair M , and instance D, only
part of which is shown below. The only similarities are:
e ≈ a and e ≈ i. So, ≈ is non-transitive.

m1 : R[A] ≈ S[E] ∧R[B] ≈ S[F ]→ R[C]
.
= S[G]

m2 : R[A] ≈ S[G] ∧R[C] ≈ S[G] ∧R[C] ≈ R[E]→
R[H]

.
= S[I]

R(D) A B C
t1 a b e
t3 a c e
t5 i j e
t7 i k e

S(D) E F G
t2 a b a
t4 a c a
t6 i j i
t8 i k i

The first MD requires an update of each pair in the set
{(tl[C], tl+1[G]) | 1 ≤ l ≤ 7, l odd} to a common value.
If e is chosen as this value for all pairs, then all pairs of
tuples, one from R and one from S, would satisfy the simi-
larity condition of m2, causing the values of t[H] to be up-
dated to a common value for all tuples in R. However, if
in the initial update a is chosen as the update value for
(t1[C], t2[G]) and (t3[C], t4[G]), and i is chosen as the up-
date value for (t5[C], t6[G]) and (t7[C], t8[G]), then the value
of {t1[H], t3[H]} and that of {t5[H], t7[H]} will be updated
independently of each other. If ≈ were transitive, this would
always be the case, leaving fewer possibilities for updates.
2

Most similarity relations used in ER are not transitive [14].
While this restricts the applicability of the tractability re-
sults presented in this subsection, they could still be ap-
plied in situations where the non-transitive similarity rela-
tions satisfy transitivity to a good approximation, for the
specific instance at hand.
Consider Example 6, assuming string-valued attributes,

and ≈ defined as the property of being within a certain
edit distance, which is not transitive. Accidental similarities,
such as the one in Example 6, may arise in general. However,
one could expect the edit distance between duplicate values
within the R[A] column to be very small relative to that
between non-duplicate values. This would be the case if
errors were small within those columns. In such a case, the
edit distance threshold could be chosen so that the duplicate
values would be clustered into groups of mutually similar
values, with a large edit distance between any two values
from different groups.
In Example 6, if a and i are dissimilar, the pair of similar-

ities e ≈ a and e ≈ i that led to the accidental similarities
when e was chosen as the update value would be unlikely
to occur. Since such accidental similarities, which are pre-
cluded when ≈ is transitive, are rare in this case, they would
affect only a few tuples in the instance. In consequence, a
good approximation to the resolved answers would be ob-
tained by applying a polynomial time algorithm that returns
the resolved answers under the assumption that ≈ is transi-
tive. In this paper we do not investigate this direction any
further. The easiness results (but not the hardness results)
presented in this section require the assumption of transitiv-
ity of all similarity operators. They do not hold in general
for non-transitive similarity relations.

Definition 12. Let m be an MD. The symmetric binary
relation LRelm (RRelm) relates each pair of attributes A
and B such that a conjunct of the form R[A] ≈ S[B] (R[A]

.
=

S[B]) appears in LHS(m) (RHS(m)). An L-component (R-
component) ofm is an equivalence class of the reflexive, tran-
sitive closure, LReleqm (RReleqm ), of LRelm (RRelm). 2

Lemma 1. A linear pair (m1,m2) of MDs, with ≈1 and
≈2 transitive, and R, S distinct relations,

m1 : R[Ā] ≈1 S[B̄]→ R[C̄]
.
= S[Ē]

m2 : R[F̄ ] ≈2 S[Ḡ]→ R[H̄]
.
= S[Ī]

is easy if the following holds: If an attribute of R (S) in
RHS(m1) occurs in LHS(m2), then for each L-component
L of m1, there is an attribute of R (S) from L that belongs
to LHS(m2). 2

Example 7. Assuming that ≈ is transitive, the following
linear pair of MDs:
m1 : R[A] ≈ S[B] ∧R[C] ≈ S[B] ∧R[E] ≈ S[F ]→

R[G]
.
= S[H],

m2 : R[G] ≈ S[H] ∧R[A] ≈ S[B] ∧R[E] ≈ S[F ]→
R[I]

.
= S[J ]

is easy, because Lemma 1 applies. Here, the L-components
of m1 are {R[A], R[C], S[B]} and {R[E], S[F ]}. Here,
LHS(m2) includes both an attribute of R and an attribute
of S from each of these L-components. 2

Lemma 1 generalizes the idea of Example 5, where with
(m1,m

′
2), accidental similarities are “filtered out” and can-

not affect updates. In some cases, a linear pair of MDs can
be easy despite the presence of accidental similarities which
can affect subsequent updates. This happens when an at-
tribute must take on a specific value in order to affect further
updates. Definitions 13 and 14 syntactically capture this in-
tuition. TC (r) denotes the transitive closure of a binary
relation r.

Definition 13. Let (m1,m2) be a linear pair of MDs of
the form m1 : R[Ā] ≈1 S[C̄]→ R[Ē]

.
= S[F̄ ]

m2 : R[Ḡ] ≈2 S[H̄]→ R[Ī]
.
= S[J̄ ]

(a) For predicate R, BR is a binary relation on attributes of
R: For attributes R[A1] and R[A2], BR(R[A1], R[A2]) holds
iff R[A1] and R[A2] are in the same R-component of m1

or the same L-component of m2. Relation BS is defined
analogously for predicate S.
(b) An equivalent set (ES) of attributes of (m1,m2) is an
equivalence class of TC (BR) or of TC (BS), with at least one
attribute in the equivalence class belonging to LHS(m2). 2

Notice that relations BR and BS are reflexive and symmetric
binary relations on attributes in RHS(m1) ∪ LHS(m2).

Example 8. Consider the following linear pair of MDs on
relations R[A,C,E,G,H] and S[B,D,F, I]:

R[A] ≈ S[B]→ R[C]
.
= S[D] ∧R[E]

.
= S[D]

R[E] ≈ S[F ] ∧R[G] ≈ S[F ]→ R[H]
.
= S[I]

The attributes of R satisfy the relations BR(R[C], R[E])
(due to R[C]

.
= S[D] and R[E]

.
= S[D]) and BR(R[E], R[G])

(due to R[E] ≈ S[F ] and R[G] ≈ S[F ]). Relation BS is
empty, since there is only one attribute of S in each of
RHS(m1) and LHS(m2). There is one non-singleton ES,
{R[C], R[E], R[G]}, and also the singleton ES {S[F ]}. 2



An ES is a natural unit that groups together the attributes
of a linear pair with transitive similarities, because of the
close association between the update values for them. For
a linear pair as in Definition 13, the set of values which a
tuple t in relation R takes on the attributes within an R-
component of m1 must be modified to the same value if
any of the values is modifiable. Also, by transitivity, the
attributes of t in RHS(m2) are not modifiable by m2 unless
the values taken by t on the attributes in an L-component
of m2 are similar (cf. Example 9 below). Therefore, when
considering updates that affect the values of attributes in
RHS(m2), the values for a given tuple of attributes within
an ES of attributes can be assumed to be similar.

Example 9. (example 6 continued) We illustrate the asso-
ciation between values of attributes in an ES, and also how
the presence of an ES of a certain form can simplify updates.
With the given instance and set M of MDs, we now as-

sume that ≈ is transitive. M has the ES {R[A], R[C]}. For
any tuple t of R, the value of t[A] must be similar to that of
t[C] in order for there to be a tuple t′ in S such that t and t′

satisfy the similarity condition of m2. This is because they
must both be similar to the value of t′[G], and then must
be similar to each other by transitivity. If there is no such
tuple t′, then by Definition 2, t[H] is not modifiable, and by
Definition 3, the value of t[H] does not change.
M does not satisfy the condition of Lemma 1. Here, unlike

those for which Lemma 1 holds, the application of the MDs
can result in accidental similarities between pairs of modi-
fiable values in R that can affect further updates. This is
because only R[A], not both R[A] and R[B], is in LHS(m2)
(cf. Lemma 1). For example, when m1 is applied to the
instance, if both the pair t1[C] and t2[G], and the pair t3[C]
and t4[G] are updated to a, there will be an accidental sim-
ilarity between t1[C] and t3[C], forcing to update t1[H] and
t3[H] to a common value.
Despite these accidental similarities, updates are made

simpler by the fact that the ES contains R[A], an attribute
in LHS(m1). All sets of tuples inR whose values forR[C] are
matched must have the same value for R[A]. After these val-
ues are merged, regardless of the common value chosen, ei-
ther all tuples in the set will have their R[H] values changed,
or none of them will change. This would not be true in gen-
eral if there were no attribute of LHS(m1) in the ES. In that
case, there could be many possible outcomes depending on
the value chosen for a set of duplicate values of R[C]. 2

Example 9 shows how, for a linear pair (m1,m2), the pres-
ence of an attribute of LHS(m1) in an ES can simplify up-
dates. This motivates the next definition.

Definition 14. Let (m1,m2) be a linear pair of MDs on
relations R and S. An ES E of (m1,m2) is bound if E ∩
LHS(m1) is non-empty. 2

Example 10. Consider the following linear pair of MDs
defined on R[A,C, F,H, I,M ] and S[B,D,E,G,N ]:

R[A] ≈ S[B]→ R[C]
.
= S[D] ∧

R[C]
.
= S[E] ∧R[F ]

.
= S[G] ∧R[H]

.
= S[G],

R[F ] ≈ S[E] ∧R[I] ≈ S[E] ∧R[A] ≈ S[E] ∧
R[F ] ≈ S[B]→ R[M ]

.
= S[N ].

The ES {S[D], S[E], S[B]} is bound, because it contains
S[B]. The ES {R[A], R[F ], R[I], R[H]} is bound, because
it contains R[A]. 2

Lemma 2. A linear pair (m1,m2) of MDs as in Lemma 1
is easy if all ESs are bound. 2

Example 11. (examples 6 and 9 continued) If ≈ is tran-
sitive, it follows from Lemma 2 that M in Example 6 is
easy. As we verified in Example 9, M does not satisfy the
conditions of Lemma 1. 2

M of Example 6 does not satisfy the conditions of Lemma
1, but satisfies those of Lemma 2. On the other hand, M of
Example 7 satisfies the conditions of Lemma 1, but not those
of Lemma 2. However, M of Example 10 satisfies both. This
shows that the two easiness conditions are independent, but
not mutually exclusive. Actually, Lemmas 1 and 2 combined
give us the following result, which subsumes each of them.

Theorem 1. Let (m1,m2) be a linear pair as in Lemma 1.
For predicate R, let ER be the class of ESs of (m1,m2) that
are equivalence classes of TC (BR). ES is defined similarly
using BS .

5 (m1,m2) is easy if both of the following hold:
(a) At least one of the following is true: (i) there are no
attributes of R in RHS(m1) ∩ LHS(m2 ); (ii) all ESs in ER

are bound; or (iii) for each L-component L of m1, there is
an attribute of R in L ∩ LHS(m2).
(b) At least one of the following is true: (i) there are no
attributes of S in RHS(m1) ∩ LHS(m2 ); (ii) all ESs in ES

are bound; or (iii) for each L-component L of m1, there is
an attribute of S in L ∩ LHS(m2). 2

In the rest of this section, we will obtain a partial converse of
Theorem 1. For this purpose, we make the assumption that,
for each similarity relation, there is an infinite set of mutu-
ally dissimilar elements. Strictly speaking, the results below
require only that the set of mutually dissimilar elements be
at least as large as any instance under consideration. This is
assumed in our next hardness result for certain linear pairs.
We expect this assumption to be satisfied by many similar-
ity measures used in practice, such as the edit distance and
related similarities based on string comparison.

The proof is by polynomial reduction from a decision prob-
lem that we call Cover Set (CS) that is related to the well-
known minimum set-cover (MSC). Given I = ⟨U , C, S⟩, with
U is a set, C a collection of subsets of U whose union is U ,
and S ∈ C, the problem is deciding whether or not there is a
minimum (cardinality) set cover S ′ for ⟨U ,S⟩ with S ∈ S ′.
This problem is NP-complete.6 The reduction constructs a
finite database instance D, where every pair of values in it
that are different are also dissimilar. However, a value may
appear more than once. Certain values in D are associated
with elements of U or C. This reduction is indifferent to
whether or not the similarity relations are transitive, since
distinct values in the instance are dissimilar, and equal val-
ues are similar by equality subsumption.

Theorem 2. Assume each similarity relation has an infi-
nite set of mutually dissimilar elements. Let (m1, m2) be
a linear pair of MDs with RHS(m1) ∩ RHS(m2) = ∅. If
(m1,m2) does not satisfy the condition of Theorem 1, then
it is hard.7 2

5Thus, elements of ER are ESs in the sense of Definition
13(b), but for TC (BR) as opposed to TC (BR) ∪ TC (BS).
6Cf. Lemma 4 in the appendix.
7The assumption RHS(m1) ∩ RHS(m2) = ∅ is used to en-



Example 12. We can apply Theorem 2 to identify hard
sets of MDs. (Assuming for each similarity relation involved
an infinite set of mutually dissimilar elements.)
The set of MDs in Example 5 is hard, because condition

(a) of Theorem 1 does not hold, because all of the following
hold: (i) there is an attribute, R[B] of R, in RHS(m1) ∩
LHS(m2 ); (ii) the ES {R[B]} is not bound; and (iii) there
is no attribute of R in the L-component {R[A], S[E]} that
belongs to LHS(m2).
The set of MDs in Example 6 is hard, because condition

(b) of Theorem 1 does not hold, because all of the following
hold: (i) there is an attribute, S[E] of S, in RHS(m1) ∩
LHS(m2 ); (ii) the ES {S[E]} is not bound; and (iii) there
is no attribute of S in the L-component {R[A], S[C]} that
belongs to LHS(m2).
The set of MDs in Example 8 is hard, because condition

(a) of Theorem 1 does not hold, because all of the following
hold: (i) there are attributes of R in RHS(m1) ∩ LHS(m2 );
(ii) the ES {R[C], R[E], R[G]} is not bound; and (iii) there
is no attribute of R in the L-component {R[A], S[B]} that
belongs to LHS(m2). 2

Theorem 2 does not require the transitivity of the similarity
relations, which is needed for tractability. Theorems 1 and
2 imply the following dichotomy result. It tells us that for
a syntactic class of linear pairs, each of its elements is easy
or hard. That is, there is nothing “in between”, which is not
necessarily true in general. Actually, if P ̸= NP , there are
decision problems in NP between P and NP-complete [23].

Theorem 3. Assume each similarity relation is transitive
and has an infinite set of mutually dissimilar elements. Let
(m1,m2) be a linear pair of MDs with RHS(m1)∩RHS(m2)
= ∅. Then, (m1,m2) is either easy or hard. 2

Theorem 3 divides the class of linear pairs satisfying cer-
tain conditions into an easy class, and a hard one. Deciding
the membership of either of them requires a simple syntac-
tic checking procedure. The dichotomy result shows that
very simple pairs of MDs, even ones such as m1 and m2 in
Example 5, with equality as similarity, are hard.
Given the high computational complexity of RAP for sets

of two MDs, an important question is whether or not larger
sets of interacting MDs can be easy. We provide a positive
answer to this question in the next subsection. In the rest
of the paper, we do not assume transitivity of similarity
relations.

3.2 Cyclic sets of MDs
We described above how acyclic sets of MDs can be easy

if the possible effects of accidental similarities are restricted.
Here, we present a different class of easy sets of MDs for
which such effects are not restricted. Actually, we establish
the somewhat surprising result that certain cyclic sets of
MDs are easy. In this section we do not make the assumption
that each MD involves different predicates.

Definition 15. A set M of MDs is simple-cycle (SC) if its
MD graph MDG(M) is (just) a cycle, and: (a) in all MDs
in M and in all their corresponding pairs, the two attributes

sure that a resolved instance is always obtained after a fixed
number of updates (actually two), making it easier to re-
strict the form MRIs can take. This is used in the hardness
proofs.

(and predicates) are the same; and (b) in all MDs m ∈M ,
at most one attribute in LHS(m) is changeable. 2

Example 13. For schema R[A,C, F,G], consider the fol-
lowing set M of MDs:

m1 : R[A] ≈ R[A]→ R[C,F,G]
.
= R[C,F,G],

m2 : R[C] ≈ R[C]→ R[A,F,G]
.
= R[A,F,G].

MDG(M) is a cycle, because the attributes in RHS(m2)
appear in LHS(m1), and vice-versa. Furthermore, M is SC,
because each of LHS(m1) and LHS(m2) are singletons. 2

For SC sets of MDs, it is easy to characterize the form taken
by an MRI.

Example 14. Consider the instance D and a SC set of
MDs, where the only similarities are: ai ≈ aj , bi ≈ bj , di ≈
dj , ei ≈ ej , with i, j ∈ {1, 2}.

R(D) A B
1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

m1 : R[A] ≈ R[A]→ R[B]
.
= R[B],

m2 : R[B] ≈ R[B]→ R[A]
.
= R[A].

If the MDs are applied twice,
successively, starting from D, a
possible result is:

R(D) A B
1 a1 d1
2 a2 e2
3 b1 e1
4 b2 d2

→

R(D1) A B
1 b2 d1
2 a2 d1
3 a2 e1
4 b2 e1

→

R(D2) A B
1 a2 e1
2 a2 d1
3 b2 d1
4 b2 e1

It should be clear that, in any sequence of instances D1, D2,
. . ., obtained from D by applying the MDs, the updated in-
stances must have the following pairs of values equal (shown
through the tuple ids):

Di i odd A B
tuple (id) pairs (1, 4), (2, 3) (1, 2), (3, 4)

Di i even A B
tuple (id) pairs (1, 2), (3, 4) (1, 4), (2, 3)

Table 1: Table of matchings

In any stable instance, the pairs of values in the above tables
must be equal. Given the alternating behavior, this can only
be the case if all values in A are equal, and similarly for B,
which can be achieved with a single update, choosing any
value as the common value for each of A and B. In partic-
ular, an MRI requires the common value for each attribute
to be set to a most common value in the original instance.
For D there are 16 MRIs.

Set M is easy: For any given instance D, a table like Table
1 can be constructed, and using it, the sets of duplicate val-
ues (i.e. values that are different, but should be equal) in the
R[A] and R[B] columns can be matched in quadratic time.
Given those sets of duplicate values, and without having to
actually match them, the resolved answers to the (single-
projected atomic) queries ∃yR(x, y) and ∃xR(x, y) can be
obtained from those values that occur within a (possibly
singleton) set of duplicates more often than any other value.
For instance D, these queries return the empty set. 2



Figure 1: The MD-graph of an HSC set of MDs

Proposition 1. Simple-cycle sets of MDs are easy. 2

The proof of this proposition can be done directly using an
argument such as the one given for Example 14. However,
this result will be subsumed by a similar one for a broader
class of MDs (cf. Definition 16). SC sets of MDs can be
easily found in practical applications.

Example 15. (example 13 continued) The relation R sub-
ject to the given M , has two “keys”, R[A] and R[C]. A
relation like this may appear in a database about people:
R[A] could be used for the person’s name, R[C] the address,
and R[F ] and R[G] for non-distinguishing information, e.g.
gender and age. Easiness of M can be shown as in Example
14, and also follows from Proposition 1. 2

We show easiness for an extension of the class of SC MDs.

Definition 16. A setM of MDs with MD-graphMDG(M)
is hit-simple-cyclic (HSC) iff:
(a) M satisfies conditions (a) and (b) in Definition 15; and
(b) each vertex v1 in MDG(M) is on at least one cycle or is
connected to a vertex v2 on a cycle of non-zero length by an
edge directed toward v2. 2

Notice that SC sets are also HSC sets. An example of the
MD graph of an HSC set of MDs is shown in Figure 1.
As the previous examples suggest, it is possible to provide

a full characterization of the MRIs for an instance subject
to an HSC set of MDs, which we do next. It will be used to
prove that HSC sets of MDs are easy (cf. Theorem 4). For
this result, we need a few definitions and notations.
For an SC set M and m ∈ M , if a pair of tuples satisfies

the similarity condition of any MD in M , then the values
of the attributes in RHS(m) must be merged for these tu-
ples. Thus, in Example 14, a pair of tuples satisfying either
R[A] ≈ R[A] or R[B] ≈ R[B] have both their R[A] and R[B]
attributes updated to the same value. More generally, for
an HSC set M of MDs, and m ∈M , there is only a subset of
the MDs such that, if a pair of tuples satisfies the similarity
condition of an MD in the subset, then the values of the at-
tributes in RHS(m) must be merged for the pair of tuples.
We now formally define this subset.

Definition 17. Let M be a set of MDs, and m ∈M . The
previous set of m, denoted PS(m), is the set of all MDs
m′ ∈M with a path in MDG(M) from m′ to m. 2

When applying a set of MDs to an instance, consistency
among updates made by different MDs must be enforced.
This generally requires computing a transitive closure rela-
tion that involves both a pair of tuples and a pair of at-
tributes. For example, suppose m1 has the conjunct R[A]

.
=

S[B] and m2 has the conjunct R[C]
.
= S[B]. If t1 and t2

satisfy the condition of m1, and t2 and t3 satisfy the con-
dition of m2, then t1[A] and t3[C] must be updated to the
same value, since updating them to different values would
require t[B] to be updated to two different values at once.
We formally define this relation.8

Definition 18. Consider an instanceD, andM = {m1,m2,
. . . ,mn}, with

mi : R[Āi] ≈i S[B̄i]→ R[C̄i]
.
= S[Ēi].

(a) For t1, t2 ∈ D, (t1, Ci) ≈′ (t2, Ei) :⇔ t1[Āj ] ≈j t2[B̄j ],
where (Ci, Ei) is a corresponding pair of (C̄i, Ēi) in mi and
mj ∈ PS(mi). (b) The tuple-attribute closure of M wrt D,
denoted TAM,D, is the reflexive, transitive closure of ≈′. 2

Notice that ≈′ and TAM,D are binary relations on tuple-
attribute pairs. To keep the notation simple, we will omit
parentheses delimiting tuple/attribute pairs in elements of
TAM,D (simply written as TA). For example, for tuples
t1 = R(a, b, c) and t2 = S(d, e, f), with attributes A,C for
R,S, resp., TA((t1, A), (t2, C)) is simply written as TA(t1, A,
t2, C); and similarly, TA(((a, b, c), A), ((d, e, f), C)) as TA(a
, b, c, A, d, e, f, C).

In the case of NI and HSC sets of MDs, the MRIs for
a given instance can be characterized simply using the tu-
ple/attribute closure. This result is stated formally below.

Proposition 2. ForM NI or HSC, andD an instance, each
MRI forD wrtM is obtained by setting, for each equivalence
class E of TAM,D, the value of all t[A] for (t, A) ∈ E to one
of the most frequent values for t[A] in D. 2

Example 16. (Example 14 continued) In this example, we
represent tuples by their ids. We have

TAM,D = {(i, A, j, A) | 1 ≤ i, j ≤ 4} ∪
{(i, B, j, B) | 1 ≤ i, j ≤ 4},

whose equivalence classes are {(i, A) | 1 ≤ i ≤ 4} and
{(i, B) | 1 ≤ i ≤ 4}. From Proposition 2 and the requirement
of minimal change, the 16 MRIs are obtained by setting all
R[A] and R[B] attribute values to one of the four existing
(and, actually, equally frequent) values for them. 2

Proposition 2 implies that for NI and HSC sets of MDs,
the set E of sets of positions in an instance whose values are
merged to produce an MRI is the same for all MRIs (but the
common values chosen for them may differ, of course). This
does not hold in general for arbitrary sets of MDs. Moreover,
E can be computed by taking the transitive closure of a
binary relation on values in the instance, an O(n2) operation
where n is the size of the instance. Given E, the resolved
answers to the query QR.A are obtained as follows. For
a tuple t and attribute A, the value v, with t[A] = v, is a
resolved answer iff for the equivalence class S of TA to which
(t, A) belongs, for any v′ ̸= v, |{(t′, B) ∈ S | t′[B] = v}| >
|{(t′, B) ∈ S | t′[B] = v′}|. These observations lead to the
following result.

Theorem 4. HSC and NI sets of MDs are easy. 2

8This relation is actually more general than needed for HSC
sets of MDs, since each corresponding pair has the same
attributes. However, the more general case is needed when
discussing NI sets of MDs.



Theorem 4, does not imply that the set of all MRIs can be
efficiently computed. Because there can be O(n) choices of
update value for each equivalence class of tuple/attribute
closure, and O(n) such equivalence classes, there can be ex-
ponentially many MRIs.
It may seem counterintuitive that HSC sets are easy in

light of the fact that analogous non-cyclic cases such as the
linear pair (m1,m2) of Example 5 are hard. Indeed, while
tractability occurs in non-cyclic cases when accidental sim-
ilarities are “filtered out” and cannot affect the duplicate
resolution process, cyclic cases are easy for the opposite rea-
son: all possible accidental similarities are imposed on the
values as these similarities are propagated to all attributes
in the MDs on the cycle. Thus, the intractability arising
from having to choose common values so as to avoid certain
accidental similarities is removed.
The tuple/attribute closure of Definition 18 can be de-

fined using a Datalog program, which we can use for query
rewriting (cf. Section 4). Let M be as in Definition 18.
Without losing generality and to simplify the presentation,
we will assume in the rest of this section that predicates R
and S are the same, so that we can keep them implicit.
The facts of the Datalog program, ΠTA

D , are the ground
atoms R(ā) in the original instance D, plus the facts of the
form c̄ ≈i d̄, that capture the similarity, in the sense of ≈i,
of a pair of tuples c̄ and d̄ occurring in D. Furthermore,
ΠTA
D contains, for each mi ∈M , for each corresponding pair

R[A]
.
= R[B] in mi, and for each mj ∈ PS(mi), the rule

(x̄, A) ≈′ (ȳ, B)← R(x̄), R(ȳ), x̄ ≈j ȳ.

The tuple/attribute closure TAM,(·) is given in Datalog as
TA(x̄, A, ȳ, B)← (x̄, A) ≈′ (ȳ, B).

TA(x̄, A, z̄, C)← TA(x̄, A, ȳ, B), (ȳ, B) ≈′ (z̄, C).

Is it easy to verify that this program is finite and positive;
and that all its rules are safe, in the sense that all vari-
ables appear in positive body atoms. The single minimal
model of the program can be computed bottom-up, as usual.
This model captures the sets of value positions to be merged
which, as pointed out previously, are the same for all MRIs
of an instance to which a NI or HSC set of MDs applies.

Example 17. (examples 14 and 16 continued) For the MDs
and instance of Example 14, the facts of ΠTA

D are 1 ≈1 2,
3 ≈1 4, 1 ≈2 4, and 2 ≈2 3, where ≈i denotes the similarity
condition of mi, in addition to the ground atoms in D. Ap-
plying ΠTA

D gives (i, A) ≈′ (i mod 4 + 1, A) and (i, B) ≈′ (i
mod 4 + 1, B), 1 ≤ i ≤ 4. Applying the rule for TA we
reobtain the classes in Example 16. 2

This suggests a declarative specification of the resolved an-
swers: Given a conjunctive query, the query is rewritten by
incorporating the Datalog rules above. The combination re-
trieves the resolved answers to the original query. In the
next section, we will develop this approach for both NI and
HSC sets of MDs, to rewrite a query into one that retrieves
the resolved answers to the original query. We will be able
to provide both a query rewriting methodology, and also an
extension of the tractability results of this section (that re-
fer to single-projected atomic queries) to a wider class of
conjunctive queries.
In this section we presented an algorithm that, taking

as input an instance D and an HSC set of MDs, identifies
the sets of duplicates (i.e. sets of values that have to be

matched) in time O(n2), with n = |D|. This entails the
easiness of such sets of MDs (cf. Theorem 4). We also intro-
duced a Datalog program that can be used to identify the
duplicate sets, as an alternative to updating the instance.
The algorithm for duplicate set identification can be eas-
ily extended into one that computes the set of all MRIs for
a given instance D. As expected, the combination of the
choices of common values may lead to an exponential num-
ber of MRIs for D.

4. RESOLVED QUERY ANSWERING
Here, we consider the two classes of easy sets of MDs: NI

and HSC sets of MDs. We will take advantage of the results
of Section 3.2, to efficiently retrieve the resolved answers to
queries in the UJCQ class of conjunctive queries (cf. Defini-
tion 19). It extends the single-projected atomic queries (3),
which have a tractable RAP, by Theorem 4.

More precisely, we identify and discuss tractable cases of
RAQ,M for HSC and NI sets of MDs, and a certain class of
conjunctive queries Q. Actually, we present a query rewrit-
ing technique for obtaining their resolved answers. It works
as follows. Given an instance D and a query Q, the MRIs
for D are not explicitly computed. Instead, Q is rewritten
into a new query Q′, using both Q and M . Query Q′ is such
that when posed to D (as usual), it returns the resolved an-
swers to Q from D. Q′ may not be a conjunctive query
anymore. However, if it can be efficiently evaluated against
D, the resolved answers can also be efficiently computed.9.
In our case, the rewritten queries will be (positive) Data-
log queries with aggregation (actually, Count). They can be
evaluated in polynomial time, making RAQ,M tractable.

The queries Q will be conjunctive, without built-in atoms,
i.e. of the form Q(x̄) : ∃ū(R1(v̄1) ∧ · · · ∧ Rn(v̄n)), with
Ri ∈ R, and x̄ = (∪v̄i) r ū. Some additional restrictions
on the joins we will be imposed below, to guarantee the
tractability of RAQ,M .

Definition 19. Let Q be a conjunctive query, and M a set
of MDs. Query Q is an unchangeable join conjunctive query
if there are no existentially quantified variables in a join in
Q in the position of a changeable attribute. UJCQ denotes
this class of queries. 2

Example 18. For schema S = {R[A,B]}, let M consist
of the single MD R[A] ≈ R[A] → R[B]

.
= R[B]. At-

tribute B is changeable, and A is unchangeable. The query
Q1(x, z) : ∃y(R(x, y) ∧ R(z, y)) is not in UJCQ , because the
bound and repeated variable y is for the changeable attribute
B. However, the query Q2(y) : ∃x∃z(R(x, y) ∧ R(x, z)) is
in UJCQ : the only bound, repeated variable is x which is
for the unchangeable attribute A. If variables x and y are
swapped in the first atom of Q2, the query is not UJCQ. 2

We will use the Count(R) operator in queries [1]. It returns
the number of tuples in a relation R, and will be applied
to sets of tuples of the form {x̄ | C}, where x̄ is a tuple
of variables, and C is a condition involving a set of free
variables that include those in x̄. More precisely, for an
instance D, Count({x̄ | C}) takes on D the numerical value
|{c̄ | D |= C[c̄]}|. The variables in C that do not appear in
x̄ are intended to be existentially quantified. A condition C

9FO query rewriting was applied in CQA, already in [3] (cf.
[8] for a survey)



can be seen as a predicate defined by means of a Datalog
query with the ̸= built-in. For motivation and illustration,
we now present a simple example of rewriting using Count .
Throughout the rest of this section, we use the notation of
Example 16 for the arguments of TA.

Example 19. Consider R[A,B], m : R[A] ≈ R[A] →
R[B]

.
= R[B], and the UJCQ query Q(x, y, z) : R(x, y, z).

These are the extensions for R and its (single) MRI:

R A B C
a1 b1 c1
a1 b2 c2
a1 b2 c3

MRI A B C
a1 b2 c1
a1 b2 c2
a1 b2 c3

The set of resolved answers to Q is {(a1, b2, c1), (a1, b2, c2),
(a1, b2, c3)}. The following query, directly posed to the (ac-
tually, any) initial instance, returns the resolved answers. In

it, TA stands for TA{m},(·).
Q′(x, y, z) : ∃y′R(x, y′, z) ∧ ∀y′′[ (5)

Count{(x′, y, z′) | TA(x, y′, z, B, x′, y, z′, B)∧R(x′, y, z′)} >
Count{(x′, y′′, z′) | TA(x, y′, z, B, x′, y′′, z′, B)∧R(x′, y′′, z′)

∧y′′ ̸= y}].
As we saw in Section 3.2, the TA here can be specified by
means of a Datalog query. Actually, the whole query can
be easily expressed by means of a single Datalog query with
aggregation10 and comparison as a built-in.
Intuitively, the first conjunct requires the existence of a

tuple t with the same values as the answer for attributes A
and C. Since the values of these attributes are not changed
when going from the original instance to an MRI, such a
tuple must exist. However, the tuple is not required to have
the same B attribute value as the answer tuple, because
this attribute can be modified. For example, (a1, b2, c1) is a
resolved answer, but is not in R. What makes it a resolved
answer is the fact that it is in an equivalence class of value
positions (consisting of all three positions in the B column of
the instance) for which b2 occurs more frequently than any
other value. This counting condition on resolved answers is
expressed by the second conjunct. Attribute B is the only
changeable attribute, so it is the only attribute argument to
TA, which specifies the values to be merged. Query (5) can
be computed in polynomial time on any instance. 2

The Rewrite algorithm in Table 2 uses a binary relation on
attributes, that we now introduce.

Definition 20. Let M be a set of MDs. (a) The symmet-
ric binary relation

.
=r is defined on attributes, as follows:

R[A]
.
=r S[B] iff there is m ∈ M with R[A]

.
= S[B] appear-

ing on the RHS of m’s arrow.
(b) ER[A] denotes the equivalence class of the reflexive, tran-
sitive, closure of

.
=r that contains R[A]. 2

Example 20. Let M be the set of MDs
R[A] ≈1 S[B]→ R[C]

.
= S[D],

S[E] ≈2 T [F ] ∧ S[G] ≈ T [H]→ S[D,K]
.
= T [J, L],

T [F ] ≈3 T [H]→ T [L,N ]
.
= T [M,P ].

The equivalence classes of Tat are ER[C] = {R[C], S[D], T [J ]},
ES[K] = {S[K], T [L], T [M ]}, and ET [N ] = {T [N ], T [P ]}. 2

10Count queries with group-by in Datalog can be expressed
by rules of the formQ(x̄, count(z))← B(x̄′), where x̄∪{z} ⊆
x̄′, z /∈ x̄, and B is a conjunction of atoms.

To emphasize the association between a variable and a par-
ticular attribute, we sometimes subscript the variable name
with the name of the attribute. For example, given a relation
R with attributes A and B and atom R(x, y), we sometimes
write x as xA. To express substitutions of variables within
lists of variables, we give the name of the variable list, fol-
lowed by the substitution in square brackets. For example,
the list of variables obtained from the list v̄ by substitution
of variables from a subset S of the variables in v̄ with primed
variables is expressed as v̄[v → v′ | v ∈ S].

Input: A query in UJCQ and a NI or HSC set of MDs
M = {m1, ...mp}.
Output: The rewritten query Q′.
1) Let Q(t̄) : ∃ū ∧1≤i≤n Ri(v̄i) be the query.

2) Let TA denote TAM,(·)

3) For each Ri(v̄i)
4) Let C be the set of changeable attributes of Ri

corresponding to a free variable in v̄i
5) If C is empty
6) Qi(v̄i)← Ri(v̄i)
7) Else
8) v̄′i ← v̄i[viA → v′iA | A ∈ C]
9) Let v̄iC be the list of variables viA, A ∈ C
10) v̄′iC ← v̄iC [viA → v′iA | A ∈ C]
11) For each variable viA in v̄iC
12) For each attribute Rj [Bk] ∈ EA

13) Generate atom Rj(ū
′
jk), with

ū′
jk a list of new variables

14) ūjk ← ū′
jk[ujkRj [Bk] → viA]

15) w̄jk ← ū′
jk[ujkRj [Bk] → v′′iA]

16) CA1
jk ← Count{ūjk | TA(v̄′i,

R̄i[A], ujk, Rj [Bk]) ∧Rj(ūjk)}
17) CA2

jk ← Count{w̄jk | TA(v̄′i,
Ri[A], w̄jk, Rj [Bk]) ∧Rj(w̄jk)
∧v′′iA ̸= viA}

18) Qi(v̄i)← ∃v̄′iC{Ri(v̄
′
i)∧A∈C ∀v′′iA[Σj,kC

A1
jk

> Σj,kC
A2
jk ]}

19) Q′(t̄)← ∃ū ∧1≤i≤n Qi(v̄i)
20) return Q′

Table 2: Rewrite Algorithm

Rewrite outputs a rewritten query Q′ for an input consisting
of a queryQ ∈ UJCQ and set of NI or HSC MDs. It rewrites
the query by separately rewriting each conjunct Ri(v̄i) in
Q. If Ri(v̄i) contains no free variables, then it is unchanged
(line 6). Otherwise, it is replaced with a conjunction involv-
ing the same atom and additional conjuncts which use the
Count operator. The conjuncts involving Count express the
condition that, for each changeable attribute value returned
by the query, this value is more numerous than any other
value in the same set of values that is equated by the MDs.
The Count expressions contain new local variables as well as
a new universally quantified variable v′′iA.

Example 21. We illustrate the algorithm with predicates
R[ABC], S[EFG], U [HI], the UJCQ query
Q(x, y, z) : ∃t u p q (R(x, y, z) ∧ S(t, u, z) ∧ U(p, q));

and the NI MDs: R[A] ≈ S[E]→ R[B]
.
= S[F ], and S[E] ≈

U [H]→ S[F ]
.
= U [I].

Since the S and U atoms have no free variables holding
the values of changeable attributes, these conjuncts remain
unchanged (line 6). The only free variable holding the value



of a changeable attribute is y. Therefore, line 8 sets v̄′1 to
(x, y′, z). Variable y contains the value of attribute R[B].
The equivalence class ER[B] is {R[B], S[F ], U [I]}, so the
loop at line 12 generates the atoms R(x′, y, z′), R(x′, y′′, z′),
S(t′, y, z′), S(t′, y′′, z′), U(p′, y), U(p′, y′′). The rewritten
query is obtained by replacing in Q the conjunct R(x, y, z)
by ∃y′(R(x, y′, z) ∧ ∀y′′[
Count{(x′, y, z′) | TA(x, y′, z, R[B], x′, y, z′, R[B]) ∧
R(x′, y, z′)} + Count{(t′, y, z′) | TA(x, y′, z, R[B],
t′, y, z′, S[F ]) ∧ S(t′, y, z′)}+ Count{(p′, y) | TA(x, y′, z,
R[B], p′, y, U [I]) ∧ U(p′, y)} > Count{(x′, y′′, z′) |
TA(x, y′, z, R[B], x′, y′′, z′, R[B]) ∧R(x′, y′′, z′) ∧ y′′ ̸= y}
+ Count{(t′, y′′, z′) | TA(x, y′, z, R[B], t′, y′′, z′, S[F ]) ∧
S(t′, y′′, z′) ∧ y′′ ̸= y}+ Count{(p′, y′′) | TA(x, y′, z, R[B],
p′, y′′, U [I]) ∧ U(p′, y′′) ∧ y′′ ̸= y}]. 2

Notice that the resulting query in Example 21, and this is a
general fact with the algorithm, can be easily translated into
a Datalog query with the aggregate Count plus the built-
ins ̸= and >,+, the last two applied to natural numbers
resulting from counting. The FO part can be transformed
by means of the Lloyd-Topor transformation [25].

Theorem 5. For a NI or HSC set of MDs M and a UJCQ
query Q, the query Q′ computed by the Rewrite algorithm
is efficiently evaluable and returns the resolved answers to
Q. 2

The rewriting algorithm does not depend on the dirty in-
stance at hand, but only on the MDs and the input query,
and runs in polynomial time in the size of Q and M .
In the next section, we will relate RAQ,M to consistent

query answering (CQA) [7, 8]. This connection and some
known results in CQA will allow us to identify further tractable
cases, but also to establish the intractability of RAQ,M for
certain classes of queries and MDs. The latter result im-
plies that the tractability results in this section cannot be
extended to all conjunctive queries.

5. A CQA CONNECTION
MDs can be seen as a new form of integrity constraint

(IC), with a dynamic semantics. An instance D violates an
MD m if there are unresolved duplicates, i.e. tuples t1 and
t2 in D that satisfy the similarity conditions of m, but differ
in value on some pairs of attributes that are expected to be
matched according to m. The instances that are consistent
with a set of MDs M (or self-consistent from the point of
view of the dynamic semantics) are resolved instances of
themselves with respect to M . Among classical ICs, the
closest analogues of MDs are functional dependencies (FDs).
Now, given a database instance D and a set of ICs Σ, pos-

sibly not satisfied by D, consistent query answering (CQA)
is the problem of characterizing and computing the answers
to queries Q that are true in all repairs of D, i.e. the in-
stances D′ that are consistent with Σ and minimally differ
from D [3]. Minimal difference between instances can be
defined in different ways. Most of the research in CQA has
concentrated on the case of the set-theoretic symmetric dif-
ference of instances, as sets of tuples, which in the case of
repairs is made minimal under set inclusion, as originally in-
troduced in [3]. Also the minimization of the cardinality of
this set-difference has been investigated [26, 2]. Other forms
of minimization measure the differences in terms of changes

of attribute values between D and D′ (as opposed to entire
tuples) [19, 27, 18, 9], e.g. the number of attribute updates
can be used for comparison. Cf. [7, 12, 8] for CQA.

Because of their practical importance, much work on CQA
has been done for the case where Σ is a set of functional
dependencies (FDs), and in particular for sets, K, of key
constraints (KCs) [13, 20, 29, 28, 30], with the distance being
the set-theoretic symmetric difference under set inclusion. In
this case, on which we concentrate in the rest of this section,
a repair D′ of an instance D becomes a maximal subset of
D that satisfies K, i.e. D′ ⊆ D, D′ |= K, and there is no
D′′ with D′ $ D′′ ⊆ D, with D′′ |= K [13].

Accordingly, for a FO query Q(x̄) and a set of KCs K, ā is
a consistent answer from D to Q(x̄) wrt K when D′ |= Q[ā],
for every repair D′ of D. For fixed Q(x̄) and K, the consis-
tent query answering problem is about deciding membership
in the set CQAQ,K = {(D, ā) | ā is a consistent answer from
D to Q wrt K}.

Notice that this notion of minimality involved in repairs
wrt FDs is tuple and set-inclusion oriented, whereas the one
that is implicitly related to MDs and MRIs via the match-
ings (cf. Definition 7) is attribute and cardinality oriented.11

However, the connection can still be established. In particu-
lar, the following result can be obtained through a reduction
and a result in [13, Thm. 3.3].

Theorem 6. Consider the relational predicate R[A,B,C],
the MD m : R[A] = R[A] → R[B,C]

.
= R[B,C], and the

non-UJCQ query Q : ∃x∃y∃y′∃z(R(x, y, c)∧R(z, y′, d)∧ y =
y′). RAQ,{m} is coNP-complete.12 2

For certain classes of conjunctive queries and ICs consist-
ing of a single KC per relation, CQA is tractable. This is
the case for the Cforest class of conjunctive queries [20], for
which there is a FO rewriting methodology for computing
the consistent answers. Cforest excludes repeated relations
(self-joins), and allows joins only between non-key and key
attributes. Similar results were subsequently proved for a
larger class of queries that includes some queries with re-
peated relations and joins between non-key attributes [29,
28, 30]. The following result allows us to take advantage of
tractability results for CQA in our MD setting.

Proposition 3. Let D be a database instance for a single
predicate R whose set of attributes is Ā∪B̄, with Ā∩B̄ = ∅;
and m the MD R[Ā] = R[Ā] → R[B̄]

.
= R[B̄]. There is

a polynomial time reduction from RAQ,{m} to CQAQ,{κ},

where κ is the key constraint Ā→ B̄. 2

Proposition 3 can be easily generalized to several relations
with one such MD defined on each. The reduction takes an
instance D for RAQ,{m} and produces an instance D′ for
CQAQ,{κ}. The schema of D′ is the same as for D, but
the extension of the relation is changed wrt D via counting.
Definitions for those aggregations can be inserted into query
Q, producing a rewriting Q ′. Thus, we obtain:

Theorem 7. Let S be a schema withR = {R1[Ā1, B̄1], . . . ,
Rn[Ān, B̄n]} and K the set of KCs κi : Ri[Āi] → Ri[B̄i].
Let Q be a FO query for which there is a polynomial-time

11Cf. [21] for a discussion of the differences between FDs and
MDs seen as ICs, and their repair processes.

12This result appeals to many-one or Karp’s reductions, in
contrast to the Turing reductions used in Section 3.



computable FO rewriting Q′ for computing the consistent
answers to Q. Then there is a polynomial-time computable
FO query Q′′ extended with aggregation13 for computing
the resolved answers to Q from D wrt the set of MDs mi :
Ri[Āi] = Ri[Āi]→ Ri[B̄i]

.
= Ri[B̄i]. 2

The aggregation in Q′′ in Theorem 7 arises from the generic
transformation of the instance that is used in the reduction
involved in Proposition 3, but here becomes implicit in the
query.
We emphasize that Q′′ is not obtained using algorithm

Rewrite from Section 4, which is not guaranteed to work
for queries outside the class UJCQ . Rather, a first-order
transformation of the Ri relations with Count is composed
with Q′ to produce Q′′. Similar to the Rewrite algorithm of
Section 4, it is used to capture the most frequently occurring
values for the changeable attributes for a given set of tuples
with identical values for the unchangeable attributes.
This theorem can be applied to decide/compute resolved

answers in those cases where a FO rewriting for CQA has
been identified. In consequence, it extends the tractable
cases identified in Section 4. It can be applied to queries
that are not in UJCQ .

Example 22. The query Q : ∃x∃y∃z(R(x, y) ∧ S(y, z))
is in the class Cforest for relational predicates R[A,B] and
S[C,E] and KCs A → B and C → E. By Theorem 7 and
the results in [20], there is a polynomial-time computable
FO query with counting that returns the resolved answers
to Q wrt the MDs R[A] = R[A] → R[B]

.
= R[B] and

S[C] = S[C]→ S[E]
.
= S[E]. Notice that Q is not in UJCQ ,

since the bound variable y is associated with the changeable
attribute R[B]. 2

6. CONCLUSIONS
Matching dependencies specify both a set of integrity con-

straints that need to be satisfied for a database to be free
of unresolved duplicates, and, implicity, also a procedure for
resolving such duplicates. Minimally resolved instances [21]
define the end result of this duplicate resolution process. In
this paper we considered the problem of computing the an-
swers to a query that persist across all MRIs (the resolved
answers). In particular, we studied query rewriting meth-
ods for obtaining these answers from the original instance
containing unresolved duplicates.
Depending on syntactic criteria on MDs and queries, trac-

table and intractable cases of resolved query answering were
identified. We discovered the first dichotomy result in this
area. In some of the tractable cases, the original query can
be rewritten into a new, polynomial-time evaluable query
that returns the resolved answers when posed to the origi-
nal instance. It is interesting that the rewritings make use
of counting and recursion (for the transitive closure). The
original queries considered in this paper are all conjunctive.
Other classes of queries will be considered in future work.
We established interesting connections between resolved

query answering wrt MDs and consistent query answering.
There are still many issues to explore in this direction, e.g.
the possible use of logic programs with stable model seman-
tics to specify the MRIs, as with database repairs [4, 5, 22].

13This is a proper extension of FO query languages [24, Chap-
ter 8].

We have proposed some efficient algorithms for resolved
query answering. Implementing them and experimentation
are also left for future work. Notice that those algorithms
use different forms of transitive closure. To avoid unaccept-
ably slow query processing, it may be necessary to compute
transitive closures off-line and store them. The use of Dat-
alog with aggregation can be investigated in this direction.

In this paper we have not considered matching attribute
values, whenever prescribed by the MDs, using matching
functions [10]. This element adds an entirely new dimension
to the semantics and the problems investigated here.
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APPENDIX
A. AUXILIARY RESULTS AND PROOFS
For several of the proofs below, we need some auxiliary

definitions and results.

Lemma 3. Let D be an instance and let m be the MD

R[Ā] ≈ S[B̄]→ R[C̄]
.
= R[Ē]

An instance D′ obtained by changing modifiable attribute
values of D satisfies (D,D′) � m iff for each equivalence
class of Tm, there is a constant vector v̄ such that, for all

tuples t in the equivalence class,

t′[C̄] = v̄ if t ∈ R(D)

t′[Ē] = v̄ if t ∈ S(D)

where t′ is the tuple in D′ with the same identifier as t.

Proof:Suppose (D,D′) � m. By Definition 3, for each pair
of tuples t1 ∈ R(D) and t2 ∈ S(D) such that t1[Ā] ≈ t2[B̄],

t′1[C̄] = t′2[Ē]

Therefore, if T≈(t̄1, t̄2) is true, then t′1 and t′2 must be in
the transitive closure of the binary relation expressed by
t′1[C̄] = t′2[Ē]. But the transitive closure of this relation is
the relation itself (because of the transitivity of equality).
Therefore, t′1[C̄] = t′2[Ē]. The converse is trivial. 2

We require the following definitions and lemma.

Definition 21. Let S be a set and let S1, S2,...Sn be sub-
sets of S whose union is S. A cover subset is a subset Si,
1 ≤ i ≤ n, that is in a smallest subset of {S1, S2, ...Sn} whose
union is S. The problem Cover Subset (CS) is the problem
of deciding, given a set S, a set of subsets {S1, S2, ...Sn} of
S, and an subset Si, 1 ≤ i ≤ n, whether or not Si is a cover
subset. 2

Lemma 4. CS and its complement are NP-hard.

Proof:The proof is by Turing reduction from the minimum
set cover problem, which is NP-complete. Let O be an oracle
for CS. Given an instance of minimum set cover consisting
of set S, subsets S1, S2,...Sn of S, and integer k, the fol-
lowing algorithm determines whether or not there exists a
cover of S of size k or less. The algorithm queries O on
(S, {S1, ...Sn}, Si) until a subset Si is found for which O an-
swers yes. The algorithm then invokes itself recursively on
the instance consisting of set S\Si, subsets
{S1, ...Si−1, Si+1, ...Sn}, and integer k − 1. If the input set
in a recursive call is empty, the algorithm halts and returns
yes, and if the input integer is zero but the set is nonempty,
the algorithm halts and returns no. It can be shown using
induction on k that this algorithm returns the correct an-
swer. This shows that CS is NP-hard. The complement of
CS is hard by a similar proof, with the oracle for CS replaced
by an oracle for the complement of CS. 2

Proof of Lemma 1: We assume that an attribute of both
R and S in RHS(m1) occurs in LHS(m2). The other cases
are similar. For each L-component of m1, there is an at-
tribute of R and an attribute of S from that L-component
in LHS(m2). Let t1 ∈ R be a tuple not in a singleton equiv-
alence class of Tm1 . Suppose there exist two conjuncts in
LHS(m1) of the form A ≈ B and C ≈ B. Then it must
hold that there exists t2 ∈ S such that t1[A] ≈ t2[B] and
t1[C] ≈ t2[B] and by transitivity, t1[A] ≈ t1[C]. More gen-
erally, it follows from induction that t1[A] ≈ t1[E] for any
pair of attributes A and E of R in the same L-component
of m1.

We now prove that for any pair of tuples t1, t2 ∈ R sat-
isfying Tm2(t1, t2) such that each of t1 and t2 is in a non-
singleton equivalence class of Tm1 , for any instance D it
holds that Tm1(t1, t2). By symmetry, the same result holds
with R replaced with S. Suppose for a contradiction that
Tm2(t1, t2) but ¬Tm1(t1, t2) in D. Then it must be true that
t1[Ā] ̸≈ t2[Ā], since, by assumption, there exists a t3 ∈ S



such that t1[Ā] ≈ t3[B̄], which together with t1[Ā] ≈ t2[Ā]
would imply Tm1(t1, t2). Therefore, there must be an at-
tribute A′ ∈ Ā such that t1[A

′] ̸≈ t2[A
′], and by the previous

paragraph and transitivity, t1[A
′′] ̸≈ t2[A

′′] for all A′′ in the
same L-component of m1 as A′. By transitivity of ≈2, this
implies ¬Tm2(t1, t2), a contradiction.
A resolved instance is obtained in two updates. Let T 0

m2

and T 1
m2

denote Tm2 before and after the first update, re-
spectively. The first update involves setting the attributes in
RHS(m1) to a common value for each non-singleton equiv-
alence class of Tm1 . The relation T 1

m2
will depend on these

common values, because of accidental similarities. However,
because of the property proved in the previous paragraph,
this dependence is restricted. Specifically, for each equiv-
alence class E of T 1

m2
, there is at most one non-singleton

equivalence class E1 of Tm1 such that E contains tuples of
E1

∩
R and at most one non-singleton equivalence class E2

of Tm1 such that E contains tuples of E1

∩
S. A given choice

of update values for the first update will result in a set of
sets of tuples from non-singleton equivalence classes of Tm1

(ns tuples) that are equivalent under T 1
m2

. Let K be the set
of all such sets of ESs. Clearly, |K| ∈ O(n2), where n is the
size of the instance.
Generally, when the instance is updated according to m1,

there will be more than one set of choices of update values
that will lead to the ns tuples being partitioned according
to a given k ∈ K. This is because an equivalence class of
T 1
m2

will also contain tuples in singleton equivalence classes
of Tm1 (s tuples), and the set of such tuples contained in the
equivalence class will depend on the update values chosen
for the modifiable attribute values in the ns tuples in the
equivalence class. For a set E ∈ k, let E′ denote the union
over all sets of update values for E of the equivalence classes
of T 1

m2
that contain E that result from choosing that set of

update values. By transitivity and the result of the sec-
ond paragraph, these E′ cannot overlap for different E ∈ k.
Therefore, minimization of the change produced by the two
updates can be accomplished by minimizing the change for
each E′ separately. Specifically, for each equivalence class E,
consider the possible sets of update values for the attributes
in RHS(m1) for tuples in E. Call two such sets of values
equivalent if they result in the same equivalence class E1 of
T 1
m2

. Clearly, there are at most O(nc) such sets of ESs of
values, where c is the number of R-components of m1. Let
V be a set consisting of one set of values v from each set
of sets of equivalent values. For each set of values v ∈ V ,
the minimum number of changes produced by that choice of
value can be determined as follows. The second application
of m1 and m2 updates to a common value each element in
a set S2 of sets of value positions that can be determined
using lemma 3. The update values that result in minimal
change are easy to determine. Let S1 denote the correspond-
ing set of sets of value positions for the first update. Since
the second update “overwrites” the first, the net effect of the
first update is to change to a common value the value po-
sitions in each set in {Si | Si = S\

∪
S′∈S2

S′, S ∈ S1}. It
is straightforward to determine the update values that yield
minimal change for each of these sets. This yields the mini-
mum number of changes for this choice of v. Choosing v for
each E so as to minimize the number of changes allows the
minimum number of changes for resolved instances in which
the ns tuples are partitioned according to k to be determined
in O(nc) time. Repeating this process for all other k ∈ K

allows the determination of the update values that yield an
MRI in O(nc+2) time. Since the values to which each value
in the instance can change in an MRI can be determined in
polynomial time, the result follows. 2

Proof of Theorem 2: For simplicity of the presentation,
we make the assumption that the domain of all attributes
is the same. All pairs of distinct values in an instance are
dissimilar. Wlog, we will assume that part (a) of Theorem
1 does not hold. Let E and L denote an ES and an L-
component that violate part (a) of Theorem 1. We prove
the theorem separately for the following three cases: (1)
There exists such an E that contains only attributes of m1,
(2) there exists such an E that contains both attributes not
in m1 and attributes in m1, and (3) (1) and (2) don’t hold
(so there exists such an E that contains only attributes not
in m1). Case (1) is divided into two subcases: (1)(a) Only
one R-component of m1 contains attributes of E and (1)(b)
more than one R-component contains attributes of E.

Case (1)(a): We reduce an instance of the compliment
of CS (cf. definition 21) to this case, which is NP-hard by
lemma 4. Let F be an instance of CS with set of elements
U = {e1, e2, ...en} and set of subsets V = {f1, f2, ...fm}.
Wlog, we assume in all cases that each element is contained
in at least two sets. With each subset in V we associate a
value in the set K = {k1, k2, ...km}. With each element in
U we associate a value in the set P = {v1, v2, ...vn}. The
instance will also contain values b and c.

Relations R and S each contain a set Si of tuples for each
ei, 1 ≤ i ≤ n. Specifically, there is a tuple in Si for each
value in K corresponding to a set to which ei belongs. On
attributes in L, all tuples in Si take the value vi. There is
one tuple for each value in K corresponding to a set to which
ei belongs that has that value as the value of all attributes
in the R-component of m1 that contains an attribute in E.
On all other attributes, all tuples in all Si take the value b.

Relation S also contains a set G1 of m other tuples. For
each value in K, there is a tuple in G1 that takes this value
on all attributes A such that there is an attribute B ∈ E
such that B ≈ A occurs in m2. This tuple also takes this
value on some attribute Z of S in RHS(m2). For all other
attributes, all tuples in G1 take the value b.

A resolved instance is obtained in two updates. We first
describe a sequence of updates that will lead to an MRI. It is
easy to verify that the equivalence classes of Tm1 are the sets
Si. In the first update, the effect of applying m1 is to update
all modifiable values of attributes in RHS(m1) within each
equivalence class, which are values of attributes within the
R-component of m1 that contains an attribute of E, to a
common value. For some minimum set cover C, we choose
as the update value for a given Si the value associated with
a set in C containing ei.

Before the first update, there is one equivalence class of
Tm2 for each value in K. Let Ek be the equivalence class
for the value k ∈ K. Ek contains all the tuples in R with
k as the value for the attributes in E, as well as a tuple in
G1 with k as the value for Z. The only R-component of m2

the values of whose attributes are modifiable for tuples in
Ek is the one containing the attribute Z. If k is the value in
K corresponding to a set in the minimum set cover C, then
we choose b as the common value for this R-component.
Otherwise, we choose k.

After the first update, applying m1 has no effect, since



none of the values of attributes in RHS(m1) are modifiable.
Each equivalence class of Tm2 consists of a set of sets Si and
a tuple of G1. Specifically, for each update value that was
chosen for the modifiable attributes of RHS(m1) in the first
update there is an equivalence class that includes the set of
all Si whose tuples’ RHS(m1) attributes were updated to
that value as well as the tuple of G1 containing this value.
Given the choices of update values in the previous update,
it is easy to see that the values of all attributes in RHS(m2)
for tuples in these equivalence classes are modifiable after
the first update unless all the values are b. We choose b as
the update value.
It can easily be seen that, in this update process, the

changes made to values of attributes in RHS(m2) in the
first update are overwritten by those made in the second
update. Therefore, the total number of changes made in the
two updates is the number n1 of changes made to the values
of attributes in m1 during the first update plus the number
of changes n2 made to the attributes ofm2 during the second
update. The only attributes of m2 whose values change to
a value different from the original instance in the second
update are those of attribute Z for tuples in G1. Since these
values change iff they occur within a tuple containing one
of the update values for the Si, n2 is the size of a minimum
set cover.
When m1 is applied to the instance in the first update,

the set of values of attributes in the R-component of m1 that
contains an attribute of E for each set of tuples Si is updated
to a common value. Before this update, each such set of
values includes the values of the sets to which ei belongs.
For an arbitrary first update of the instance according to
m1, consider the set I of Si for which the update value
occurs within the set. We claim that for an MRI the set
of update values for I must correspond to a minimum set
cover for the set of all ei such that Si ∈ I. Indeed, if these
values did not correspond to a minimum cover set, then an
instance with fewer changes could be obtained by choosing
them to be a minimum cover set. Furthermore, an update
in which I does not include all Si cannot produce a resolved
instance with fewer changes than our update process. This
is because, for each Si not in I, at least one additional value
from among the values of attributes in RHS(m1) for tuples
in Si was changed relative to our update process. Thus,
the update could be changed so that all Si are in I without
increasing the number of changes, and the resulting update
would have at least as many changes as one in which the set
of update values corresponds to a minimum set cover. This
implies that a value from K occurs as a value of attribute Z
in all MRIs iff the value does not correspond to a cover set.
Thus, RAP is hard for the query πZS.
Case (1)(b): Let F be the min set cover instance from

case (1)(a), and define sets of values K and P as before. In
addition, define a set Y of 2n values and values a, c.
Relations R and S contain a set Si for each ei, 1 ≤ i ≤ n

as before. However, these sets now contain one more tuple
than in case (1)(a). On attributes in L tuples in each Si take
the same value as in case (1)(a). Let {k′

1, k
′
2, ...k

′
|Si|} and

{k′′
1 , k

′′
2 , ...k

′′
|Si|} be lists of all the values in K corresponding

to sets to which ei belongs such that k′
i = k′′

i mod |Si|+1. For
some R-component of m1 containing an attribute of E, for
each 1 ≤ j ≤ |Si|, there is a tuple in Si that takes the value
k′
j on all attributes in this component and the value k′′

j on
all attributes of all other R-components of m1 containing

attributes of E. (We do this to ensure that all tuples in
all Si are in singleton equivalence classes of Tm2 before the
first update, and so their values are not updated by the
application of m2 in this update.) There is also a tuple that
takes the value a on all attributes of all R-components of
m1 containing attributes of E. On all other attributes, all
tuples in all Si take the value b.

Relation R also contains a set G1 of 2n other tuples. For
each value in Y , there is a tuple in G1 with that value as
the value of all attributes of R in L. There are 2n tuples
with value a for all attributes in E. For all attributes of R
in RHS(m2), all tuples in G1 take the value c. On all other
attributes, tuples in G1 take the value b.

Relation S also contains a set G2 ofm+1 other tuples. For
each value in K, there is a tuple in G2 that takes this value
on all attributes A such that there is an attribute B ∈ E
such that B ≈ A occurs in m2. This tuple also takes this
value on some attribute Z of S in RHS(m2). There is also
a tuple t1 which takes the value a on all attributes A such
that there is an attribute B ∈ E such that B ≈ A occurs in
m2, and the value c on Z. For all other attributes, all tuples
in G2 take the value b except t1 which takes the value c.

As in case (1)(a), a resolved instance is obtained in two
updates. We now describe a series of updates that leads to
an MRI. The equivalence classes of Tm1 are the sets Si as
before. The sets of modifiable values in RHS(m1) are the
sets of values of tuples in Si for attributes in an R-component
of m1 that contains an attribute of E. We again choose the
update values to correspond to a minimum set cover, and
we choose the same update value for all R-components for a
given Si.

Before the first update, there is one equivalence class of
Tm2 containing all tuples that have value a for attributes in
E. The values of all attributes in RHS(m2) are modifiable
for tuples in this equivalence class. We choose c as the com-
mon value. After the first update, the equivalence classes of
Tm2 are as in case (1)(a), and we choose the same update
values as before.

As in case (1)(a), the changes made to values of attributes
in RHS(m2) in the first update are overwritten by those
made in the second update. As in that case, this implies
that the total number of changes is the number of changes
made to the attributes of m1 during the first update plus
the number of subsets in a minimum set cover.

If the update value chosen for the RHS(m2) attributes
of the equivalence class of Tm2 in the first update is not c,
the resulting resolved instance cannot be an MRI. Indeed,
suppose that there is a different value that can be used to
obtain an MRI. If this value is chosen, then the number of
changes to the values of attributes of RHS(m2) for tuples in
G1 resulting from the update is at least 2n. Since our update
process makes at most n changes to these values and the
minimum number of changes to the values of attributes of
RHS(m1), this implies that these values must be modifiable
after the first update so that they can be changed back to
their original value in the second update. Modifiability can
only be achieved by updating the values of attributes in
RHS(m1) to a for some Si in the first update. However,
this would result in at least 3 changes to values in tuples
in Si in the second update, since these tuples would then
be in the same equivalence class of Tm2 as the tuples in
G1. Because other choices of update values for Si in the
first update result in only 1 change, this cannot produce an



MRI. In fact, this shows that, even if the first update using
m2 is kept the same as in our update process, using a as the
update value for the RHS(m1) attributes of Si in the first
update will not produce an MRI.
When m1 is applied to the instance in the first update,

the set of values for the attributes in an R-component of m1

for a given Si are updated to a common value. Suppose that
for each R-component, the update value is a value in K that
is in the set, and the update values for the R-components
are not all the same. It is straightforward to show that
this implies that all the tuples in Si will be in singleton
equivalence classes of Tm2 after the first update, and so will
not be changed in the second update. As we have shown, for
any update process leading to an MRI, at least one change
must be made to the values of attributes in RHS(m2) for
tuples in Si during the first update. Since these changes are
undone in our update process, the number of updates to the
tuples in Si is at least one greater than in our update process.
The result now follows from exactly the same argument used
in case (1)(a), except with the additional requirement for
Si in I that their update values are the same for all R-
components of m1.
Case (2): For simplicity of the presentation, we will as-

sume that there exists only one attribute A in E not in m1.
Let F be the min set cover instance from case (1)(a), and
define sets of values K and P as before. In addition, define
m sets Yi, 1 ≤ i ≤ m, of 2n values and values a, b, and c.
Relations R and S contain a set Si for each ei, 1 ≤

i ≤ n, as before. However, Si now contains two tuples
for each set to which ei belongs. On attributes in L, tu-
ples in each Si take the same value as in case (1)(a). Let
K′ = {k′

1, k
′
2, ...k

′
|Si|} and K′′ = {k′′

1 , k
′′
2 , ...k

′′
|Si|} be lists as

defined in case (1)(b). For each value k′
i ∈ K′, there are

two tuples in Si that take this value on all attributes in all
R-components of m1 containing an attribute of E. On the
attribute A, one of these tuples takes the value k′

i and the
other takes the value k′′

i . On all other attributes, all tuples
in all Si take the value b.
Relation R also contains a set G1 of 4nm other tuples.

For each value in each Yi, 1 ≤ i ≤ m, there are two tuples
t1 and t2 in G1 with that value as the value of all attributes
of R in L. Tuple t1 takes the value a for all attributes in E
except A, and t2 takes the value in V corresponding to Si

on these attributes. For all attributes of R in RHS(m2), t1
takes the value c and t2 takes the value in V corresponding
to Si. On attribute A, both tuples take the value in V that
corresponds to Si. On all other attributes, tuples in G1 take
the value b.
Relation S also contains a set of tuples G2 containing

2nm tuples. For each value in each Yi, 1 ≤ i ≤ m, there
is a tuple in G2 that takes the value on all attributes in L.
On all attributes in all R-components of m1 that contain
an attribute of E, tuples in G1 take the value a. For all
attributes of S in RHS(m2), all tuples in G2 take the value
c. On all other attributes, tuples in G1 take the value b.
Relation S also contains a set of tuples G3 containing m

tuples. For each value in K, there is a tuple in G3 that takes
this value on all attributes A such that there is an attribute
B ∈ E such that B ≈ A occurs in m2. The tuple also takes
this value on some attribute Z of S in RHS(m2). For all
other attributes, all tuples in G3 take the value b.
As in case (1), a resolved instance is obtained in two up-

dates. We now describe a series of updates that leads to

an MRI. The equivalence classes of Tm1 are the sets Si, as
well as 2nm sets of 3 tuples, two from G1 and one from G2

that take the same value on attributes in L. For the Si,
we choose the update values for attributes in RHS(m1) in
the same way as in case (1)(b). For the other equivalence
classes, we choose the update value a.

Before the first update, the only equivalence classes of
Tm2 such that the RHS(m2) attribute values are modifiable
are those containing tuples from the sets Si. Each of these
equivalence classes includes tuples in Si that take a given
value v from V on all attributes in E (including A), as well
as those tuples ofG1 that take the value v on these attributes
and the tuple from G3 that contains this value. Call such
an equivalence class Ev. We choose v as the update value
for each Ev.

After the first update, the equivalence classes of Tm2 are
similar to those in case (1). As in that case, we choose
update values in the second update so as to overwrite the
the changes made to values of attributes in RHS(m2) in the
first update. This implies that the total number of changes
is the number of changes made to the attributes ofm1 during
the first update plus the number of subsets in a minimum
set cover.

We now show that, as in case (1), the value in a tuple in
G3 that corresponds to a given set in V changes in some MRI
iff that set is in a min set cover. Consider the first update
produced by the application of m2. Suppose that the update
value for an equivalence class Ev is not v, and assume for a
contradiction that this leads to an MRI. This update would
result in at least 2n changes in the values of tuples in G1,
and thus would produce at least n more changes than the
maximum number of changes that our update process could
produce. Therefore, at least some of the values of tuples in
G1 in this equivalence class must be modifiable after the first
update, so that they can be restored to their original values.
This implies that, in the update produced by m1, the update
value chosen for any such modifiable tuple cannot be a, or
it would be in a singleton equivalence class of Tm2 after the
update. However, not choosing a as the update value would
result in at least one more change relative to our update
process. This is because the updated values include at least
one more a than any other value. Thus, the first update
value for the equivalence classes of Tm2 must be chosen as
in our update process in order to obtain an MRI.

Consider the update resulting from the application of m1.
If an update to an equivalence class involving tuples of G1

and G2 does not use the value a, then the resolved instance
obtained cannot be an MRI. This is because using any other
choice of value would result in at least one more change
in these tuples relative to our update process in the first
update, and cannot result in fewer updates in the second
update since choosing a makes the values in tuples in the
equivalence class unmodifiable. The result now follows from
an argument similar to that of case (1).

Case (3): Let F be the CS instance from case (1)(a), and
define sets of values K and P as before. Let E′ be an ES
containing attributes of m1. Since the MDs are interacting,
there must be at least one such ES, and by assumption, it
must contain an attribute of LHS(m1). Let C1 denote some
R-component of m1 that contains an attribute of E′, and
let p denote the number of attributes in C1. Let C2 denote
some R-component of m2. Let q be the number of attributes
of R in C2. We define a set W of values of size p2, and mn



sets Yij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, of p + q elements each. We
also define a value a.
Relations R and S contain a set Si for each set fi, 1 ≤

i ≤ m, in V . For each element ej in fi, Si contains a set Sij

of p+ q tuples. On all attributes of L, all tuples in Si take
the value ki in K corresponding to fi. For any given Sij , for
a set of p tuples in Sij , each value in W occurs once as the
value of an attribute in C1 for a tuple in the set. All other
tuples in Sij take the value a on all attributes in C1. For
each value in Yij , there is a tuple in Sij that takes the value
on all attributes in C2. On all attributes of E, each tuple
in Sij , 1 ≤ i ≤ m, takes the value vj in P that is associated
with ej . On all other attributes, all tuples in Si take the
value a.
Relation S also contains a set of tuples G1. For each

pair (fi, ej) ∈ V × U , there is a set of tuples Xij in G1

of size p + q. For all attributes of S in the L-component
containing the attributes of E, each Xij takes the value vj
in P associated with ej . For each value in Yij , there is a
tuple in Xij that takes this value on all attributes of C2.
On all other attributes, all tuples in G1 take the value a.
A resolved instance is obtained in two updates. The equiv-

alence classes of Tm1 are the sets Si. The effect of the first
update is to change all values of all attributes in C1 for tu-
ples in Si to a common value. It is easy to see that if the
update value is not a, then all tuples in Si will be in singleton
equivalence classes of Tm2 after the update. Thus, the equiv-
alence classes of Tm2 after the update are

∪
J Sij , 1 ≤ j ≤ n,

where J ≡ {i | a was chosen as the update value for Si}. If
the update value a is chosen for Si for some i, we say that
Si is unblocked. Otherwise, it is blocked.
Consider a blocked Si. In the first update, the minimum

number of changes to values for attributes in RHS(m1) is
p(p+ q)k− 1, where k is the number of elements in fi. Min-
imal change of the values of attributes in C2 for tuples in an
equivalence class of Tm2 is achieved by updating to one of
the original values. The number of changes to values of at-
tributes in RHS(m2) for tuples in Si depends on the number
of sets Sij that are contained in Si that contain the tuple
with this update value. The greater this number, the fewer
the changes. We will take this into account later, but we
ignore it for now and assume that the values of attributes of
RHS(m2) are updated to values outside the active domain
in the first update. Under this assumption, the resulting
upper bound on the number of changes is q2k + d(p + q)k,
where d is the number of attributes of S in C2. Since all tu-
ples in Si are in singleton equivalence classes of Tm2 after the
first update, the second update produces no further changes.
Therefore, the number of changes of values for tuples in Si

is at most p(p+ q)k − 1 + q2k + d(p+ q)k.
For an unblocked Si, the minimum number of changes to

values for attributes in RHS(m1) is p2k. Since the second
update “overwrites” the first, the number of changes to the
values of attributes in RHS(m2) is the number of changes
produced in the second update. Minimal change of the val-
ues of attributes in C2 for tuples in an equivalence class of
Tm2 is achieved by updating to one of the original values for
these tuples and attributes. A set Sij is good if all values
in the set of values of attributes in C2 for tuples in Sij are
modified to a value in the set in the second update. A set
Si is good if it contains a good Sij . Sets Sij and Si that are
not good are bad. The number of changes to attributes of
RHS(m2) for a bad unblocked Si is q(p + q)k + d(p + q)k,

and for a good unblocked Si it is at most q(p+ q)k + d(p+
q)k− (q+ d). Thus the total number of changes for the bad
and good cases is p2k + q(p + q)k + d(p + q)k and at most
p2k + q(p + q)k + d(p + q)k − (q + d), respectively. If the
upper bound on the number of changes from the previous
paragraph is taken as the number of changes for blocked Si,
it is easy to verify that for a given good (bad) Si, the num-
ber of changes when Si is unblocked (blocked) is strictly less
than the number of changes when Si is blocked (unblocked).

Consider a sequence I of two updates in which all Si are
chosen to be unblocked in the first update. Assume that
all sets of values that must be updated to a common value
are updated to a value in the set, except the values of at-
tributes in RHS(m2) in the first update. We now show how
to improve this pair of updates in order to obtain a pair of
updates leading to an MRI. For each j, there is exactly one
i such that Sij is good. Since all values of the attributes in
C2 occur with the same frequency, the number of changes
resulting from the two updates does not depend on which
Sij are chosen to be good. The number of changes resulting
from applying I to the instance is reduced by changing all
bad Si to blocked. This improvement is maximized by max-
imizing the number of bad Si, which can be accomplished
by choosing the set of good Si so that it corresponds to a
minimum set cover. Denote by I ′ the pair of updates ob-
tained by changing I so that it conforms to this choice of
good Si and by changing all the resulting bad Si to blocked.

We now remove the assumption that values from outside
the active domain are used as update values for attributes in
C2 in the first update. This has no effect on the number of
changes for tuples in unblocked Si, since the first update is
“overwritten” for these tuples. However, if the update value
for a given equivalence class of Tm2 is chosen as one of the
values of a tuple in a blocked Si, it reduces the number of
changes. Let I ′′ be the sequence of updates obtained by
modifying I ′ so that each update value for an equivalence
class of Tm2 in the first update is chosen from among the
values of tuples in the equivalence class that are in a blocked
Si. It is easy to verify that any I ′′ obtained in this way
produces an MRI, and that no other update process will
produce an MRI. Hardness of the pair of MDs now follows
from the fact that the only values that are unchanged in
all MRIs among the values of attributes in C2 are values in
those Si that correspond to cover sets. 2

Proof of Proposition 2: We prove the proposition for
HSC sets. In the proof, for an MD m, we use the term
transitive closure of m, denoted Tm, to refer to the transitive
closure of the binary relation that relates pairs of tuples
satisfying the similarity condition of m. For a set of MDs
M , the transitive closure of M , denoted TM is the union of
the transitive closures of the MDs in m.

Consider an instance D and set of matching dependencies
M . Consider a MD m of the form

R[Ā] ≈ R[Ā]→ R[B̄]
.
= R[B̄]

Let L be the set of all lengths of cycles on the vertices cor-
responding to the MDs in PS(m). Let n = LCM(L) be
the period of m. It is easy to see that there exists a set
{S1, S2, ...Sn} of subsets of PS(m) with transitive closures
{T1, T2, ...Tn}, where

∪
i Si = PS(m), such that the follow-

ing holds. Let Di denote an instance obtained by updating
D i times according to M , and for a tuple t ∈ D, denote



the tuple with the same identifier in Di by ti. Let (B,B) be
a corresponding pair of (B̄, B̄). After D has been updated
i+ a times 14, for a sufficiently large, according to M to ob-
tain an instance Di+a, for all tuples t in a given equivalence
class E of Ti,

ti+a[B] = ti+a[B] = vEi (6)

for some value vEi . LetD′ be a resolved instance. D′ satisfies
the property that any number of applications of the MDs
does not change the instance. Therefore, D′ must satisfy
(6) for all i. That is, for all 1 ≤ i ≤ n, for any equivalence
class E of Ti, and for all tuples t in E,

t′[B] = t′[B] = vEi (7)

where t′ is the tuple in D′ with the same identifier as t.
By (7), for any pair of tuples t1 and t2 satisfying

TPS(m)(t1, t2), t′1 and t′2 must satisfy T ′(t′1, t
′
2), where T ′

is the transitive closure of the binary relation on tuples ex-
pressed by t′1[B] = t′2[B]. Since the equality relation is closed
under transitive closure, this implies the following property:

TPS(m)(t1, t2) implies t′1[B] = t′2[B] (8)

Equation (8) implies that the attribute values for the tu-
ple/attribute pairs specified in the proposition must be equal
in a resolved instance. By specifying a series of updates such
that only these values are changed, we now show that these
are the only changed values in an MRI.
D is updated as follows. For sufficiently large a, after each

update attribute B must satisfy an equation of the form of
(6) for each m for which B ∈ RHS(m). Let T be the transi-
tive closure of the set of all TPS(m) such that B ∈ RHS(m).

For the (i+a)th update, if the values of B must be modified
to enforce (6), use as the common value for all equivalence
classes E contained within a given equivalence class of T
the most frequently occurring value for B in this equiva-
lence class of T . If there is more than one most frequently
occurring value, choose any such value. After a finite num-
ber of updates, an instance is obtained that satisfies (8).
We must show that this update process does not change

any values other than those that must be changed to satisfy
(8). The theorem will then follow from the fact that the
fewest possible values were changed in order to enforce (8).
Let {T1, T2, ...T|M|} denote the set of transitive closures of
the MDs {m1,m2, ...m|M|} in M . For any intermediate in-
stance I obtained in the update process, let tI denote the tu-
ple in I with the same identifier as t in the original instance.
We will show by induction on the number of updates that
were made to obtain I that for any j, whenever Tj(tI , t

′
I)

for tuples t and t′, it holds that T (t, t′). This implies that
updates made to t[A] for any tuple t and attribute A can
only set it equal to the common value for the equivalence
class of T to which t belongs.
By definition of T , if 0 updates were used to obtain I,

Tj(tI , t
′
I) implies Tj(t, t

′) implies T (t, t′). Assume it is true
for instances obtained after at most k updates. Let I be an
instance obtained after k + 1 updates. Consider the MD

mj : R[A] ≈j R[A]→ R[B̄]
.
= R[B̄]

Suppose for the sake of contradiction that there exist tuples
tI and t′I such that Tj(tI , t

′
I) but ¬T (t, t′). Let I ′ be the

14We use the term “update” even if a resolved instance is
obtained after fewer than i modifications. In this case, the
“update” is the identity mapping on all values.

instance of which I is the updated instance. Then, there
must be a set of tuples U = {t0, t1, ...tp} with t0 = t and tp =
t′ such that ti−1

I [A] ≈j tiI [A] for all 1 ≤ i ≤ p. By choice of
update value, for all i, T (ti−1, si−1) and T (ti, si), where si−1

and si are tuples such that, si−1
I′ [A] = ti−1

I [A] and siI′ [A] =

tiI [A]. By si−1
I′ [A] ≈j siI′ [A] and the induction hypothesis,

T (si−1, si). By transitivity, this implies T (ti−1, ti) for all i,
which implies T (t, t′), a contradiction. 2

Proof of Theorem 5: We express the query in the form

Q(ȳ) = ∃z̄Q1(z̄, ȳ) (9)

Let xij denote the variable of z̄ or ȳ which holds the value of
the jth attribute in the ith conjunct Ri in Q1. Denote this
attribute by Aij . Note that, since variables and conjuncts
can be repeated, it can happen that xij is the same variable
as xkl for (i, j) ̸= (k, l), that Aij is the same attribute as Akl

for (i, j) ̸= (k, l), or that Ri is the same as Rj for i ̸= j. Let
B and F denote the set of bound and free variables in Q1,
respectively. Let C and U denote the variables in Q1 hold-
ing the values of changeable and unchangeable attributes,
respectively. Let Q′(ȳ) denote the rewritten query returned
by algorithm Rewrite, which we express as

Q′(ȳ) = ∃zQ′
1(z̄, ȳ)

We show that, for any constant vector ā, Q′(ā) is true for
an instance D iff Q(ā) is true for all MRIs of D.

Suppose that Q′(ā) is true for an instance D. Then there
exists a b̄ such that Q′

1(b̄, ā). We will refer to this assign-
ment of constants to variables as AQ′ . From the form of
Q′, it is apparent that, for any fixed i, there is a tuple
t1 = c̄i ≡ (ci1, ci2, ...cip) such that Ri(c̄i) is true in D with
the following properties.

1. For all xij except those in F
∩

C, cij is the value as-
signed to xij by AQ′ .

2. For all xij ∈ F
∩

C, there is a tuple t2 with attribute
B such that Dup(t1, Aij , t2, B), and the value of t2[B]
is the value assigned to xij by AQ′ . Moreover, this
value occurs more frequently than that of any other
tuple/attribute pair in the same equivalence class of
Dup.

For any given MRI D′, consider the tuple t′1 in D′ with the
same identifier as t1. Clearly, this tuple will have the same
values as t1 for all unchangeable attributes, which by 1., are
the values assigned to the variables xij ∈ U . Also, by 2.
and Corollary 3, for any j such that xij ∈ F

∩
C is free,

the value of the jth attribute of t′1 is that assigned to xij by
AQ′ .

Thus, for each MRI D′, there exists an assignment AQ of
constants to the xij that makes Q true, and this assignment
agrees with AQ′ on all xij ̸∈ B

∩
C. This assignment is

consistent in the sense that, if xij and xkl are the same
variable, they are assigned the same value. Indeed, for xij ̸∈
B
∩

C, consistency follows from the consistency of AQ′ , and
for xij ∈ B

∩
C, it follows from the fact that the variable

represented by xij occurs only once in Q, by assumption.
Therefore, Q(ā) is true for all MRIs D′, and ā is a resolved
answer.

Conversely, suppose that a tuple ā is a resolved answer.
Then, for any given MRI D′ there is a satisfying assignment
AQ to the variables in Q such that z̄ as defined by (9) is



assigned the value ā. We write Q′ in the form

Q′(ȳ)← ∃z̄ ∧1≤i≤n Qi(v̄i) (10)

with Qi the rewritten form of the ith conjunct of Q. For any
fixed i, let t′ = (c′i1, c

′
i2, ...c

′
ip) be a tuple in D′ such that c′ij

is the constant assigned to xij by AQ.
We construct a satisfying assignment AQ′ to the free and

existentially quantified variables of Q′ as follows. Consider
the conjunct Qi of Q′ as given on line 17 of Rewrite. Assign
to v̄′i the tuple t in D with the same identifier as t′. This
fixes the values of all the variables except those xij ∈ F

∩
C,

which are set to c′ij . It follows from lemma 3 that AQ′

satisfies Q′. Since AQ and AQ′ match on all variables that
are not local to a single Qi, AQ′ is consistent. Therefore, ā
is an answer for Q′ on D. 2

Proof of Theorem 6: Hardness follows from the fact that,
for the instance D resulting from the reduction in the proof
of Theorem 3.3 in [13], the set of all repairs of D with respect
to the given key constraint is the same as the set of MRIs
with respect to m. The key point is that attribute modifica-
tion in this case generates duplicates which are subsequently
eliminated from the instance, producing the same result as
tuple deletion. Containment is easy. 2

Proof of Proposition 3: Take Ā = (A1, ...Am) and B̄ =

(B1, ..., Bn). For any tuple of constants k̄, define Rk̄ ≡
σĀ=k̄R. Let Bk̄

i denote the single attribute relation with
attribute Bi whose tuples are the most frequently occurring

values in πBiR
k̄. That is, a ∈ Bk̄

i iff a ∈ πBiR
k̄ and there

is no b ∈ πBiR
k̄ such that b occurs as the value of the Bi

attribute in more tuples of Rk̄ than a does. Note that Bk̄
i can

be written as an expression involving R which is first order
with a Count operator. The reduction produces (R′, t) from
(R, t), where

R′ ≡
∪
k̄

[
πĀR

k̄ ×Bk̄
1 × · · ·Bk̄

n

]
(11)

The repairs of R′ are obtained by keeping, for each set of
tuples with the same key value, a single tuple with that key
value and discarding all others. By lemma 3, in a MRI of D,
the group Gk̄ of tuples such that Ā = k̄ for some constant
k̄ has a common value for B̄ also, and the set of possible
values for B̄ is the same as that of the tuple with key k̄ in a
repair of D. Since duplicates are eliminated from the MRIs,
the set of MRIs of D is exactly the set of repairs of R′. 2

Proof of Theorem 7: Q′′ is obtained by composing Q′

with the transformation R→ R′, which is a first-order query
with aggregation. 2


